L(s) = 1 | − 14·9-s − 76·13-s − 68·17-s + 540·29-s − 412·37-s − 540·41-s − 326·49-s + 516·53-s − 500·61-s + 2.15e3·73-s − 533·81-s + 1.78e3·89-s + 508·97-s + 1.19e3·101-s + 1.70e3·109-s − 3.39e3·113-s + 1.06e3·117-s − 2.50e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 952·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 0.518·9-s − 1.62·13-s − 0.970·17-s + 3.45·29-s − 1.83·37-s − 2.05·41-s − 0.950·49-s + 1.33·53-s − 1.04·61-s + 3.45·73-s − 0.731·81-s + 2.11·89-s + 0.531·97-s + 1.17·101-s + 1.50·109-s − 2.82·113-s + 0.840·117-s − 1.87·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.503·153-s + 0.000508·157-s + 0.000480·163-s + ⋯ |
Λ(s)=(=(640000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(640000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
640000
= 210⋅54
|
Sign: |
1
|
Analytic conductor: |
2227.98 |
Root analytic conductor: |
6.87033 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 640000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.9801363152 |
L(21) |
≈ |
0.9801363152 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+14T2+p6T4 |
| 7 | C22 | 1+326T2+p6T4 |
| 11 | C22 | 1+2502T2+p6T4 |
| 13 | C2 | (1+38T+p3T2)2 |
| 17 | C2 | (1+2pT+p3T2)2 |
| 19 | C22 | 1+3478T2+p6T4 |
| 23 | C22 | 1+17574T2+p6T4 |
| 29 | C2 | (1−270T+p3T2)2 |
| 31 | C22 | 1−57058T2+p6T4 |
| 37 | C2 | (1+206T+p3T2)2 |
| 41 | C2 | (1+270T+p3T2)2 |
| 43 | C22 | 1−129986T2+p6T4 |
| 47 | C22 | 1+190006T2+p6T4 |
| 53 | C2 | (1−258T+p3T2)2 |
| 59 | C22 | 1+404998T2+p6T4 |
| 61 | C2 | (1+250T+p3T2)2 |
| 67 | C22 | 1−64114T2+p6T4 |
| 71 | C22 | 1+299662T2+p6T4 |
| 73 | C2 | (1−1078T+p3T2)2 |
| 79 | C22 | 1+908638T2+p6T4 |
| 83 | C22 | 1−81426T2+p6T4 |
| 89 | C2 | (1−10pT+p3T2)2 |
| 97 | C2 | (1−254T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23451933887939789669805235536, −9.701997660618840758960782394623, −9.131569080247708413189564627381, −8.900962433995662839984440889367, −8.231376333426647150968870971040, −8.179912953935986957600017457681, −7.55056901872421358901105903769, −6.84315727494272367078024195662, −6.60619216345694006662681261185, −6.49552164182341887712946692670, −5.46446838164856402271630170695, −5.17645615559185625847641613917, −4.69133480429537558933889286481, −4.43395999108753006251037357154, −3.43643670057893878187351628298, −3.15688626071505511407028331992, −2.35348824279759641073464597163, −2.11820551253215544693149834386, −1.09796248706382642042406981247, −0.28523851105051543404136060878,
0.28523851105051543404136060878, 1.09796248706382642042406981247, 2.11820551253215544693149834386, 2.35348824279759641073464597163, 3.15688626071505511407028331992, 3.43643670057893878187351628298, 4.43395999108753006251037357154, 4.69133480429537558933889286481, 5.17645615559185625847641613917, 5.46446838164856402271630170695, 6.49552164182341887712946692670, 6.60619216345694006662681261185, 6.84315727494272367078024195662, 7.55056901872421358901105903769, 8.179912953935986957600017457681, 8.231376333426647150968870971040, 8.900962433995662839984440889367, 9.131569080247708413189564627381, 9.701997660618840758960782394623, 10.23451933887939789669805235536