L(s) = 1 | + (−377. + 1.39e3i)2-s − 1.48e5i·3-s + (−1.81e6 − 1.05e6i)4-s − 2.51e7i·5-s + (2.07e8 + 5.60e7i)6-s + 8.96e8·7-s + (2.16e9 − 2.13e9i)8-s − 1.15e10·9-s + (3.51e10 + 9.51e9i)10-s − 1.46e11i·11-s + (−1.56e11 + 2.68e11i)12-s + 4.53e11i·13-s + (−3.38e11 + 1.25e12i)14-s − 3.73e12·15-s + (2.16e12 + 3.82e12i)16-s + 6.08e11·17-s + ⋯ |
L(s) = 1 | + (−0.260 + 0.965i)2-s − 1.44i·3-s + (−0.863 − 0.503i)4-s − 1.15i·5-s + (1.39 + 0.378i)6-s + 1.19·7-s + (0.711 − 0.702i)8-s − 1.10·9-s + (1.11 + 0.300i)10-s − 1.70i·11-s + (−0.730 + 1.25i)12-s + 0.913i·13-s + (−0.312 + 1.15i)14-s − 1.67·15-s + (0.492 + 0.870i)16-s + 0.0731·17-s + ⋯ |
Λ(s)=(=(8s/2ΓC(s)L(s)(−0.711+0.702i)Λ(22−s)
Λ(s)=(=(8s/2ΓC(s+21/2)L(s)(−0.711+0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
8
= 23
|
Sign: |
−0.711+0.702i
|
Analytic conductor: |
22.3581 |
Root analytic conductor: |
4.72844 |
Motivic weight: |
21 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8, ( :21/2), −0.711+0.702i)
|
Particular Values
L(11) |
≈ |
0.534129−1.30144i |
L(21) |
≈ |
0.534129−1.30144i |
L(223) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(377.−1.39e3i)T |
good | 3 | 1+1.48e5iT−1.04e10T2 |
| 5 | 1+2.51e7iT−4.76e14T2 |
| 7 | 1−8.96e8T+5.58e17T2 |
| 11 | 1+1.46e11iT−7.40e21T2 |
| 13 | 1−4.53e11iT−2.47e23T2 |
| 17 | 1−6.08e11T+6.90e25T2 |
| 19 | 1+3.33e13iT−7.14e26T2 |
| 23 | 1+2.43e14T+3.94e28T2 |
| 29 | 1−1.19e15iT−5.13e30T2 |
| 31 | 1−5.18e15T+2.08e31T2 |
| 37 | 1−2.87e15iT−8.55e32T2 |
| 41 | 1+9.95e16T+7.38e33T2 |
| 43 | 1−2.13e17iT−2.00e34T2 |
| 47 | 1+2.65e17T+1.30e35T2 |
| 53 | 1+1.06e17iT−1.62e36T2 |
| 59 | 1−3.03e18iT−1.54e37T2 |
| 61 | 1+3.77e18iT−3.10e37T2 |
| 67 | 1−7.43e18iT−2.22e38T2 |
| 71 | 1−3.77e19T+7.52e38T2 |
| 73 | 1+3.15e19T+1.34e39T2 |
| 79 | 1−8.13e19T+7.08e39T2 |
| 83 | 1+1.42e20iT−1.99e40T2 |
| 89 | 1−4.63e20T+8.65e40T2 |
| 97 | 1−8.42e20T+5.27e41T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.23353281107151424432216336230, −14.12598163215184906543001957828, −13.28840660758551046183601393823, −11.61537604353753477951574648885, −8.731227500130108269458442342233, −7.992387204579399978058872651912, −6.35341574420010375996231469120, −4.84682875667856006004387443881, −1.48704853612403231827358110360, −0.57737106757040686956272165596,
2.06784220137434101707282660143, 3.69627357905105783200711277833, 4.91203877597456706995979696593, 7.950301912108482844872567295056, 9.977248999933452415735374381166, 10.49293515509575645531244309965, 11.93398903310409163070593766942, 14.34948756943896720428099931952, 15.24744907261667675131537168487, 17.35053626553846005425032150730