L(s) = 1 | + 4.51i·3-s + 50.0·7-s + 60.5·9-s − 158.·11-s − 97.3·13-s − 285. i·17-s + 414.·19-s + 226. i·21-s − 546.·23-s + 639. i·27-s − 1.16e3i·29-s − 369. i·31-s − 717. i·33-s − 1.42e3·37-s − 439. i·39-s + ⋯ |
L(s) = 1 | + 0.502i·3-s + 1.02·7-s + 0.747·9-s − 1.31·11-s − 0.575·13-s − 0.987i·17-s + 1.14·19-s + 0.513i·21-s − 1.03·23-s + 0.877i·27-s − 1.38i·29-s − 0.384i·31-s − 0.659i·33-s − 1.03·37-s − 0.289i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.263+0.964i)Λ(5−s)
Λ(s)=(=(800s/2ΓC(s+2)L(s)(−0.263+0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.263+0.964i
|
Analytic conductor: |
82.6959 |
Root analytic conductor: |
9.09373 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :2), −0.263+0.964i)
|
Particular Values
L(25) |
≈ |
1.073559434 |
L(21) |
≈ |
1.073559434 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−4.51iT−81T2 |
| 7 | 1−50.0T+2.40e3T2 |
| 11 | 1+158.T+1.46e4T2 |
| 13 | 1+97.3T+2.85e4T2 |
| 17 | 1+285.iT−8.35e4T2 |
| 19 | 1−414.T+1.30e5T2 |
| 23 | 1+546.T+2.79e5T2 |
| 29 | 1+1.16e3iT−7.07e5T2 |
| 31 | 1+369.iT−9.23e5T2 |
| 37 | 1+1.42e3T+1.87e6T2 |
| 41 | 1+2.90e3T+2.82e6T2 |
| 43 | 1+905.iT−3.41e6T2 |
| 47 | 1−3.02e3T+4.87e6T2 |
| 53 | 1+1.60e3T+7.89e6T2 |
| 59 | 1+1.80e3T+1.21e7T2 |
| 61 | 1−1.11e3iT−1.38e7T2 |
| 67 | 1−3.91e3iT−2.01e7T2 |
| 71 | 1+4.22e3iT−2.54e7T2 |
| 73 | 1−4.66e3iT−2.83e7T2 |
| 79 | 1−6.81e3iT−3.89e7T2 |
| 83 | 1−3.16e3iT−4.74e7T2 |
| 89 | 1+1.07e4T+6.27e7T2 |
| 97 | 1+1.00e4iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.792178774196842762276395959239, −8.513351148543799289588739448176, −7.68122847046051658503390714262, −7.13425977524284615492806740972, −5.55377918599067146687433900157, −4.98401655014809427996923453441, −4.13623177884822519228932403586, −2.81612516517230272188179903067, −1.71907466850914227694306956022, −0.23304485324746792940006185561,
1.31701818057558217435292253035, 2.10635030105684518549194147346, 3.45481697960151547367368764415, 4.77414676907637923434852670119, 5.34817386145970927657252516251, 6.59415137360480149977711809689, 7.62988824828070185166440467417, 7.911340229185042509321855714186, 8.972516538610908828454755737322, 10.25223112476033840010487416643