L(s) = 1 | + (−9.36 + 20.6i)2-s + 150. i·3-s + (−336. − 385. i)4-s − 292. i·5-s + (−3.09e3 − 1.40e3i)6-s − 9.95e3·7-s + (1.10e4 − 3.32e3i)8-s − 2.84e3·9-s + (6.02e3 + 2.73e3i)10-s + 6.58e4i·11-s + (5.78e4 − 5.05e4i)12-s + 4.49e4i·13-s + (9.31e4 − 2.05e5i)14-s + 4.38e4·15-s + (−3.53e4 + 2.59e5i)16-s − 4.69e5·17-s + ⋯ |
L(s) = 1 | + (−0.413 + 0.910i)2-s + 1.06i·3-s + (−0.657 − 0.753i)4-s − 0.209i·5-s + (−0.974 − 0.442i)6-s − 1.56·7-s + (0.957 − 0.287i)8-s − 0.144·9-s + (0.190 + 0.0865i)10-s + 1.35i·11-s + (0.805 − 0.703i)12-s + 0.436i·13-s + (0.648 − 1.42i)14-s + 0.223·15-s + (−0.134 + 0.990i)16-s − 1.36·17-s + ⋯ |
Λ(s)=(=(8s/2ΓC(s)L(s)(−0.957+0.287i)Λ(10−s)
Λ(s)=(=(8s/2ΓC(s+9/2)L(s)(−0.957+0.287i)Λ(1−s)
Degree: |
2 |
Conductor: |
8
= 23
|
Sign: |
−0.957+0.287i
|
Analytic conductor: |
4.12028 |
Root analytic conductor: |
2.02984 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8, ( :9/2), −0.957+0.287i)
|
Particular Values
L(5) |
≈ |
0.0985981−0.672161i |
L(21) |
≈ |
0.0985981−0.672161i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(9.36−20.6i)T |
good | 3 | 1−150.iT−1.96e4T2 |
| 5 | 1+292.iT−1.95e6T2 |
| 7 | 1+9.95e3T+4.03e7T2 |
| 11 | 1−6.58e4iT−2.35e9T2 |
| 13 | 1−4.49e4iT−1.06e10T2 |
| 17 | 1+4.69e5T+1.18e11T2 |
| 19 | 1−4.38e5iT−3.22e11T2 |
| 23 | 1−1.14e6T+1.80e12T2 |
| 29 | 1+5.39e6iT−1.45e13T2 |
| 31 | 1−1.85e6T+2.64e13T2 |
| 37 | 1−1.45e7iT−1.29e14T2 |
| 41 | 1−5.45e6T+3.27e14T2 |
| 43 | 1+5.79e6iT−5.02e14T2 |
| 47 | 1+1.69e7T+1.11e15T2 |
| 53 | 1−4.94e7iT−3.29e15T2 |
| 59 | 1+4.70e7iT−8.66e15T2 |
| 61 | 1+7.39e7iT−1.16e16T2 |
| 67 | 1−2.37e8iT−2.72e16T2 |
| 71 | 1+6.33e7T+4.58e16T2 |
| 73 | 1+2.73e7T+5.88e16T2 |
| 79 | 1+1.20e8T+1.19e17T2 |
| 83 | 1+1.31e8iT−1.86e17T2 |
| 89 | 1−6.90e8T+3.50e17T2 |
| 97 | 1−1.17e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−20.35654997087681474831710355049, −18.92058135327997373768219223363, −17.10262548445554492417815430900, −15.96687076876154894450233738908, −15.11543906891193679332604392158, −13.05816374540489534758214111123, −10.14137748426947771812555994469, −9.242654175021908540429993295571, −6.71858881119435499044570943558, −4.45881051517567841731270577497,
0.52850205214568098847237753075, 2.96656224618974369709787245977, 6.82589886433999997973353112969, 8.938761873834235855602559250976, 10.88419262385169586855391988775, 12.73574064298309083274962768521, 13.43118495372681160464466741231, 16.25782636158290861170907587868, 17.96764954421477419307056707701, 19.08551141617500367184553189494