L(s) = 1 | + (1.54 + 1.54i)3-s + (2 − 2i)7-s − 4.19i·9-s − 1.10·11-s + (−10.0 − 10.0i)13-s + (−3.91 + 3.91i)17-s − 23.3i·19-s + 6.19·21-s + (−5.29 − 5.29i)23-s + (20.4 − 20.4i)27-s − 32.5i·29-s − 42.3·31-s + (−1.70 − 1.70i)33-s + (−22.2 + 22.2i)37-s − 31.1i·39-s + ⋯ |
L(s) = 1 | + (0.516 + 0.516i)3-s + (0.285 − 0.285i)7-s − 0.466i·9-s − 0.100·11-s + (−0.772 − 0.772i)13-s + (−0.230 + 0.230i)17-s − 1.23i·19-s + 0.295·21-s + (−0.230 − 0.230i)23-s + (0.757 − 0.757i)27-s − 1.12i·29-s − 1.36·31-s + (−0.0518 − 0.0518i)33-s + (−0.602 + 0.602i)37-s − 0.797i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.130+0.991i)Λ(3−s)
Λ(s)=(=(800s/2ΓC(s+1)L(s)(0.130+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.130+0.991i
|
Analytic conductor: |
21.7984 |
Root analytic conductor: |
4.66887 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :1), 0.130+0.991i)
|
Particular Values
L(23) |
≈ |
1.605228658 |
L(21) |
≈ |
1.605228658 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−1.54−1.54i)T+9iT2 |
| 7 | 1+(−2+2i)T−49iT2 |
| 11 | 1+1.10T+121T2 |
| 13 | 1+(10.0+10.0i)T+169iT2 |
| 17 | 1+(3.91−3.91i)T−289iT2 |
| 19 | 1+23.3iT−361T2 |
| 23 | 1+(5.29+5.29i)T+529iT2 |
| 29 | 1+32.5iT−841T2 |
| 31 | 1+42.3T+961T2 |
| 37 | 1+(22.2−22.2i)T−1.36e3iT2 |
| 41 | 1+15T+1.68e3T2 |
| 43 | 1+(−32.5−32.5i)T+1.84e3iT2 |
| 47 | 1+(−55.2+55.2i)T−2.20e3iT2 |
| 53 | 1+(16.6+16.6i)T+2.80e3iT2 |
| 59 | 1+111.iT−3.48e3T2 |
| 61 | 1−5.40T+3.72e3T2 |
| 67 | 1+(−36.0+36.0i)T−4.48e3iT2 |
| 71 | 1+71.2T+5.04e3T2 |
| 73 | 1+(−93.0−93.0i)T+5.32e3iT2 |
| 79 | 1+118.iT−6.24e3T2 |
| 83 | 1+(−6.64−6.64i)T+6.88e3iT2 |
| 89 | 1−126.iT−7.92e3T2 |
| 97 | 1+(−73.4+73.4i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.795335211540416197006605538472, −9.117760665930688620730738444755, −8.245381059390656935350543941761, −7.39362459079578174260720989083, −6.43231129009266935587379104870, −5.24722602517486059033427119099, −4.35305363253888585211965728376, −3.35940517983085051601561789155, −2.30012610319989244549339433936, −0.48725259127449459632563834249,
1.62921792043336268037728475492, 2.43980582855695764931656499607, 3.76311808565655129789417224798, 4.94798096790796964658716784308, 5.81372743008433542495962213225, 7.15662018143369750157651818137, 7.53880371349941586259405808014, 8.608435260180344411460731328575, 9.195476095605219739560669922870, 10.29909243237799362146040351957