Properties

Label 800.3.p.k
Level $800$
Weight $3$
Character orbit 800.p
Analytic conductor $21.798$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,3,Mod(193,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.193");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 800.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7984211488\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.151613669376.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{7} + \beta_{2} - 1) q^{3} + (2 \beta_{2} + 2) q^{7} + ( - 2 \beta_{7} - 6 \beta_{2} - 2 \beta_1) q^{9} + ( - \beta_{6} - \beta_{5} - \beta_{3}) q^{11} + (2 \beta_{5} - 2 \beta_{4} + 2 \beta_{3}) q^{13}+ \cdots + (16 \beta_{6} + 18 \beta_{4} - 16 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 16 q^{7} - 32 q^{21} + 80 q^{23} + 184 q^{27} - 120 q^{41} + 16 q^{43} + 320 q^{47} + 288 q^{61} + 96 q^{63} + 472 q^{67} - 40 q^{81} - 8 q^{83} + 608 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 7x^{4} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 29\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 9\nu^{2} ) / 80 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + 11\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} - 16\nu^{5} + 64\nu^{4} - 71\nu^{3} + 176\nu - 224 ) / 160 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} - 10\nu^{6} + 16\nu^{5} - 71\nu^{3} + 230\nu^{2} - 176\nu ) / 160 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{7} + 71\nu^{3} ) / 64 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 9\nu^{7} + \nu^{3} ) / 320 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 5\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{6} + 5\beta_{5} + 2\beta_{3} + 25\beta_{2} ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{7} + 9\beta_{6} ) / 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{6} + 5\beta_{4} - 2\beta_{3} + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -29\beta_{3} + 55\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -18\beta_{6} - 45\beta_{5} - 18\beta_{3} + 575\beta_{2} ) / 10 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 355\beta_{7} - \beta_{6} ) / 10 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
1.88713 0.662382i
0.662382 1.88713i
−0.662382 + 1.88713i
−1.88713 + 0.662382i
1.88713 + 0.662382i
0.662382 + 1.88713i
−0.662382 1.88713i
−1.88713 0.662382i
0 −3.54951 3.54951i 0 0 0 2.00000 2.00000i 0 16.1980i 0
193.2 0 −3.54951 3.54951i 0 0 0 2.00000 2.00000i 0 16.1980i 0
193.3 0 1.54951 + 1.54951i 0 0 0 2.00000 2.00000i 0 4.19804i 0
193.4 0 1.54951 + 1.54951i 0 0 0 2.00000 2.00000i 0 4.19804i 0
257.1 0 −3.54951 + 3.54951i 0 0 0 2.00000 + 2.00000i 0 16.1980i 0
257.2 0 −3.54951 + 3.54951i 0 0 0 2.00000 + 2.00000i 0 16.1980i 0
257.3 0 1.54951 1.54951i 0 0 0 2.00000 + 2.00000i 0 4.19804i 0
257.4 0 1.54951 1.54951i 0 0 0 2.00000 + 2.00000i 0 4.19804i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 193.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
20.d odd 2 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.3.p.k 8
4.b odd 2 1 800.3.p.n yes 8
5.b even 2 1 800.3.p.n yes 8
5.c odd 4 1 inner 800.3.p.k 8
5.c odd 4 1 800.3.p.n yes 8
20.d odd 2 1 inner 800.3.p.k 8
20.e even 4 1 inner 800.3.p.k 8
20.e even 4 1 800.3.p.n yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
800.3.p.k 8 1.a even 1 1 trivial
800.3.p.k 8 5.c odd 4 1 inner
800.3.p.k 8 20.d odd 2 1 inner
800.3.p.k 8 20.e even 4 1 inner
800.3.p.n yes 8 4.b odd 2 1
800.3.p.n yes 8 5.b even 2 1
800.3.p.n yes 8 5.c odd 4 1
800.3.p.n yes 8 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(800, [\chi])\):

\( T_{3}^{4} + 4T_{3}^{3} + 8T_{3}^{2} - 44T_{3} + 121 \) Copy content Toggle raw display
\( T_{13}^{8} + 239904T_{13}^{4} + 8100000000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 4 T^{3} + \cdots + 121)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{2} - 4 T + 8)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} - 186 T^{2} + 225)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 8100000000 \) Copy content Toggle raw display
$17$ \( T^{8} + 788274 T^{4} + 741200625 \) Copy content Toggle raw display
$19$ \( (T^{4} + 666 T^{2} + 65025)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 40 T^{3} + \cdots + 71824)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 1880 T^{2} + 868624)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 2856 T^{2} + 1904400)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 987264 T^{4} + 207360000 \) Copy content Toggle raw display
$41$ \( (T + 15)^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} - 8 T^{3} + \cdots + 3474496)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 160 T^{3} + \cdots + 7463824)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 24289126560000 \) Copy content Toggle raw display
$59$ \( (T^{4} + 12600 T^{2} + 2250000)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 72 T + 360)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 236 T^{3} + \cdots + 34916281)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 7224 T^{2} + 10890000)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 12\!\cdots\!25 \) Copy content Toggle raw display
$79$ \( (T^{4} + 18576 T^{2} + 64641600)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 4 T^{3} + \cdots + 13225)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 19298 T^{2} + 51825601)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 116640000)^{2} \) Copy content Toggle raw display
show more
show less