Properties

Label 2-800-40.19-c4-0-63
Degree $2$
Conductor $800$
Sign $-0.263 + 0.964i$
Analytic cond. $82.6959$
Root an. cond. $9.09373$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.51i·3-s + 50.0·7-s + 60.5·9-s − 158.·11-s − 97.3·13-s − 285. i·17-s + 414.·19-s + 226. i·21-s − 546.·23-s + 639. i·27-s − 1.16e3i·29-s − 369. i·31-s − 717. i·33-s − 1.42e3·37-s − 439. i·39-s + ⋯
L(s)  = 1  + 0.502i·3-s + 1.02·7-s + 0.747·9-s − 1.31·11-s − 0.575·13-s − 0.987i·17-s + 1.14·19-s + 0.513i·21-s − 1.03·23-s + 0.877i·27-s − 1.38i·29-s − 0.384i·31-s − 0.659i·33-s − 1.03·37-s − 0.289i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.263 + 0.964i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.263 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.263 + 0.964i$
Analytic conductor: \(82.6959\)
Root analytic conductor: \(9.09373\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (399, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :2),\ -0.263 + 0.964i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.073559434\)
\(L(\frac12)\) \(\approx\) \(1.073559434\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 4.51iT - 81T^{2} \)
7 \( 1 - 50.0T + 2.40e3T^{2} \)
11 \( 1 + 158.T + 1.46e4T^{2} \)
13 \( 1 + 97.3T + 2.85e4T^{2} \)
17 \( 1 + 285. iT - 8.35e4T^{2} \)
19 \( 1 - 414.T + 1.30e5T^{2} \)
23 \( 1 + 546.T + 2.79e5T^{2} \)
29 \( 1 + 1.16e3iT - 7.07e5T^{2} \)
31 \( 1 + 369. iT - 9.23e5T^{2} \)
37 \( 1 + 1.42e3T + 1.87e6T^{2} \)
41 \( 1 + 2.90e3T + 2.82e6T^{2} \)
43 \( 1 + 905. iT - 3.41e6T^{2} \)
47 \( 1 - 3.02e3T + 4.87e6T^{2} \)
53 \( 1 + 1.60e3T + 7.89e6T^{2} \)
59 \( 1 + 1.80e3T + 1.21e7T^{2} \)
61 \( 1 - 1.11e3iT - 1.38e7T^{2} \)
67 \( 1 - 3.91e3iT - 2.01e7T^{2} \)
71 \( 1 + 4.22e3iT - 2.54e7T^{2} \)
73 \( 1 - 4.66e3iT - 2.83e7T^{2} \)
79 \( 1 - 6.81e3iT - 3.89e7T^{2} \)
83 \( 1 - 3.16e3iT - 4.74e7T^{2} \)
89 \( 1 + 1.07e4T + 6.27e7T^{2} \)
97 \( 1 + 1.00e4iT - 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.792178774196842762276395959239, −8.513351148543799289588739448176, −7.68122847046051658503390714262, −7.13425977524284615492806740972, −5.55377918599067146687433900157, −4.98401655014809427996923453441, −4.13623177884822519228932403586, −2.81612516517230272188179903067, −1.71907466850914227694306956022, −0.23304485324746792940006185561, 1.31701818057558217435292253035, 2.10635030105684518549194147346, 3.45481697960151547367368764415, 4.77414676907637923434852670119, 5.34817386145970927657252516251, 6.59415137360480149977711809689, 7.62988824828070185166440467417, 7.911340229185042509321855714186, 8.972516538610908828454755737322, 10.25223112476033840010487416643

Graph of the $Z$-function along the critical line