Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8,10,Mod(5,8)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8.5");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 8.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
−21.4782 | − | 7.11952i | 100.481i | 410.625 | + | 305.829i | − | 2583.09i | 715.380 | − | 2158.16i | 6967.65 | −6642.12 | − | 9492.10i | 9586.48 | −18390.4 | + | 55480.1i | |||||||||||||||||||||||||||||||
5.2 | −21.4782 | + | 7.11952i | − | 100.481i | 410.625 | − | 305.829i | 2583.09i | 715.380 | + | 2158.16i | 6967.65 | −6642.12 | + | 9492.10i | 9586.48 | −18390.4 | − | 55480.1i | ||||||||||||||||||||||||||||||||
5.3 | −9.36065 | − | 20.6004i | − | 150.106i | −336.757 | + | 385.667i | 292.339i | −3092.24 | + | 1405.08i | −9955.46 | 11097.2 | + | 3327.24i | −2848.66 | 6022.31 | − | 2736.48i | ||||||||||||||||||||||||||||||||
5.4 | −9.36065 | + | 20.6004i | 150.106i | −336.757 | − | 385.667i | − | 292.339i | −3092.24 | − | 1405.08i | −9955.46 | 11097.2 | − | 3327.24i | −2848.66 | 6022.31 | + | 2736.48i | ||||||||||||||||||||||||||||||||
5.5 | 2.86961 | − | 22.4447i | 247.414i | −495.531 | − | 128.815i | 1417.55i | 5553.14 | + | 709.983i | 5087.57 | −4313.20 | + | 10752.4i | −41530.8 | 31816.6 | + | 4067.83i | |||||||||||||||||||||||||||||||||
5.6 | 2.86961 | + | 22.4447i | − | 247.414i | −495.531 | + | 128.815i | − | 1417.55i | 5553.14 | − | 709.983i | 5087.57 | −4313.20 | − | 10752.4i | −41530.8 | 31816.6 | − | 4067.83i | |||||||||||||||||||||||||||||||
5.7 | 18.9692 | − | 12.3357i | − | 67.6316i | 207.662 | − | 467.996i | − | 506.862i | −834.282 | − | 1282.92i | 300.249 | −1833.85 | − | 11439.2i | 15109.0 | −6252.48 | − | 9614.77i | |||||||||||||||||||||||||||||||
5.8 | 18.9692 | + | 12.3357i | 67.6316i | 207.662 | + | 467.996i | 506.862i | −834.282 | + | 1282.92i | 300.249 | −1833.85 | + | 11439.2i | 15109.0 | −6252.48 | + | 9614.77i | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 8.10.b.a | ✓ | 8 |
3.b | odd | 2 | 1 | 72.10.d.b | 8 | ||
4.b | odd | 2 | 1 | 32.10.b.a | 8 | ||
8.b | even | 2 | 1 | inner | 8.10.b.a | ✓ | 8 |
8.d | odd | 2 | 1 | 32.10.b.a | 8 | ||
12.b | even | 2 | 1 | 288.10.d.b | 8 | ||
16.e | even | 4 | 2 | 256.10.a.p | 8 | ||
16.f | odd | 4 | 2 | 256.10.a.s | 8 | ||
24.f | even | 2 | 1 | 288.10.d.b | 8 | ||
24.h | odd | 2 | 1 | 72.10.d.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
8.10.b.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
8.10.b.a | ✓ | 8 | 8.b | even | 2 | 1 | inner |
32.10.b.a | 8 | 4.b | odd | 2 | 1 | ||
32.10.b.a | 8 | 8.d | odd | 2 | 1 | ||
72.10.d.b | 8 | 3.b | odd | 2 | 1 | ||
72.10.d.b | 8 | 24.h | odd | 2 | 1 | ||
256.10.a.p | 8 | 16.e | even | 4 | 2 | ||
256.10.a.s | 8 | 16.f | odd | 4 | 2 | ||
288.10.d.b | 8 | 12.b | even | 2 | 1 | ||
288.10.d.b | 8 | 24.f | even | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace .