Properties

Label 800.5.e.e.399.22
Level $800$
Weight $5$
Character 800.399
Analytic conductor $82.696$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(399,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.399");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.22
Character \(\chi\) \(=\) 800.399
Dual form 800.5.e.e.399.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.51805i q^{3} +50.0881 q^{7} +60.5872 q^{9} -158.856 q^{11} -97.3070 q^{13} -285.416i q^{17} +414.217 q^{19} +226.301i q^{21} -546.228 q^{23} +639.698i q^{27} -1162.39i q^{29} -369.759i q^{31} -717.721i q^{33} -1423.26 q^{37} -439.638i q^{39} -2901.21 q^{41} -905.493i q^{43} +3025.75 q^{47} +107.819 q^{49} +1289.52 q^{51} -1605.79 q^{53} +1871.45i q^{57} -1809.93 q^{59} +1119.29i q^{61} +3034.70 q^{63} +3916.26i q^{67} -2467.89i q^{69} -4224.11i q^{71} +4667.66i q^{73} -7956.81 q^{77} +6812.31i q^{79} +2017.38 q^{81} +3166.94i q^{83} +5251.74 q^{87} -10721.2 q^{89} -4873.93 q^{91} +1670.59 q^{93} -10051.4i q^{97} -9624.66 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 864 q^{9} - 384 q^{11} - 1408 q^{19} - 4416 q^{41} + 4960 q^{49} + 35584 q^{51} + 28032 q^{59} + 20768 q^{81} - 13632 q^{89} - 49152 q^{91} + 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.51805i 0.502006i 0.967986 + 0.251003i \(0.0807603\pi\)
−0.967986 + 0.251003i \(0.919240\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 50.0881 1.02221 0.511103 0.859519i \(-0.329237\pi\)
0.511103 + 0.859519i \(0.329237\pi\)
\(8\) 0 0
\(9\) 60.5872 0.747990
\(10\) 0 0
\(11\) −158.856 −1.31286 −0.656431 0.754386i \(-0.727935\pi\)
−0.656431 + 0.754386i \(0.727935\pi\)
\(12\) 0 0
\(13\) −97.3070 −0.575781 −0.287891 0.957663i \(-0.592954\pi\)
−0.287891 + 0.957663i \(0.592954\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 285.416i − 0.987598i −0.869576 0.493799i \(-0.835608\pi\)
0.869576 0.493799i \(-0.164392\pi\)
\(18\) 0 0
\(19\) 414.217 1.14741 0.573707 0.819061i \(-0.305505\pi\)
0.573707 + 0.819061i \(0.305505\pi\)
\(20\) 0 0
\(21\) 226.301i 0.513153i
\(22\) 0 0
\(23\) −546.228 −1.03257 −0.516284 0.856418i \(-0.672685\pi\)
−0.516284 + 0.856418i \(0.672685\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 639.698i 0.877501i
\(28\) 0 0
\(29\) − 1162.39i − 1.38215i −0.722781 0.691077i \(-0.757137\pi\)
0.722781 0.691077i \(-0.242863\pi\)
\(30\) 0 0
\(31\) − 369.759i − 0.384765i −0.981320 0.192382i \(-0.938379\pi\)
0.981320 0.192382i \(-0.0616214\pi\)
\(32\) 0 0
\(33\) − 717.721i − 0.659064i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1423.26 −1.03964 −0.519818 0.854277i \(-0.674000\pi\)
−0.519818 + 0.854277i \(0.674000\pi\)
\(38\) 0 0
\(39\) − 439.638i − 0.289045i
\(40\) 0 0
\(41\) −2901.21 −1.72588 −0.862942 0.505303i \(-0.831381\pi\)
−0.862942 + 0.505303i \(0.831381\pi\)
\(42\) 0 0
\(43\) − 905.493i − 0.489720i −0.969558 0.244860i \(-0.921258\pi\)
0.969558 0.244860i \(-0.0787421\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3025.75 1.36974 0.684870 0.728665i \(-0.259859\pi\)
0.684870 + 0.728665i \(0.259859\pi\)
\(48\) 0 0
\(49\) 107.819 0.0449058
\(50\) 0 0
\(51\) 1289.52 0.495780
\(52\) 0 0
\(53\) −1605.79 −0.571661 −0.285830 0.958280i \(-0.592269\pi\)
−0.285830 + 0.958280i \(0.592269\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1871.45i 0.576008i
\(58\) 0 0
\(59\) −1809.93 −0.519946 −0.259973 0.965616i \(-0.583714\pi\)
−0.259973 + 0.965616i \(0.583714\pi\)
\(60\) 0 0
\(61\) 1119.29i 0.300804i 0.988625 + 0.150402i \(0.0480567\pi\)
−0.988625 + 0.150402i \(0.951943\pi\)
\(62\) 0 0
\(63\) 3034.70 0.764600
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3916.26i 0.872412i 0.899847 + 0.436206i \(0.143678\pi\)
−0.899847 + 0.436206i \(0.856322\pi\)
\(68\) 0 0
\(69\) − 2467.89i − 0.518355i
\(70\) 0 0
\(71\) − 4224.11i − 0.837951i −0.907998 0.418975i \(-0.862389\pi\)
0.907998 0.418975i \(-0.137611\pi\)
\(72\) 0 0
\(73\) 4667.66i 0.875897i 0.899000 + 0.437949i \(0.144295\pi\)
−0.899000 + 0.437949i \(0.855705\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7956.81 −1.34202
\(78\) 0 0
\(79\) 6812.31i 1.09154i 0.837935 + 0.545771i \(0.183763\pi\)
−0.837935 + 0.545771i \(0.816237\pi\)
\(80\) 0 0
\(81\) 2017.38 0.307480
\(82\) 0 0
\(83\) 3166.94i 0.459709i 0.973225 + 0.229855i \(0.0738251\pi\)
−0.973225 + 0.229855i \(0.926175\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5251.74 0.693849
\(88\) 0 0
\(89\) −10721.2 −1.35351 −0.676756 0.736207i \(-0.736615\pi\)
−0.676756 + 0.736207i \(0.736615\pi\)
\(90\) 0 0
\(91\) −4873.93 −0.588567
\(92\) 0 0
\(93\) 1670.59 0.193154
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10051.4i − 1.06828i −0.845396 0.534140i \(-0.820636\pi\)
0.845396 0.534140i \(-0.179364\pi\)
\(98\) 0 0
\(99\) −9624.66 −0.982008
\(100\) 0 0
\(101\) − 15016.7i − 1.47208i −0.676935 0.736042i \(-0.736692\pi\)
0.676935 0.736042i \(-0.263308\pi\)
\(102\) 0 0
\(103\) 13177.3 1.24209 0.621045 0.783775i \(-0.286708\pi\)
0.621045 + 0.783775i \(0.286708\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 13284.8i − 1.16035i −0.814493 0.580173i \(-0.802985\pi\)
0.814493 0.580173i \(-0.197015\pi\)
\(108\) 0 0
\(109\) − 19211.6i − 1.61700i −0.588493 0.808502i \(-0.700279\pi\)
0.588493 0.808502i \(-0.299721\pi\)
\(110\) 0 0
\(111\) − 6430.36i − 0.521903i
\(112\) 0 0
\(113\) − 20975.3i − 1.64268i −0.570442 0.821338i \(-0.693228\pi\)
0.570442 0.821338i \(-0.306772\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −5895.56 −0.430679
\(118\) 0 0
\(119\) − 14295.9i − 1.00953i
\(120\) 0 0
\(121\) 10594.3 0.723607
\(122\) 0 0
\(123\) − 13107.8i − 0.866403i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10769.3 −0.667696 −0.333848 0.942627i \(-0.608347\pi\)
−0.333848 + 0.942627i \(0.608347\pi\)
\(128\) 0 0
\(129\) 4091.06 0.245842
\(130\) 0 0
\(131\) −15667.6 −0.912975 −0.456487 0.889730i \(-0.650893\pi\)
−0.456487 + 0.889730i \(0.650893\pi\)
\(132\) 0 0
\(133\) 20747.3 1.17289
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 25231.8i 1.34433i 0.740399 + 0.672167i \(0.234636\pi\)
−0.740399 + 0.672167i \(0.765364\pi\)
\(138\) 0 0
\(139\) −21388.1 −1.10699 −0.553494 0.832853i \(-0.686706\pi\)
−0.553494 + 0.832853i \(0.686706\pi\)
\(140\) 0 0
\(141\) 13670.5i 0.687617i
\(142\) 0 0
\(143\) 15457.8 0.755922
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 487.131i 0.0225429i
\(148\) 0 0
\(149\) − 40319.2i − 1.81610i −0.418863 0.908049i \(-0.637571\pi\)
0.418863 0.908049i \(-0.362429\pi\)
\(150\) 0 0
\(151\) 28388.2i 1.24504i 0.782603 + 0.622521i \(0.213891\pi\)
−0.782603 + 0.622521i \(0.786109\pi\)
\(152\) 0 0
\(153\) − 17292.5i − 0.738714i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4835.50 −0.196174 −0.0980872 0.995178i \(-0.531272\pi\)
−0.0980872 + 0.995178i \(0.531272\pi\)
\(158\) 0 0
\(159\) − 7255.06i − 0.286977i
\(160\) 0 0
\(161\) −27359.5 −1.05550
\(162\) 0 0
\(163\) − 26938.1i − 1.01389i −0.861977 0.506947i \(-0.830774\pi\)
0.861977 0.506947i \(-0.169226\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24228.8 0.868760 0.434380 0.900730i \(-0.356968\pi\)
0.434380 + 0.900730i \(0.356968\pi\)
\(168\) 0 0
\(169\) −19092.3 −0.668476
\(170\) 0 0
\(171\) 25096.2 0.858255
\(172\) 0 0
\(173\) 15853.9 0.529716 0.264858 0.964287i \(-0.414675\pi\)
0.264858 + 0.964287i \(0.414675\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 8177.36i − 0.261016i
\(178\) 0 0
\(179\) 5340.06 0.166663 0.0833316 0.996522i \(-0.473444\pi\)
0.0833316 + 0.996522i \(0.473444\pi\)
\(180\) 0 0
\(181\) − 16455.4i − 0.502286i −0.967950 0.251143i \(-0.919193\pi\)
0.967950 0.251143i \(-0.0808065\pi\)
\(182\) 0 0
\(183\) −5057.01 −0.151005
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 45340.1i 1.29658i
\(188\) 0 0
\(189\) 32041.3i 0.896987i
\(190\) 0 0
\(191\) − 36286.3i − 0.994663i −0.867561 0.497331i \(-0.834313\pi\)
0.867561 0.497331i \(-0.165687\pi\)
\(192\) 0 0
\(193\) 1934.56i 0.0519358i 0.999663 + 0.0259679i \(0.00826676\pi\)
−0.999663 + 0.0259679i \(0.991733\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 72587.7 1.87038 0.935192 0.354142i \(-0.115227\pi\)
0.935192 + 0.354142i \(0.115227\pi\)
\(198\) 0 0
\(199\) − 77717.2i − 1.96251i −0.192723 0.981253i \(-0.561732\pi\)
0.192723 0.981253i \(-0.438268\pi\)
\(200\) 0 0
\(201\) −17693.9 −0.437956
\(202\) 0 0
\(203\) − 58222.0i − 1.41285i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −33094.5 −0.772351
\(208\) 0 0
\(209\) −65800.9 −1.50640
\(210\) 0 0
\(211\) −35806.9 −0.804271 −0.402135 0.915580i \(-0.631732\pi\)
−0.402135 + 0.915580i \(0.631732\pi\)
\(212\) 0 0
\(213\) 19084.7 0.420656
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 18520.5i − 0.393309i
\(218\) 0 0
\(219\) −21088.7 −0.439705
\(220\) 0 0
\(221\) 27773.0i 0.568640i
\(222\) 0 0
\(223\) 66087.5 1.32895 0.664477 0.747309i \(-0.268655\pi\)
0.664477 + 0.747309i \(0.268655\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 6504.85i − 0.126237i −0.998006 0.0631184i \(-0.979895\pi\)
0.998006 0.0631184i \(-0.0201046\pi\)
\(228\) 0 0
\(229\) − 5180.89i − 0.0987946i −0.998779 0.0493973i \(-0.984270\pi\)
0.998779 0.0493973i \(-0.0157301\pi\)
\(230\) 0 0
\(231\) − 35949.3i − 0.673700i
\(232\) 0 0
\(233\) − 45055.0i − 0.829910i −0.909842 0.414955i \(-0.863797\pi\)
0.909842 0.414955i \(-0.136203\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −30778.4 −0.547960
\(238\) 0 0
\(239\) − 71745.9i − 1.25603i −0.778200 0.628017i \(-0.783867\pi\)
0.778200 0.628017i \(-0.216133\pi\)
\(240\) 0 0
\(241\) −13213.7 −0.227504 −0.113752 0.993509i \(-0.536287\pi\)
−0.113752 + 0.993509i \(0.536287\pi\)
\(242\) 0 0
\(243\) 60930.2i 1.03186i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −40306.2 −0.660660
\(248\) 0 0
\(249\) −14308.4 −0.230777
\(250\) 0 0
\(251\) 9203.91 0.146091 0.0730457 0.997329i \(-0.476728\pi\)
0.0730457 + 0.997329i \(0.476728\pi\)
\(252\) 0 0
\(253\) 86771.8 1.35562
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 32215.5i 0.487751i 0.969807 + 0.243876i \(0.0784189\pi\)
−0.969807 + 0.243876i \(0.921581\pi\)
\(258\) 0 0
\(259\) −71288.4 −1.06272
\(260\) 0 0
\(261\) − 70426.0i − 1.03384i
\(262\) 0 0
\(263\) −90235.1 −1.30456 −0.652280 0.757978i \(-0.726187\pi\)
−0.652280 + 0.757978i \(0.726187\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 48438.8i − 0.679471i
\(268\) 0 0
\(269\) 10715.9i 0.148090i 0.997255 + 0.0740448i \(0.0235908\pi\)
−0.997255 + 0.0740448i \(0.976409\pi\)
\(270\) 0 0
\(271\) − 40139.7i − 0.546557i −0.961935 0.273278i \(-0.911892\pi\)
0.961935 0.273278i \(-0.0881080\pi\)
\(272\) 0 0
\(273\) − 22020.6i − 0.295464i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9941.96 −0.129572 −0.0647862 0.997899i \(-0.520637\pi\)
−0.0647862 + 0.997899i \(0.520637\pi\)
\(278\) 0 0
\(279\) − 22402.7i − 0.287800i
\(280\) 0 0
\(281\) 3041.90 0.0385241 0.0192621 0.999814i \(-0.493868\pi\)
0.0192621 + 0.999814i \(0.493868\pi\)
\(282\) 0 0
\(283\) 63175.8i 0.788821i 0.918934 + 0.394410i \(0.129051\pi\)
−0.918934 + 0.394410i \(0.870949\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −145316. −1.76421
\(288\) 0 0
\(289\) 2058.84 0.0246506
\(290\) 0 0
\(291\) 45412.9 0.536282
\(292\) 0 0
\(293\) −50125.3 −0.583877 −0.291939 0.956437i \(-0.594300\pi\)
−0.291939 + 0.956437i \(0.594300\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 101620.i − 1.15204i
\(298\) 0 0
\(299\) 53151.9 0.594533
\(300\) 0 0
\(301\) − 45354.4i − 0.500595i
\(302\) 0 0
\(303\) 67846.4 0.738995
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 49587.2i − 0.526129i −0.964778 0.263065i \(-0.915267\pi\)
0.964778 0.263065i \(-0.0847332\pi\)
\(308\) 0 0
\(309\) 59535.9i 0.623537i
\(310\) 0 0
\(311\) 122692.i 1.26852i 0.773120 + 0.634260i \(0.218695\pi\)
−0.773120 + 0.634260i \(0.781305\pi\)
\(312\) 0 0
\(313\) 178246.i 1.81942i 0.415248 + 0.909708i \(0.363695\pi\)
−0.415248 + 0.909708i \(0.636305\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9020.39 0.0897650 0.0448825 0.998992i \(-0.485709\pi\)
0.0448825 + 0.998992i \(0.485709\pi\)
\(318\) 0 0
\(319\) 184653.i 1.81458i
\(320\) 0 0
\(321\) 60021.4 0.582500
\(322\) 0 0
\(323\) − 118224.i − 1.13318i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 86799.1 0.811745
\(328\) 0 0
\(329\) 151554. 1.40016
\(330\) 0 0
\(331\) −70357.4 −0.642175 −0.321088 0.947049i \(-0.604048\pi\)
−0.321088 + 0.947049i \(0.604048\pi\)
\(332\) 0 0
\(333\) −86231.4 −0.777637
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 148629.i 1.30871i 0.756186 + 0.654356i \(0.227060\pi\)
−0.756186 + 0.654356i \(0.772940\pi\)
\(338\) 0 0
\(339\) 94767.6 0.824633
\(340\) 0 0
\(341\) 58738.5i 0.505143i
\(342\) 0 0
\(343\) −114861. −0.976303
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 94414.8i 0.784117i 0.919940 + 0.392059i \(0.128237\pi\)
−0.919940 + 0.392059i \(0.871763\pi\)
\(348\) 0 0
\(349\) − 72082.1i − 0.591802i −0.955219 0.295901i \(-0.904380\pi\)
0.955219 0.295901i \(-0.0956198\pi\)
\(350\) 0 0
\(351\) − 62247.1i − 0.505249i
\(352\) 0 0
\(353\) − 31879.4i − 0.255836i −0.991785 0.127918i \(-0.959171\pi\)
0.991785 0.127918i \(-0.0408294\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 64589.8 0.506789
\(358\) 0 0
\(359\) − 34649.8i − 0.268851i −0.990924 0.134426i \(-0.957081\pi\)
0.990924 0.134426i \(-0.0429189\pi\)
\(360\) 0 0
\(361\) 41254.3 0.316559
\(362\) 0 0
\(363\) 47865.7i 0.363255i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 90234.4 0.669946 0.334973 0.942228i \(-0.391273\pi\)
0.334973 + 0.942228i \(0.391273\pi\)
\(368\) 0 0
\(369\) −175776. −1.29094
\(370\) 0 0
\(371\) −80431.2 −0.584355
\(372\) 0 0
\(373\) −18934.5 −0.136093 −0.0680466 0.997682i \(-0.521677\pi\)
−0.0680466 + 0.997682i \(0.521677\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 113109.i 0.795818i
\(378\) 0 0
\(379\) −146129. −1.01732 −0.508661 0.860967i \(-0.669859\pi\)
−0.508661 + 0.860967i \(0.669859\pi\)
\(380\) 0 0
\(381\) − 48656.1i − 0.335187i
\(382\) 0 0
\(383\) −63738.0 −0.434511 −0.217255 0.976115i \(-0.569710\pi\)
−0.217255 + 0.976115i \(0.569710\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 54861.3i − 0.366306i
\(388\) 0 0
\(389\) − 73071.2i − 0.482889i −0.970415 0.241444i \(-0.922379\pi\)
0.970415 0.241444i \(-0.0776212\pi\)
\(390\) 0 0
\(391\) 155902.i 1.01976i
\(392\) 0 0
\(393\) − 70786.8i − 0.458318i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17918.3 0.113689 0.0568443 0.998383i \(-0.481896\pi\)
0.0568443 + 0.998383i \(0.481896\pi\)
\(398\) 0 0
\(399\) 93737.5i 0.588799i
\(400\) 0 0
\(401\) −66769.8 −0.415232 −0.207616 0.978210i \(-0.566570\pi\)
−0.207616 + 0.978210i \(0.566570\pi\)
\(402\) 0 0
\(403\) 35980.1i 0.221540i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 226094. 1.36490
\(408\) 0 0
\(409\) 291009. 1.73964 0.869822 0.493366i \(-0.164234\pi\)
0.869822 + 0.493366i \(0.164234\pi\)
\(410\) 0 0
\(411\) −113999. −0.674863
\(412\) 0 0
\(413\) −90656.0 −0.531492
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 96632.6i − 0.555714i
\(418\) 0 0
\(419\) 199703. 1.13751 0.568757 0.822506i \(-0.307424\pi\)
0.568757 + 0.822506i \(0.307424\pi\)
\(420\) 0 0
\(421\) 116540.i 0.657525i 0.944413 + 0.328763i \(0.106632\pi\)
−0.944413 + 0.328763i \(0.893368\pi\)
\(422\) 0 0
\(423\) 183322. 1.02455
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 56063.1i 0.307483i
\(428\) 0 0
\(429\) 69839.3i 0.379477i
\(430\) 0 0
\(431\) − 57475.2i − 0.309404i −0.987961 0.154702i \(-0.950558\pi\)
0.987961 0.154702i \(-0.0494417\pi\)
\(432\) 0 0
\(433\) − 78282.3i − 0.417530i −0.977966 0.208765i \(-0.933056\pi\)
0.977966 0.208765i \(-0.0669444\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −226257. −1.18478
\(438\) 0 0
\(439\) 248919.i 1.29160i 0.763506 + 0.645801i \(0.223476\pi\)
−0.763506 + 0.645801i \(0.776524\pi\)
\(440\) 0 0
\(441\) 6532.44 0.0335891
\(442\) 0 0
\(443\) 305178.i 1.55505i 0.628849 + 0.777527i \(0.283526\pi\)
−0.628849 + 0.777527i \(0.716474\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 182164. 0.911692
\(448\) 0 0
\(449\) 106754. 0.529529 0.264765 0.964313i \(-0.414706\pi\)
0.264765 + 0.964313i \(0.414706\pi\)
\(450\) 0 0
\(451\) 460876. 2.26585
\(452\) 0 0
\(453\) −128259. −0.625018
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 212418.i − 1.01709i −0.861036 0.508543i \(-0.830184\pi\)
0.861036 0.508543i \(-0.169816\pi\)
\(458\) 0 0
\(459\) 182580. 0.866618
\(460\) 0 0
\(461\) 377548.i 1.77652i 0.459340 + 0.888261i \(0.348086\pi\)
−0.459340 + 0.888261i \(0.651914\pi\)
\(462\) 0 0
\(463\) −64579.0 −0.301252 −0.150626 0.988591i \(-0.548129\pi\)
−0.150626 + 0.988591i \(0.548129\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 100635.i 0.461439i 0.973020 + 0.230720i \(0.0741080\pi\)
−0.973020 + 0.230720i \(0.925892\pi\)
\(468\) 0 0
\(469\) 196158.i 0.891785i
\(470\) 0 0
\(471\) − 21847.0i − 0.0984806i
\(472\) 0 0
\(473\) 143843.i 0.642936i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −97290.6 −0.427597
\(478\) 0 0
\(479\) 188868.i 0.823168i 0.911372 + 0.411584i \(0.135024\pi\)
−0.911372 + 0.411584i \(0.864976\pi\)
\(480\) 0 0
\(481\) 138493. 0.598603
\(482\) 0 0
\(483\) − 123612.i − 0.529866i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −105446. −0.444604 −0.222302 0.974978i \(-0.571357\pi\)
−0.222302 + 0.974978i \(0.571357\pi\)
\(488\) 0 0
\(489\) 121708. 0.508980
\(490\) 0 0
\(491\) 248385. 1.03030 0.515149 0.857101i \(-0.327737\pi\)
0.515149 + 0.857101i \(0.327737\pi\)
\(492\) 0 0
\(493\) −331765. −1.36501
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 211578.i − 0.856558i
\(498\) 0 0
\(499\) 194138. 0.779668 0.389834 0.920885i \(-0.372532\pi\)
0.389834 + 0.920885i \(0.372532\pi\)
\(500\) 0 0
\(501\) 109467.i 0.436122i
\(502\) 0 0
\(503\) −323180. −1.27735 −0.638673 0.769478i \(-0.720516\pi\)
−0.638673 + 0.769478i \(0.720516\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 86260.2i − 0.335579i
\(508\) 0 0
\(509\) 148319.i 0.572481i 0.958158 + 0.286240i \(0.0924056\pi\)
−0.958158 + 0.286240i \(0.907594\pi\)
\(510\) 0 0
\(511\) 233794.i 0.895348i
\(512\) 0 0
\(513\) 264974.i 1.00686i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −480660. −1.79828
\(518\) 0 0
\(519\) 71628.6i 0.265920i
\(520\) 0 0
\(521\) 88345.8 0.325470 0.162735 0.986670i \(-0.447969\pi\)
0.162735 + 0.986670i \(0.447969\pi\)
\(522\) 0 0
\(523\) − 116531.i − 0.426028i −0.977049 0.213014i \(-0.931672\pi\)
0.977049 0.213014i \(-0.0683279\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −105535. −0.379993
\(528\) 0 0
\(529\) 18524.3 0.0661959
\(530\) 0 0
\(531\) −109659. −0.388914
\(532\) 0 0
\(533\) 282308. 0.993732
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 24126.7i 0.0836659i
\(538\) 0 0
\(539\) −17127.7 −0.0589551
\(540\) 0 0
\(541\) − 468624.i − 1.60114i −0.599237 0.800572i \(-0.704529\pi\)
0.599237 0.800572i \(-0.295471\pi\)
\(542\) 0 0
\(543\) 74346.4 0.252151
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 362111.i − 1.21023i −0.796139 0.605114i \(-0.793128\pi\)
0.796139 0.605114i \(-0.206872\pi\)
\(548\) 0 0
\(549\) 67814.7i 0.224998i
\(550\) 0 0
\(551\) − 481482.i − 1.58590i
\(552\) 0 0
\(553\) 341216.i 1.11578i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 498265. 1.60602 0.803008 0.595968i \(-0.203231\pi\)
0.803008 + 0.595968i \(0.203231\pi\)
\(558\) 0 0
\(559\) 88110.9i 0.281972i
\(560\) 0 0
\(561\) −204849. −0.650890
\(562\) 0 0
\(563\) 245981.i 0.776041i 0.921651 + 0.388021i \(0.126841\pi\)
−0.921651 + 0.388021i \(0.873159\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 101047. 0.314308
\(568\) 0 0
\(569\) −385802. −1.19163 −0.595813 0.803123i \(-0.703170\pi\)
−0.595813 + 0.803123i \(0.703170\pi\)
\(570\) 0 0
\(571\) 14171.0 0.0434640 0.0217320 0.999764i \(-0.493082\pi\)
0.0217320 + 0.999764i \(0.493082\pi\)
\(572\) 0 0
\(573\) 163943. 0.499326
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 109691.i 0.329474i 0.986338 + 0.164737i \(0.0526775\pi\)
−0.986338 + 0.164737i \(0.947323\pi\)
\(578\) 0 0
\(579\) −8740.42 −0.0260720
\(580\) 0 0
\(581\) 158626.i 0.469918i
\(582\) 0 0
\(583\) 255091. 0.750512
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 377043.i 1.09425i 0.837052 + 0.547123i \(0.184277\pi\)
−0.837052 + 0.547123i \(0.815723\pi\)
\(588\) 0 0
\(589\) − 153160.i − 0.441485i
\(590\) 0 0
\(591\) 327955.i 0.938943i
\(592\) 0 0
\(593\) − 27615.5i − 0.0785314i −0.999229 0.0392657i \(-0.987498\pi\)
0.999229 0.0392657i \(-0.0125019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 351130. 0.985189
\(598\) 0 0
\(599\) 170000.i 0.473802i 0.971534 + 0.236901i \(0.0761316\pi\)
−0.971534 + 0.236901i \(0.923868\pi\)
\(600\) 0 0
\(601\) 297213. 0.822846 0.411423 0.911445i \(-0.365032\pi\)
0.411423 + 0.911445i \(0.365032\pi\)
\(602\) 0 0
\(603\) 237275.i 0.652556i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −23984.9 −0.0650969 −0.0325485 0.999470i \(-0.510362\pi\)
−0.0325485 + 0.999470i \(0.510362\pi\)
\(608\) 0 0
\(609\) 263050. 0.709257
\(610\) 0 0
\(611\) −294427. −0.788671
\(612\) 0 0
\(613\) −291516. −0.775785 −0.387893 0.921705i \(-0.626797\pi\)
−0.387893 + 0.921705i \(0.626797\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 111058.i 0.291729i 0.989305 + 0.145864i \(0.0465963\pi\)
−0.989305 + 0.145864i \(0.953404\pi\)
\(618\) 0 0
\(619\) −300205. −0.783496 −0.391748 0.920073i \(-0.628129\pi\)
−0.391748 + 0.920073i \(0.628129\pi\)
\(620\) 0 0
\(621\) − 349421.i − 0.906079i
\(622\) 0 0
\(623\) −537003. −1.38357
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 297292.i − 0.756220i
\(628\) 0 0
\(629\) 406221.i 1.02674i
\(630\) 0 0
\(631\) 150496.i 0.377979i 0.981979 + 0.188989i \(0.0605212\pi\)
−0.981979 + 0.188989i \(0.939479\pi\)
\(632\) 0 0
\(633\) − 161778.i − 0.403749i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −10491.5 −0.0258559
\(638\) 0 0
\(639\) − 255927.i − 0.626779i
\(640\) 0 0
\(641\) −341612. −0.831414 −0.415707 0.909499i \(-0.636466\pi\)
−0.415707 + 0.909499i \(0.636466\pi\)
\(642\) 0 0
\(643\) − 89782.7i − 0.217156i −0.994088 0.108578i \(-0.965370\pi\)
0.994088 0.108578i \(-0.0346297\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −569707. −1.36095 −0.680477 0.732770i \(-0.738227\pi\)
−0.680477 + 0.732770i \(0.738227\pi\)
\(648\) 0 0
\(649\) 287519. 0.682617
\(650\) 0 0
\(651\) 83676.7 0.197443
\(652\) 0 0
\(653\) 258929. 0.607233 0.303616 0.952794i \(-0.401806\pi\)
0.303616 + 0.952794i \(0.401806\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 282800.i 0.655163i
\(658\) 0 0
\(659\) −43971.3 −0.101251 −0.0506255 0.998718i \(-0.516121\pi\)
−0.0506255 + 0.998718i \(0.516121\pi\)
\(660\) 0 0
\(661\) 216610.i 0.495765i 0.968790 + 0.247882i \(0.0797347\pi\)
−0.968790 + 0.247882i \(0.920265\pi\)
\(662\) 0 0
\(663\) −125480. −0.285461
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 634931.i 1.42717i
\(668\) 0 0
\(669\) 298587.i 0.667142i
\(670\) 0 0
\(671\) − 177806.i − 0.394914i
\(672\) 0 0
\(673\) − 614134.i − 1.35592i −0.735101 0.677958i \(-0.762865\pi\)
0.735101 0.677958i \(-0.237135\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 710586. 1.55038 0.775192 0.631725i \(-0.217653\pi\)
0.775192 + 0.631725i \(0.217653\pi\)
\(678\) 0 0
\(679\) − 503458.i − 1.09200i
\(680\) 0 0
\(681\) 29389.3 0.0633716
\(682\) 0 0
\(683\) 187636.i 0.402231i 0.979568 + 0.201116i \(0.0644567\pi\)
−0.979568 + 0.201116i \(0.935543\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 23407.5 0.0495955
\(688\) 0 0
\(689\) 156255. 0.329151
\(690\) 0 0
\(691\) −628570. −1.31643 −0.658215 0.752830i \(-0.728688\pi\)
−0.658215 + 0.752830i \(0.728688\pi\)
\(692\) 0 0
\(693\) −482081. −1.00382
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 828051.i 1.70448i
\(698\) 0 0
\(699\) 203561. 0.416619
\(700\) 0 0
\(701\) − 149078.i − 0.303374i −0.988429 0.151687i \(-0.951529\pi\)
0.988429 0.151687i \(-0.0484705\pi\)
\(702\) 0 0
\(703\) −589538. −1.19289
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 752160.i − 1.50477i
\(708\) 0 0
\(709\) − 47510.9i − 0.0945151i −0.998883 0.0472575i \(-0.984952\pi\)
0.998883 0.0472575i \(-0.0150481\pi\)
\(710\) 0 0
\(711\) 412739.i 0.816462i
\(712\) 0 0
\(713\) 201973.i 0.397296i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 324152. 0.630536
\(718\) 0 0
\(719\) − 843806.i − 1.63224i −0.577880 0.816122i \(-0.696120\pi\)
0.577880 0.816122i \(-0.303880\pi\)
\(720\) 0 0
\(721\) 660028. 1.26967
\(722\) 0 0
\(723\) − 59700.0i − 0.114208i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −792065. −1.49862 −0.749311 0.662218i \(-0.769615\pi\)
−0.749311 + 0.662218i \(0.769615\pi\)
\(728\) 0 0
\(729\) −111878. −0.210519
\(730\) 0 0
\(731\) −258442. −0.483647
\(732\) 0 0
\(733\) −4047.83 −0.00753380 −0.00376690 0.999993i \(-0.501199\pi\)
−0.00376690 + 0.999993i \(0.501199\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 622123.i − 1.14536i
\(738\) 0 0
\(739\) 895023. 1.63887 0.819437 0.573170i \(-0.194286\pi\)
0.819437 + 0.573170i \(0.194286\pi\)
\(740\) 0 0
\(741\) − 182105.i − 0.331655i
\(742\) 0 0
\(743\) 616018. 1.11588 0.557938 0.829883i \(-0.311593\pi\)
0.557938 + 0.829883i \(0.311593\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 191876.i 0.343858i
\(748\) 0 0
\(749\) − 665410.i − 1.18611i
\(750\) 0 0
\(751\) 232448.i 0.412141i 0.978537 + 0.206071i \(0.0660677\pi\)
−0.978537 + 0.206071i \(0.933932\pi\)
\(752\) 0 0
\(753\) 41583.7i 0.0733387i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −431771. −0.753462 −0.376731 0.926323i \(-0.622952\pi\)
−0.376731 + 0.926323i \(0.622952\pi\)
\(758\) 0 0
\(759\) 392040.i 0.680528i
\(760\) 0 0
\(761\) −368807. −0.636840 −0.318420 0.947950i \(-0.603152\pi\)
−0.318420 + 0.947950i \(0.603152\pi\)
\(762\) 0 0
\(763\) − 962274.i − 1.65291i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 176119. 0.299375
\(768\) 0 0
\(769\) −850748. −1.43863 −0.719313 0.694686i \(-0.755544\pi\)
−0.719313 + 0.694686i \(0.755544\pi\)
\(770\) 0 0
\(771\) −145551. −0.244854
\(772\) 0 0
\(773\) 967445. 1.61908 0.809538 0.587067i \(-0.199718\pi\)
0.809538 + 0.587067i \(0.199718\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 322085.i − 0.533492i
\(778\) 0 0
\(779\) −1.20173e6 −1.98030
\(780\) 0 0
\(781\) 671026.i 1.10011i
\(782\) 0 0
\(783\) 743580. 1.21284
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 434908.i 0.702178i 0.936342 + 0.351089i \(0.114189\pi\)
−0.936342 + 0.351089i \(0.885811\pi\)
\(788\) 0 0
\(789\) − 407687.i − 0.654896i
\(790\) 0 0
\(791\) − 1.05061e6i − 1.67915i
\(792\) 0 0
\(793\) − 108915.i − 0.173197i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −648541. −1.02099 −0.510494 0.859881i \(-0.670537\pi\)
−0.510494 + 0.859881i \(0.670537\pi\)
\(798\) 0 0
\(799\) − 863598.i − 1.35275i
\(800\) 0 0
\(801\) −649566. −1.01241
\(802\) 0 0
\(803\) − 741487.i − 1.14993i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −48415.0 −0.0743418
\(808\) 0 0
\(809\) −338083. −0.516567 −0.258284 0.966069i \(-0.583157\pi\)
−0.258284 + 0.966069i \(0.583157\pi\)
\(810\) 0 0
\(811\) 941405. 1.43131 0.715657 0.698452i \(-0.246128\pi\)
0.715657 + 0.698452i \(0.246128\pi\)
\(812\) 0 0
\(813\) 181353. 0.274375
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 375070.i − 0.561912i
\(818\) 0 0
\(819\) −295298. −0.440243
\(820\) 0 0
\(821\) − 702066.i − 1.04158i −0.853686 0.520789i \(-0.825638\pi\)
0.853686 0.520789i \(-0.174362\pi\)
\(822\) 0 0
\(823\) 736652. 1.08758 0.543792 0.839220i \(-0.316988\pi\)
0.543792 + 0.839220i \(0.316988\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 698186.i − 1.02085i −0.859923 0.510423i \(-0.829489\pi\)
0.859923 0.510423i \(-0.170511\pi\)
\(828\) 0 0
\(829\) 609784.i 0.887293i 0.896202 + 0.443647i \(0.146315\pi\)
−0.896202 + 0.443647i \(0.853685\pi\)
\(830\) 0 0
\(831\) − 44918.3i − 0.0650461i
\(832\) 0 0
\(833\) − 30773.2i − 0.0443488i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 236534. 0.337631
\(838\) 0 0
\(839\) − 245795.i − 0.349179i −0.984641 0.174590i \(-0.944140\pi\)
0.984641 0.174590i \(-0.0558599\pi\)
\(840\) 0 0
\(841\) −643872. −0.910348
\(842\) 0 0
\(843\) 13743.5i 0.0193393i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 530650. 0.739676
\(848\) 0 0
\(849\) −285432. −0.395992
\(850\) 0 0
\(851\) 777425. 1.07349
\(852\) 0 0
\(853\) 482861. 0.663627 0.331813 0.943345i \(-0.392340\pi\)
0.331813 + 0.943345i \(0.392340\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 275704.i − 0.375389i −0.982227 0.187695i \(-0.939898\pi\)
0.982227 0.187695i \(-0.0601015\pi\)
\(858\) 0 0
\(859\) −874456. −1.18509 −0.592546 0.805537i \(-0.701877\pi\)
−0.592546 + 0.805537i \(0.701877\pi\)
\(860\) 0 0
\(861\) − 656546.i − 0.885643i
\(862\) 0 0
\(863\) −207383. −0.278453 −0.139227 0.990261i \(-0.544462\pi\)
−0.139227 + 0.990261i \(0.544462\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 9301.96i 0.0123747i
\(868\) 0 0
\(869\) − 1.08218e6i − 1.43304i
\(870\) 0 0
\(871\) − 381080.i − 0.502319i
\(872\) 0 0
\(873\) − 608989.i − 0.799063i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −287580. −0.373903 −0.186952 0.982369i \(-0.559861\pi\)
−0.186952 + 0.982369i \(0.559861\pi\)
\(878\) 0 0
\(879\) − 226468.i − 0.293110i
\(880\) 0 0
\(881\) 72878.9 0.0938966 0.0469483 0.998897i \(-0.485050\pi\)
0.0469483 + 0.998897i \(0.485050\pi\)
\(882\) 0 0
\(883\) 587119.i 0.753017i 0.926413 + 0.376509i \(0.122875\pi\)
−0.926413 + 0.376509i \(0.877125\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 525528. 0.667958 0.333979 0.942581i \(-0.391609\pi\)
0.333979 + 0.942581i \(0.391609\pi\)
\(888\) 0 0
\(889\) −539413. −0.682523
\(890\) 0 0
\(891\) −320473. −0.403679
\(892\) 0 0
\(893\) 1.25332e6 1.57166
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 240143.i 0.298459i
\(898\) 0 0
\(899\) −429804. −0.531804
\(900\) 0 0
\(901\) 458319.i 0.564571i
\(902\) 0 0
\(903\) 204914. 0.251302
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.45695e6i 1.77105i 0.464596 + 0.885523i \(0.346199\pi\)
−0.464596 + 0.885523i \(0.653801\pi\)
\(908\) 0 0
\(909\) − 909822.i − 1.10111i
\(910\) 0 0
\(911\) − 546104.i − 0.658020i −0.944326 0.329010i \(-0.893285\pi\)
0.944326 0.329010i \(-0.106715\pi\)
\(912\) 0 0
\(913\) − 503088.i − 0.603535i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −784758. −0.933248
\(918\) 0 0
\(919\) 1.30937e6i 1.55036i 0.631740 + 0.775180i \(0.282341\pi\)
−0.631740 + 0.775180i \(0.717659\pi\)
\(920\) 0 0
\(921\) 224037. 0.264120
\(922\) 0 0
\(923\) 411036.i 0.482476i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 798378. 0.929072
\(928\) 0 0
\(929\) −731556. −0.847649 −0.423824 0.905744i \(-0.639313\pi\)
−0.423824 + 0.905744i \(0.639313\pi\)
\(930\) 0 0
\(931\) 44660.3 0.0515255
\(932\) 0 0
\(933\) −554331. −0.636804
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 368844.i − 0.420111i −0.977690 0.210055i \(-0.932636\pi\)
0.977690 0.210055i \(-0.0673644\pi\)
\(938\) 0 0
\(939\) −805327. −0.913358
\(940\) 0 0
\(941\) 1.05710e6i 1.19381i 0.802310 + 0.596907i \(0.203604\pi\)
−0.802310 + 0.596907i \(0.796396\pi\)
\(942\) 0 0
\(943\) 1.58472e6 1.78209
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.05246e6i − 1.17356i −0.809748 0.586778i \(-0.800396\pi\)
0.809748 0.586778i \(-0.199604\pi\)
\(948\) 0 0
\(949\) − 454196.i − 0.504325i
\(950\) 0 0
\(951\) 40754.6i 0.0450625i
\(952\) 0 0
\(953\) 65088.8i 0.0716672i 0.999358 + 0.0358336i \(0.0114086\pi\)
−0.999358 + 0.0358336i \(0.988591\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −834273. −0.910928
\(958\) 0 0
\(959\) 1.26381e6i 1.37419i
\(960\) 0 0
\(961\) 786799. 0.851956
\(962\) 0 0
\(963\) − 804889.i − 0.867927i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 481804. 0.515250 0.257625 0.966245i \(-0.417060\pi\)
0.257625 + 0.966245i \(0.417060\pi\)
\(968\) 0 0
\(969\) 534142. 0.568865
\(970\) 0 0
\(971\) −439500. −0.466144 −0.233072 0.972459i \(-0.574878\pi\)
−0.233072 + 0.972459i \(0.574878\pi\)
\(972\) 0 0
\(973\) −1.07129e6 −1.13157
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.37613e6i 1.44169i 0.693098 + 0.720844i \(0.256245\pi\)
−0.693098 + 0.720844i \(0.743755\pi\)
\(978\) 0 0
\(979\) 1.70313e6 1.77697
\(980\) 0 0
\(981\) − 1.16398e6i − 1.20950i
\(982\) 0 0
\(983\) −767551. −0.794328 −0.397164 0.917748i \(-0.630006\pi\)
−0.397164 + 0.917748i \(0.630006\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 684730.i 0.702887i
\(988\) 0 0
\(989\) 494606.i 0.505670i
\(990\) 0 0
\(991\) 1.85016e6i 1.88392i 0.335722 + 0.941961i \(0.391020\pi\)
−0.335722 + 0.941961i \(0.608980\pi\)
\(992\) 0 0
\(993\) − 317878.i − 0.322376i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 337598. 0.339633 0.169816 0.985476i \(-0.445683\pi\)
0.169816 + 0.985476i \(0.445683\pi\)
\(998\) 0 0
\(999\) − 910457.i − 0.912281i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.e.e.399.22 32
4.3 odd 2 200.5.e.e.99.7 32
5.2 odd 4 160.5.g.a.111.9 16
5.3 odd 4 800.5.g.h.751.7 16
5.4 even 2 inner 800.5.e.e.399.11 32
8.3 odd 2 inner 800.5.e.e.399.12 32
8.5 even 2 200.5.e.e.99.25 32
15.2 even 4 1440.5.g.a.271.15 16
20.3 even 4 200.5.g.h.51.4 16
20.7 even 4 40.5.g.a.11.13 16
20.19 odd 2 200.5.e.e.99.26 32
40.3 even 4 800.5.g.h.751.8 16
40.13 odd 4 200.5.g.h.51.3 16
40.19 odd 2 inner 800.5.e.e.399.21 32
40.27 even 4 160.5.g.a.111.10 16
40.29 even 2 200.5.e.e.99.8 32
40.37 odd 4 40.5.g.a.11.14 yes 16
60.47 odd 4 360.5.g.a.91.4 16
120.77 even 4 360.5.g.a.91.3 16
120.107 odd 4 1440.5.g.a.271.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.13 16 20.7 even 4
40.5.g.a.11.14 yes 16 40.37 odd 4
160.5.g.a.111.9 16 5.2 odd 4
160.5.g.a.111.10 16 40.27 even 4
200.5.e.e.99.7 32 4.3 odd 2
200.5.e.e.99.8 32 40.29 even 2
200.5.e.e.99.25 32 8.5 even 2
200.5.e.e.99.26 32 20.19 odd 2
200.5.g.h.51.3 16 40.13 odd 4
200.5.g.h.51.4 16 20.3 even 4
360.5.g.a.91.3 16 120.77 even 4
360.5.g.a.91.4 16 60.47 odd 4
800.5.e.e.399.11 32 5.4 even 2 inner
800.5.e.e.399.12 32 8.3 odd 2 inner
800.5.e.e.399.21 32 40.19 odd 2 inner
800.5.e.e.399.22 32 1.1 even 1 trivial
800.5.g.h.751.7 16 5.3 odd 4
800.5.g.h.751.8 16 40.3 even 4
1440.5.g.a.271.2 16 120.107 odd 4
1440.5.g.a.271.15 16 15.2 even 4