L(s) = 1 | + (−56 − 71.1i)2-s + 2.29e3i·3-s + (−1.92e3 + 7.96e3i)4-s − 2.25e4i·5-s + (1.63e5 − 1.28e5i)6-s − 1.75e5·7-s + (6.73e5 − 3.09e5i)8-s − 3.66e6·9-s + (−1.60e6 + 1.26e6i)10-s + 2.63e6i·11-s + (−1.82e7 − 4.40e6i)12-s − 3.10e7i·13-s + (9.84e6 + 1.25e7i)14-s + 5.17e7·15-s + (−5.97e7 − 3.05e7i)16-s − 1.33e8·17-s + ⋯ |
L(s) = 1 | + (−0.618 − 0.785i)2-s + 1.81i·3-s + (−0.234 + 0.972i)4-s − 0.646i·5-s + (1.42 − 1.12i)6-s − 0.564·7-s + (0.908 − 0.417i)8-s − 2.29·9-s + (−0.507 + 0.399i)10-s + 0.448i·11-s + (−1.76 − 0.425i)12-s − 1.78i·13-s + (0.349 + 0.443i)14-s + 1.17·15-s + (−0.890 − 0.455i)16-s − 1.34·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 + 0.417i)\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (-0.908 + 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (56 + 71.1i)T \) |
good | 3 | \( 1 - 2.29e3iT - 1.59e6T^{2} \) |
| 5 | \( 1 + 2.25e4iT - 1.22e9T^{2} \) |
| 7 | \( 1 + 1.75e5T + 9.68e10T^{2} \) |
| 11 | \( 1 - 2.63e6iT - 3.45e13T^{2} \) |
| 13 | \( 1 + 3.10e7iT - 3.02e14T^{2} \) |
| 17 | \( 1 + 1.33e8T + 9.90e15T^{2} \) |
| 19 | \( 1 + 3.47e7iT - 4.20e16T^{2} \) |
| 23 | \( 1 + 3.55e7T + 5.04e17T^{2} \) |
| 29 | \( 1 - 1.58e9iT - 1.02e19T^{2} \) |
| 31 | \( 1 + 5.76e9T + 2.44e19T^{2} \) |
| 37 | \( 1 - 1.31e10iT - 2.43e20T^{2} \) |
| 41 | \( 1 + 2.35e10T + 9.25e20T^{2} \) |
| 43 | \( 1 - 1.45e10iT - 1.71e21T^{2} \) |
| 47 | \( 1 + 6.81e10T + 5.46e21T^{2} \) |
| 53 | \( 1 - 1.66e11iT - 2.60e22T^{2} \) |
| 59 | \( 1 + 1.27e11iT - 1.04e23T^{2} \) |
| 61 | \( 1 + 4.24e11iT - 1.61e23T^{2} \) |
| 67 | \( 1 - 3.76e11iT - 5.48e23T^{2} \) |
| 71 | \( 1 + 1.30e12T + 1.16e24T^{2} \) |
| 73 | \( 1 - 4.78e11T + 1.67e24T^{2} \) |
| 79 | \( 1 + 3.64e11T + 4.66e24T^{2} \) |
| 83 | \( 1 - 8.72e11iT - 8.87e24T^{2} \) |
| 89 | \( 1 + 1.02e11T + 2.19e25T^{2} \) |
| 97 | \( 1 + 6.15e12T + 6.73e25T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.65978435455203681643641082054, −16.43926881792246532000931553469, −15.33668974110885581988608251445, −12.87621409939849304338204397150, −10.93507854705696446556708009729, −9.825415577534778085788850462259, −8.645963212763147773751643674215, −4.81004787998134418614049204748, −3.19818504863189000629106719430, 0,
1.93038818587889765107238007347, 6.35634786931397683112681367751, 7.09964062377997907717772034749, 8.846768203395262984579593176778, 11.33823241226993906262910766164, 13.32932010916070356905866113244, 14.42478382858237728831045644709, 16.53113069873533837985788904387, 17.96913617909271316794322981383