Properties

Label 8.14.b.a
Level $8$
Weight $14$
Character orbit 8.b
Analytic conductor $8.578$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8,14,Mod(5,8)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8.5");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 8.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.57847431615\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-79}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-79}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 \beta - 56) q^{2} + 129 \beta q^{3} + (448 \beta - 1920) q^{4} - 1270 \beta q^{5} + ( - 7224 \beta + 163056) q^{6} - 175832 q^{7} + ( - 17408 \beta + 673792) q^{8} - 3664233 q^{9} + (71120 \beta - 1605280) q^{10} + \cdots - 543204221085 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 112 q^{2} - 3840 q^{4} + 326112 q^{6} - 351664 q^{7} + 1347584 q^{8} - 7328466 q^{9} - 3210560 q^{10} - 36524544 q^{12} + 19693184 q^{14} + 103540560 q^{15} - 119472128 q^{16} - 267040604 q^{17} + 410394096 q^{18}+ \cdots + 7388877236496 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0.500000 + 4.44410i
0.500000 4.44410i
−56.0000 71.1056i 2293.15i −1920.00 + 7963.82i 22576.0i 163056. 128417.i −175832. 673792. 309451.i −3.66423e6 −1.60528e6 + 1.26426e6i
5.2 −56.0000 + 71.1056i 2293.15i −1920.00 7963.82i 22576.0i 163056. + 128417.i −175832. 673792. + 309451.i −3.66423e6 −1.60528e6 1.26426e6i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.14.b.a 2
3.b odd 2 1 72.14.d.b 2
4.b odd 2 1 32.14.b.a 2
8.b even 2 1 inner 8.14.b.a 2
8.d odd 2 1 32.14.b.a 2
24.h odd 2 1 72.14.d.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.14.b.a 2 1.a even 1 1 trivial
8.14.b.a 2 8.b even 2 1 inner
32.14.b.a 2 4.b odd 2 1
32.14.b.a 2 8.d odd 2 1
72.14.d.b 2 3.b odd 2 1
72.14.d.b 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 5258556 \) acting on \(S_{14}^{\mathrm{new}}(8, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 112T + 8192 \) Copy content Toggle raw display
$3$ \( T^{2} + 5258556 \) Copy content Toggle raw display
$5$ \( T^{2} + 509676400 \) Copy content Toggle raw display
$7$ \( (T + 175832)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 6944599287900 \) Copy content Toggle raw display
$13$ \( T^{2} + 966142544060656 \) Copy content Toggle raw display
$17$ \( (T + 133520302)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 12\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( (T + 35585416)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 25\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( (T + 5765001568)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 17\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( (T + 23546348918)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 21\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( (T + 68107736592)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 27\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{2} + 16\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{2} + 17\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{2} + 14\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T + 1309471657368)^{2} \) Copy content Toggle raw display
$73$ \( (T - 478647871914)^{2} \) Copy content Toggle raw display
$79$ \( (T + 364547231600)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 76\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( (T + 102457641350)^{2} \) Copy content Toggle raw display
$97$ \( (T + 6157717373342)^{2} \) Copy content Toggle raw display
show more
show less