Properties

Label 4-800e2-1.1-c3e2-0-2
Degree $4$
Conductor $640000$
Sign $1$
Analytic cond. $2227.98$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·9-s − 76·13-s − 68·17-s + 540·29-s − 412·37-s − 540·41-s − 326·49-s + 516·53-s − 500·61-s + 2.15e3·73-s − 533·81-s + 1.78e3·89-s + 508·97-s + 1.19e3·101-s + 1.70e3·109-s − 3.39e3·113-s + 1.06e3·117-s − 2.50e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 952·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 0.518·9-s − 1.62·13-s − 0.970·17-s + 3.45·29-s − 1.83·37-s − 2.05·41-s − 0.950·49-s + 1.33·53-s − 1.04·61-s + 3.45·73-s − 0.731·81-s + 2.11·89-s + 0.531·97-s + 1.17·101-s + 1.50·109-s − 2.82·113-s + 0.840·117-s − 1.87·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.503·153-s + 0.000508·157-s + 0.000480·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(640000\)    =    \(2^{10} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2227.98\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 640000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9801363152\)
\(L(\frac12)\) \(\approx\) \(0.9801363152\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 + 14 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 + 326 T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 2502 T^{2} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 38 T + p^{3} T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 p T + p^{3} T^{2} )^{2} \)
19$C_2^2$ \( 1 + 3478 T^{2} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 17574 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 270 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 57058 T^{2} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 206 T + p^{3} T^{2} )^{2} \)
41$C_2$ \( ( 1 + 270 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 129986 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 190006 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 258 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 404998 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 + 250 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 64114 T^{2} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 299662 T^{2} + p^{6} T^{4} \)
73$C_2$ \( ( 1 - 1078 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 908638 T^{2} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 81426 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 10 p T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 254 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23451933887939789669805235536, −9.701997660618840758960782394623, −9.131569080247708413189564627381, −8.900962433995662839984440889367, −8.231376333426647150968870971040, −8.179912953935986957600017457681, −7.55056901872421358901105903769, −6.84315727494272367078024195662, −6.60619216345694006662681261185, −6.49552164182341887712946692670, −5.46446838164856402271630170695, −5.17645615559185625847641613917, −4.69133480429537558933889286481, −4.43395999108753006251037357154, −3.43643670057893878187351628298, −3.15688626071505511407028331992, −2.35348824279759641073464597163, −2.11820551253215544693149834386, −1.09796248706382642042406981247, −0.28523851105051543404136060878, 0.28523851105051543404136060878, 1.09796248706382642042406981247, 2.11820551253215544693149834386, 2.35348824279759641073464597163, 3.15688626071505511407028331992, 3.43643670057893878187351628298, 4.43395999108753006251037357154, 4.69133480429537558933889286481, 5.17645615559185625847641613917, 5.46446838164856402271630170695, 6.49552164182341887712946692670, 6.60619216345694006662681261185, 6.84315727494272367078024195662, 7.55056901872421358901105903769, 8.179912953935986957600017457681, 8.231376333426647150968870971040, 8.900962433995662839984440889367, 9.131569080247708413189564627381, 9.701997660618840758960782394623, 10.23451933887939789669805235536

Graph of the $Z$-function along the critical line