Properties

Label 200.5.g.h.51.4
Level $200$
Weight $5$
Character 200.51
Analytic conductor $20.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,5,Mod(51,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.51");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 200.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6739926168\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 84 x^{13} + 628 x^{12} - 1392 x^{11} + 2016 x^{10} - 18048 x^{9} + \cdots + 4294967296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{2}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.4
Root \(-2.66926 + 2.97910i\) of defining polynomial
Character \(\chi\) \(=\) 200.51
Dual form 200.5.g.h.51.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.66926 + 2.97910i) q^{2} +4.51805 q^{3} +(-1.75006 - 15.9040i) q^{4} +(-12.0599 + 13.4597i) q^{6} +50.0881i q^{7} +(52.0510 + 37.2384i) q^{8} -60.5872 q^{9} +158.856 q^{11} +(-7.90685 - 71.8551i) q^{12} -97.3070i q^{13} +(-149.217 - 133.698i) q^{14} +(-249.875 + 55.6658i) q^{16} -285.416 q^{17} +(161.723 - 180.495i) q^{18} +414.217 q^{19} +226.301i q^{21} +(-424.030 + 473.249i) q^{22} +546.228i q^{23} +(235.169 + 168.245i) q^{24} +(289.887 + 259.738i) q^{26} -639.698 q^{27} +(796.601 - 87.6570i) q^{28} +1162.39i q^{29} +369.759i q^{31} +(501.147 - 892.988i) q^{32} +717.721 q^{33} +(761.850 - 850.282i) q^{34} +(106.031 + 963.579i) q^{36} +1423.26i q^{37} +(-1105.65 + 1233.99i) q^{38} -439.638i q^{39} -2901.21 q^{41} +(-674.172 - 604.056i) q^{42} -905.493 q^{43} +(-278.008 - 2526.45i) q^{44} +(-1627.27 - 1458.03i) q^{46} +3025.75i q^{47} +(-1128.95 + 251.501i) q^{48} -107.819 q^{49} -1289.52 q^{51} +(-1547.57 + 170.293i) q^{52} -1605.79i q^{53} +(1707.52 - 1905.72i) q^{54} +(-1865.20 + 2607.13i) q^{56} +1871.45 q^{57} +(-3462.88 - 3102.73i) q^{58} -1809.93 q^{59} +1119.29i q^{61} +(-1101.55 - 986.984i) q^{62} -3034.70i q^{63} +(1322.60 + 3876.59i) q^{64} +(-1915.79 + 2138.16i) q^{66} -3916.26 q^{67} +(499.494 + 4539.25i) q^{68} +2467.89i q^{69} +4224.11i q^{71} +(-3153.62 - 2256.17i) q^{72} -4667.66 q^{73} +(-4240.03 - 3799.06i) q^{74} +(-724.902 - 6587.70i) q^{76} +7956.81i q^{77} +(1309.73 + 1173.51i) q^{78} +6812.31i q^{79} +2017.38 q^{81} +(7744.10 - 8642.99i) q^{82} +3166.94 q^{83} +(3599.09 - 396.039i) q^{84} +(2417.00 - 2697.55i) q^{86} +5251.74i q^{87} +(8268.62 + 5915.55i) q^{88} +10721.2 q^{89} +4873.93 q^{91} +(8687.22 - 955.931i) q^{92} +1670.59i q^{93} +(-9014.02 - 8076.54i) q^{94} +(2264.21 - 4034.56i) q^{96} -10051.4 q^{97} +(287.797 - 321.203i) q^{98} -9624.66 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{2} + 8 q^{4} + 84 q^{6} + 216 q^{8} + 432 q^{9} + 192 q^{11} - 260 q^{12} + 972 q^{14} - 824 q^{16} + 806 q^{18} - 704 q^{19} + 1100 q^{22} - 1256 q^{24} + 108 q^{26} - 3648 q^{27} + 940 q^{28}+ \cdots + 2624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66926 + 2.97910i −0.667316 + 0.744775i
\(3\) 4.51805 0.502006 0.251003 0.967986i \(-0.419240\pi\)
0.251003 + 0.967986i \(0.419240\pi\)
\(4\) −1.75006 15.9040i −0.109379 0.994000i
\(5\) 0 0
\(6\) −12.0599 + 13.4597i −0.334996 + 0.373881i
\(7\) 50.0881i 1.02221i 0.859519 + 0.511103i \(0.170763\pi\)
−0.859519 + 0.511103i \(0.829237\pi\)
\(8\) 52.0510 + 37.2384i 0.813296 + 0.581850i
\(9\) −60.5872 −0.747990
\(10\) 0 0
\(11\) 158.856 1.31286 0.656431 0.754386i \(-0.272065\pi\)
0.656431 + 0.754386i \(0.272065\pi\)
\(12\) −7.90685 71.8551i −0.0549087 0.498994i
\(13\) 97.3070i 0.575781i −0.957663 0.287891i \(-0.907046\pi\)
0.957663 0.287891i \(-0.0929540\pi\)
\(14\) −149.217 133.698i −0.761313 0.682135i
\(15\) 0 0
\(16\) −249.875 + 55.6658i −0.976073 + 0.217445i
\(17\) −285.416 −0.987598 −0.493799 0.869576i \(-0.664392\pi\)
−0.493799 + 0.869576i \(0.664392\pi\)
\(18\) 161.723 180.495i 0.499146 0.557084i
\(19\) 414.217 1.14741 0.573707 0.819061i \(-0.305505\pi\)
0.573707 + 0.819061i \(0.305505\pi\)
\(20\) 0 0
\(21\) 226.301i 0.513153i
\(22\) −424.030 + 473.249i −0.876094 + 0.977787i
\(23\) 546.228i 1.03257i 0.856418 + 0.516284i \(0.172685\pi\)
−0.856418 + 0.516284i \(0.827315\pi\)
\(24\) 235.169 + 168.245i 0.408279 + 0.292092i
\(25\) 0 0
\(26\) 289.887 + 259.738i 0.428827 + 0.384228i
\(27\) −639.698 −0.877501
\(28\) 796.601 87.6570i 1.01607 0.111807i
\(29\) 1162.39i 1.38215i 0.722781 + 0.691077i \(0.242863\pi\)
−0.722781 + 0.691077i \(0.757137\pi\)
\(30\) 0 0
\(31\) 369.759i 0.384765i 0.981320 + 0.192382i \(0.0616214\pi\)
−0.981320 + 0.192382i \(0.938379\pi\)
\(32\) 501.147 892.988i 0.489402 0.872058i
\(33\) 717.721 0.659064
\(34\) 761.850 850.282i 0.659040 0.735538i
\(35\) 0 0
\(36\) 106.031 + 963.579i 0.0818141 + 0.743502i
\(37\) 1423.26i 1.03964i 0.854277 + 0.519818i \(0.174000\pi\)
−0.854277 + 0.519818i \(0.826000\pi\)
\(38\) −1105.65 + 1233.99i −0.765688 + 0.854565i
\(39\) 439.638i 0.289045i
\(40\) 0 0
\(41\) −2901.21 −1.72588 −0.862942 0.505303i \(-0.831381\pi\)
−0.862942 + 0.505303i \(0.831381\pi\)
\(42\) −674.172 604.056i −0.382184 0.342435i
\(43\) −905.493 −0.489720 −0.244860 0.969558i \(-0.578742\pi\)
−0.244860 + 0.969558i \(0.578742\pi\)
\(44\) −278.008 2526.45i −0.143599 1.30499i
\(45\) 0 0
\(46\) −1627.27 1458.03i −0.769030 0.689049i
\(47\) 3025.75i 1.36974i 0.728665 + 0.684870i \(0.240141\pi\)
−0.728665 + 0.684870i \(0.759859\pi\)
\(48\) −1128.95 + 251.501i −0.489994 + 0.109158i
\(49\) −107.819 −0.0449058
\(50\) 0 0
\(51\) −1289.52 −0.495780
\(52\) −1547.57 + 170.293i −0.572327 + 0.0629781i
\(53\) 1605.79i 0.571661i −0.958280 0.285830i \(-0.907731\pi\)
0.958280 0.285830i \(-0.0922694\pi\)
\(54\) 1707.52 1905.72i 0.585571 0.653541i
\(55\) 0 0
\(56\) −1865.20 + 2607.13i −0.594771 + 0.831357i
\(57\) 1871.45 0.576008
\(58\) −3462.88 3102.73i −1.02939 0.922333i
\(59\) −1809.93 −0.519946 −0.259973 0.965616i \(-0.583714\pi\)
−0.259973 + 0.965616i \(0.583714\pi\)
\(60\) 0 0
\(61\) 1119.29i 0.300804i 0.988625 + 0.150402i \(0.0480567\pi\)
−0.988625 + 0.150402i \(0.951943\pi\)
\(62\) −1101.55 986.984i −0.286563 0.256760i
\(63\) 3034.70i 0.764600i
\(64\) 1322.60 + 3876.59i 0.322901 + 0.946433i
\(65\) 0 0
\(66\) −1915.79 + 2138.16i −0.439804 + 0.490854i
\(67\) −3916.26 −0.872412 −0.436206 0.899847i \(-0.643678\pi\)
−0.436206 + 0.899847i \(0.643678\pi\)
\(68\) 499.494 + 4539.25i 0.108022 + 0.981672i
\(69\) 2467.89i 0.518355i
\(70\) 0 0
\(71\) 4224.11i 0.837951i 0.907998 + 0.418975i \(0.137611\pi\)
−0.907998 + 0.418975i \(0.862389\pi\)
\(72\) −3153.62 2256.17i −0.608338 0.435218i
\(73\) −4667.66 −0.875897 −0.437949 0.899000i \(-0.644295\pi\)
−0.437949 + 0.899000i \(0.644295\pi\)
\(74\) −4240.03 3799.06i −0.774294 0.693765i
\(75\) 0 0
\(76\) −724.902 6587.70i −0.125503 1.14053i
\(77\) 7956.81i 1.34202i
\(78\) 1309.73 + 1173.51i 0.215274 + 0.192885i
\(79\) 6812.31i 1.09154i 0.837935 + 0.545771i \(0.183763\pi\)
−0.837935 + 0.545771i \(0.816237\pi\)
\(80\) 0 0
\(81\) 2017.38 0.307480
\(82\) 7744.10 8642.99i 1.15171 1.28539i
\(83\) 3166.94 0.459709 0.229855 0.973225i \(-0.426175\pi\)
0.229855 + 0.973225i \(0.426175\pi\)
\(84\) 3599.09 396.039i 0.510075 0.0561280i
\(85\) 0 0
\(86\) 2417.00 2697.55i 0.326798 0.364731i
\(87\) 5251.74i 0.693849i
\(88\) 8268.62 + 5915.55i 1.06775 + 0.763889i
\(89\) 10721.2 1.35351 0.676756 0.736207i \(-0.263385\pi\)
0.676756 + 0.736207i \(0.263385\pi\)
\(90\) 0 0
\(91\) 4873.93 0.588567
\(92\) 8687.22 955.931i 1.02637 0.112941i
\(93\) 1670.59i 0.193154i
\(94\) −9014.02 8076.54i −1.02015 0.914049i
\(95\) 0 0
\(96\) 2264.21 4034.56i 0.245682 0.437778i
\(97\) −10051.4 −1.06828 −0.534140 0.845396i \(-0.679364\pi\)
−0.534140 + 0.845396i \(0.679364\pi\)
\(98\) 287.797 321.203i 0.0299663 0.0334447i
\(99\) −9624.66 −0.982008
\(100\) 0 0
\(101\) 15016.7i 1.47208i −0.676935 0.736042i \(-0.736692\pi\)
0.676935 0.736042i \(-0.263308\pi\)
\(102\) 3442.08 3841.62i 0.330842 0.369244i
\(103\) 13177.3i 1.24209i −0.783775 0.621045i \(-0.786708\pi\)
0.783775 0.621045i \(-0.213292\pi\)
\(104\) 3623.56 5064.92i 0.335018 0.468281i
\(105\) 0 0
\(106\) 4783.82 + 4286.29i 0.425758 + 0.381478i
\(107\) 13284.8 1.16035 0.580173 0.814493i \(-0.302985\pi\)
0.580173 + 0.814493i \(0.302985\pi\)
\(108\) 1119.51 + 10173.8i 0.0959798 + 0.872236i
\(109\) 19211.6i 1.61700i 0.588493 + 0.808502i \(0.299721\pi\)
−0.588493 + 0.808502i \(0.700279\pi\)
\(110\) 0 0
\(111\) 6430.36i 0.521903i
\(112\) −2788.20 12515.7i −0.222273 0.997748i
\(113\) 20975.3 1.64268 0.821338 0.570442i \(-0.193228\pi\)
0.821338 + 0.570442i \(0.193228\pi\)
\(114\) −4995.40 + 5575.24i −0.384380 + 0.428996i
\(115\) 0 0
\(116\) 18486.7 2034.25i 1.37386 0.151178i
\(117\) 5895.56i 0.430679i
\(118\) 4831.18 5391.96i 0.346968 0.387242i
\(119\) 14295.9i 1.00953i
\(120\) 0 0
\(121\) 10594.3 0.723607
\(122\) −3334.47 2987.68i −0.224031 0.200731i
\(123\) −13107.8 −0.866403
\(124\) 5880.65 647.099i 0.382456 0.0420850i
\(125\) 0 0
\(126\) 9040.67 + 8100.41i 0.569455 + 0.510230i
\(127\) 10769.3i 0.667696i −0.942627 0.333848i \(-0.891653\pi\)
0.942627 0.333848i \(-0.108347\pi\)
\(128\) −15079.1 6407.47i −0.920356 0.391081i
\(129\) −4091.06 −0.245842
\(130\) 0 0
\(131\) 15667.6 0.912975 0.456487 0.889730i \(-0.349107\pi\)
0.456487 + 0.889730i \(0.349107\pi\)
\(132\) −1256.05 11414.6i −0.0720875 0.655110i
\(133\) 20747.3i 1.17289i
\(134\) 10453.5 11666.9i 0.582175 0.649751i
\(135\) 0 0
\(136\) −14856.2 10628.4i −0.803210 0.574634i
\(137\) 25231.8 1.34433 0.672167 0.740399i \(-0.265364\pi\)
0.672167 + 0.740399i \(0.265364\pi\)
\(138\) −7352.08 6587.44i −0.386058 0.345906i
\(139\) −21388.1 −1.10699 −0.553494 0.832853i \(-0.686706\pi\)
−0.553494 + 0.832853i \(0.686706\pi\)
\(140\) 0 0
\(141\) 13670.5i 0.687617i
\(142\) −12584.0 11275.3i −0.624084 0.559178i
\(143\) 15457.8i 0.755922i
\(144\) 15139.2 3372.64i 0.730093 0.162646i
\(145\) 0 0
\(146\) 12459.2 13905.4i 0.584500 0.652346i
\(147\) −487.131 −0.0225429
\(148\) 22635.5 2490.79i 1.03340 0.113714i
\(149\) 40319.2i 1.81610i 0.418863 + 0.908049i \(0.362429\pi\)
−0.418863 + 0.908049i \(0.637571\pi\)
\(150\) 0 0
\(151\) 28388.2i 1.24504i −0.782603 0.622521i \(-0.786109\pi\)
0.782603 0.622521i \(-0.213891\pi\)
\(152\) 21560.4 + 15424.8i 0.933188 + 0.667623i
\(153\) 17292.5 0.738714
\(154\) −23704.1 21238.8i −0.999500 0.895549i
\(155\) 0 0
\(156\) −6992.01 + 769.392i −0.287311 + 0.0316154i
\(157\) 4835.50i 0.196174i 0.995178 + 0.0980872i \(0.0312724\pi\)
−0.995178 + 0.0980872i \(0.968728\pi\)
\(158\) −20294.5 18183.9i −0.812952 0.728403i
\(159\) 7255.06i 0.286977i
\(160\) 0 0
\(161\) −27359.5 −1.05550
\(162\) −5384.91 + 6009.96i −0.205186 + 0.229003i
\(163\) −26938.1 −1.01389 −0.506947 0.861977i \(-0.669226\pi\)
−0.506947 + 0.861977i \(0.669226\pi\)
\(164\) 5077.28 + 46140.9i 0.188775 + 1.71553i
\(165\) 0 0
\(166\) −8453.39 + 9434.62i −0.306771 + 0.342380i
\(167\) 24228.8i 0.868760i 0.900730 + 0.434380i \(0.143032\pi\)
−0.900730 + 0.434380i \(0.856968\pi\)
\(168\) −8427.07 + 11779.2i −0.298578 + 0.417346i
\(169\) 19092.3 0.668476
\(170\) 0 0
\(171\) −25096.2 −0.858255
\(172\) 1584.66 + 14401.0i 0.0535649 + 0.486782i
\(173\) 15853.9i 0.529716i 0.964287 + 0.264858i \(0.0853251\pi\)
−0.964287 + 0.264858i \(0.914675\pi\)
\(174\) −15645.5 14018.3i −0.516761 0.463017i
\(175\) 0 0
\(176\) −39694.2 + 8842.87i −1.28145 + 0.285475i
\(177\) −8177.36 −0.261016
\(178\) −28617.6 + 31939.4i −0.903220 + 1.00806i
\(179\) 5340.06 0.166663 0.0833316 0.996522i \(-0.473444\pi\)
0.0833316 + 0.996522i \(0.473444\pi\)
\(180\) 0 0
\(181\) 16455.4i 0.502286i −0.967950 0.251143i \(-0.919193\pi\)
0.967950 0.251143i \(-0.0808065\pi\)
\(182\) −13009.8 + 14519.9i −0.392760 + 0.438350i
\(183\) 5057.01i 0.151005i
\(184\) −20340.7 + 28431.7i −0.600799 + 0.839783i
\(185\) 0 0
\(186\) −4976.85 4459.25i −0.143856 0.128895i
\(187\) −45340.1 −1.29658
\(188\) 48121.6 5295.24i 1.36152 0.149820i
\(189\) 32041.3i 0.896987i
\(190\) 0 0
\(191\) 36286.3i 0.994663i 0.867561 + 0.497331i \(0.165687\pi\)
−0.867561 + 0.497331i \(0.834313\pi\)
\(192\) 5975.59 + 17514.6i 0.162098 + 0.475115i
\(193\) −1934.56 −0.0519358 −0.0259679 0.999663i \(-0.508267\pi\)
−0.0259679 + 0.999663i \(0.508267\pi\)
\(194\) 26830.0 29944.2i 0.712880 0.795628i
\(195\) 0 0
\(196\) 188.689 + 1714.75i 0.00491173 + 0.0446363i
\(197\) 72587.7i 1.87038i −0.354142 0.935192i \(-0.615227\pi\)
0.354142 0.935192i \(-0.384773\pi\)
\(198\) 25690.8 28672.8i 0.655310 0.731375i
\(199\) 77717.2i 1.96251i −0.192723 0.981253i \(-0.561732\pi\)
0.192723 0.981253i \(-0.438268\pi\)
\(200\) 0 0
\(201\) −17693.9 −0.437956
\(202\) 44736.3 + 40083.6i 1.09637 + 0.982346i
\(203\) −58222.0 −1.41285
\(204\) 2256.74 + 20508.6i 0.0542277 + 0.492805i
\(205\) 0 0
\(206\) 39256.6 + 35173.8i 0.925078 + 0.828867i
\(207\) 33094.5i 0.772351i
\(208\) 5416.68 + 24314.6i 0.125201 + 0.562004i
\(209\) 65800.9 1.50640
\(210\) 0 0
\(211\) 35806.9 0.804271 0.402135 0.915580i \(-0.368268\pi\)
0.402135 + 0.915580i \(0.368268\pi\)
\(212\) −25538.6 + 2810.23i −0.568231 + 0.0625274i
\(213\) 19084.7i 0.420656i
\(214\) −35460.6 + 39576.7i −0.774317 + 0.864196i
\(215\) 0 0
\(216\) −33296.9 23821.3i −0.713668 0.510574i
\(217\) −18520.5 −0.393309
\(218\) −57233.3 51280.9i −1.20430 1.07905i
\(219\) −21088.7 −0.439705
\(220\) 0 0
\(221\) 27773.0i 0.568640i
\(222\) −19156.7 17164.3i −0.388700 0.348274i
\(223\) 66087.5i 1.32895i −0.747309 0.664477i \(-0.768655\pi\)
0.747309 0.664477i \(-0.231345\pi\)
\(224\) 44728.1 + 25101.5i 0.891424 + 0.500270i
\(225\) 0 0
\(226\) −55988.7 + 62487.6i −1.09618 + 1.22342i
\(227\) 6504.85 0.126237 0.0631184 0.998006i \(-0.479895\pi\)
0.0631184 + 0.998006i \(0.479895\pi\)
\(228\) −3275.15 29763.6i −0.0630030 0.572552i
\(229\) 5180.89i 0.0987946i 0.998779 + 0.0493973i \(0.0157301\pi\)
−0.998779 + 0.0493973i \(0.984270\pi\)
\(230\) 0 0
\(231\) 35949.3i 0.673700i
\(232\) −43285.6 + 60503.6i −0.804206 + 1.12410i
\(233\) 45055.0 0.829910 0.414955 0.909842i \(-0.363797\pi\)
0.414955 + 0.909842i \(0.363797\pi\)
\(234\) −17563.5 15736.8i −0.320759 0.287399i
\(235\) 0 0
\(236\) 3167.48 + 28785.1i 0.0568709 + 0.516826i
\(237\) 30778.4i 0.547960i
\(238\) 42589.0 + 38159.6i 0.751871 + 0.673675i
\(239\) 71745.9i 1.25603i −0.778200 0.628017i \(-0.783867\pi\)
0.778200 0.628017i \(-0.216133\pi\)
\(240\) 0 0
\(241\) −13213.7 −0.227504 −0.113752 0.993509i \(-0.536287\pi\)
−0.113752 + 0.993509i \(0.536287\pi\)
\(242\) −28279.1 + 31561.6i −0.482875 + 0.538924i
\(243\) 60930.2 1.03186
\(244\) 17801.2 1958.82i 0.298999 0.0329015i
\(245\) 0 0
\(246\) 34988.2 39049.5i 0.578165 0.645275i
\(247\) 40306.2i 0.660660i
\(248\) −13769.2 + 19246.3i −0.223875 + 0.312928i
\(249\) 14308.4 0.230777
\(250\) 0 0
\(251\) −9203.91 −0.146091 −0.0730457 0.997329i \(-0.523272\pi\)
−0.0730457 + 0.997329i \(0.523272\pi\)
\(252\) −48263.9 + 5310.90i −0.760013 + 0.0836309i
\(253\) 86771.8i 1.35562i
\(254\) 32082.7 + 28746.0i 0.497283 + 0.445564i
\(255\) 0 0
\(256\) 59338.6 27818.9i 0.905436 0.424483i
\(257\) 32215.5 0.487751 0.243876 0.969807i \(-0.421581\pi\)
0.243876 + 0.969807i \(0.421581\pi\)
\(258\) 10920.1 12187.7i 0.164055 0.183097i
\(259\) −71288.4 −1.06272
\(260\) 0 0
\(261\) 70426.0i 1.03384i
\(262\) −41820.9 + 46675.2i −0.609243 + 0.679960i
\(263\) 90235.1i 1.30456i 0.757978 + 0.652280i \(0.226187\pi\)
−0.757978 + 0.652280i \(0.773813\pi\)
\(264\) 37358.1 + 26726.8i 0.536014 + 0.383476i
\(265\) 0 0
\(266\) −61808.3 55380.1i −0.873542 0.782691i
\(267\) 48438.8 0.679471
\(268\) 6853.68 + 62284.2i 0.0954232 + 0.867178i
\(269\) 10715.9i 0.148090i −0.997255 0.0740448i \(-0.976409\pi\)
0.997255 0.0740448i \(-0.0235908\pi\)
\(270\) 0 0
\(271\) 40139.7i 0.546557i 0.961935 + 0.273278i \(0.0881080\pi\)
−0.961935 + 0.273278i \(0.911892\pi\)
\(272\) 71318.1 15887.9i 0.963967 0.214748i
\(273\) 22020.6 0.295464
\(274\) −67350.4 + 75168.1i −0.897096 + 1.00123i
\(275\) 0 0
\(276\) 39249.3 4318.94i 0.515245 0.0566969i
\(277\) 9941.96i 0.129572i 0.997899 + 0.0647862i \(0.0206365\pi\)
−0.997899 + 0.0647862i \(0.979363\pi\)
\(278\) 57090.5 63717.3i 0.738711 0.824456i
\(279\) 22402.7i 0.287800i
\(280\) 0 0
\(281\) 3041.90 0.0385241 0.0192621 0.999814i \(-0.493868\pi\)
0.0192621 + 0.999814i \(0.493868\pi\)
\(282\) −40725.8 36490.2i −0.512120 0.458858i
\(283\) 63175.8 0.788821 0.394410 0.918934i \(-0.370949\pi\)
0.394410 + 0.918934i \(0.370949\pi\)
\(284\) 67180.2 7392.43i 0.832923 0.0916538i
\(285\) 0 0
\(286\) 46050.4 + 41261.1i 0.562991 + 0.504439i
\(287\) 145316.i 1.76421i
\(288\) −30363.1 + 54103.6i −0.366068 + 0.652291i
\(289\) −2058.84 −0.0246506
\(290\) 0 0
\(291\) −45412.9 −0.536282
\(292\) 8168.67 + 74234.4i 0.0958044 + 0.870642i
\(293\) 50125.3i 0.583877i −0.956437 0.291939i \(-0.905700\pi\)
0.956437 0.291939i \(-0.0943003\pi\)
\(294\) 1300.28 1451.21i 0.0150433 0.0167894i
\(295\) 0 0
\(296\) −52999.9 + 74082.1i −0.604912 + 0.845531i
\(297\) −101620. −1.15204
\(298\) −120115. 107623.i −1.35258 1.21191i
\(299\) 53151.9 0.594533
\(300\) 0 0
\(301\) 45354.4i 0.500595i
\(302\) 84571.3 + 75775.6i 0.927276 + 0.830837i
\(303\) 67846.4i 0.738995i
\(304\) −103502. + 23057.7i −1.11996 + 0.249499i
\(305\) 0 0
\(306\) −46158.4 + 51516.2i −0.492955 + 0.550175i
\(307\) 49587.2 0.526129 0.263065 0.964778i \(-0.415267\pi\)
0.263065 + 0.964778i \(0.415267\pi\)
\(308\) 126545. 13924.9i 1.33396 0.146788i
\(309\) 59535.9i 0.623537i
\(310\) 0 0
\(311\) 122692.i 1.26852i −0.773120 0.634260i \(-0.781305\pi\)
0.773120 0.634260i \(-0.218695\pi\)
\(312\) 16371.4 22883.6i 0.168181 0.235080i
\(313\) −178246. −1.81942 −0.909708 0.415248i \(-0.863695\pi\)
−0.909708 + 0.415248i \(0.863695\pi\)
\(314\) −14405.4 12907.2i −0.146106 0.130910i
\(315\) 0 0
\(316\) 108343. 11921.9i 1.08499 0.119391i
\(317\) 9020.39i 0.0897650i −0.998992 0.0448825i \(-0.985709\pi\)
0.998992 0.0448825i \(-0.0142913\pi\)
\(318\) 21613.5 + 19365.7i 0.213733 + 0.191504i
\(319\) 184653.i 1.81458i
\(320\) 0 0
\(321\) 60021.4 0.582500
\(322\) 73029.8 81506.8i 0.704350 0.786108i
\(323\) −118224. −1.13318
\(324\) −3530.52 32084.3i −0.0336317 0.305635i
\(325\) 0 0
\(326\) 71905.0 80251.4i 0.676587 0.755122i
\(327\) 86799.1i 0.811745i
\(328\) −151011. 108036.i −1.40365 1.00421i
\(329\) −151554. −1.40016
\(330\) 0 0
\(331\) 70357.4 0.642175 0.321088 0.947049i \(-0.395952\pi\)
0.321088 + 0.947049i \(0.395952\pi\)
\(332\) −5542.32 50367.0i −0.0502823 0.456951i
\(333\) 86231.4i 0.777637i
\(334\) −72180.1 64673.2i −0.647030 0.579737i
\(335\) 0 0
\(336\) −12597.2 56546.8i −0.111582 0.500875i
\(337\) 148629. 1.30871 0.654356 0.756186i \(-0.272940\pi\)
0.654356 + 0.756186i \(0.272940\pi\)
\(338\) −50962.5 + 56878.0i −0.446085 + 0.497864i
\(339\) 94767.6 0.824633
\(340\) 0 0
\(341\) 58738.5i 0.505143i
\(342\) 66988.5 74764.1i 0.572727 0.639206i
\(343\) 114861.i 0.976303i
\(344\) −47131.8 33719.1i −0.398288 0.284944i
\(345\) 0 0
\(346\) −47230.2 42318.2i −0.394519 0.353488i
\(347\) −94414.8 −0.784117 −0.392059 0.919940i \(-0.628237\pi\)
−0.392059 + 0.919940i \(0.628237\pi\)
\(348\) 83523.7 9190.85i 0.689686 0.0758922i
\(349\) 72082.1i 0.591802i 0.955219 + 0.295901i \(0.0956198\pi\)
−0.955219 + 0.295901i \(0.904380\pi\)
\(350\) 0 0
\(351\) 62247.1i 0.505249i
\(352\) 79610.4 141857.i 0.642517 1.14489i
\(353\) 31879.4 0.255836 0.127918 0.991785i \(-0.459171\pi\)
0.127918 + 0.991785i \(0.459171\pi\)
\(354\) 21827.5 24361.2i 0.174180 0.194398i
\(355\) 0 0
\(356\) −18762.7 170509.i −0.148045 1.34539i
\(357\) 64589.8i 0.506789i
\(358\) −14254.0 + 15908.6i −0.111217 + 0.124127i
\(359\) 34649.8i 0.268851i −0.990924 0.134426i \(-0.957081\pi\)
0.990924 0.134426i \(-0.0429189\pi\)
\(360\) 0 0
\(361\) 41254.3 0.316559
\(362\) 49022.3 + 43923.8i 0.374090 + 0.335184i
\(363\) 47865.7 0.363255
\(364\) −8529.65 77514.9i −0.0643766 0.585036i
\(365\) 0 0
\(366\) −15065.3 13498.5i −0.112465 0.100768i
\(367\) 90234.4i 0.669946i 0.942228 + 0.334973i \(0.108727\pi\)
−0.942228 + 0.334973i \(0.891273\pi\)
\(368\) −30406.2 136489.i −0.224526 1.00786i
\(369\) 175776. 1.29094
\(370\) 0 0
\(371\) 80431.2 0.584355
\(372\) 26569.1 2923.63i 0.191995 0.0211269i
\(373\) 18934.5i 0.136093i −0.997682 0.0680466i \(-0.978323\pi\)
0.997682 0.0680466i \(-0.0216767\pi\)
\(374\) 121025. 135073.i 0.865229 0.965660i
\(375\) 0 0
\(376\) −112674. + 157493.i −0.796983 + 1.11400i
\(377\) 113109. 0.795818
\(378\) 95454.1 + 85526.6i 0.668053 + 0.598574i
\(379\) −146129. −1.01732 −0.508661 0.860967i \(-0.669859\pi\)
−0.508661 + 0.860967i \(0.669859\pi\)
\(380\) 0 0
\(381\) 48656.1i 0.335187i
\(382\) −108100. 96857.7i −0.740800 0.663755i
\(383\) 63738.0i 0.434511i 0.976115 + 0.217255i \(0.0697104\pi\)
−0.976115 + 0.217255i \(0.930290\pi\)
\(384\) −68128.2 28949.3i −0.462024 0.196325i
\(385\) 0 0
\(386\) 5163.84 5763.23i 0.0346576 0.0386804i
\(387\) 54861.3 0.366306
\(388\) 17590.6 + 159858.i 0.116847 + 1.06187i
\(389\) 73071.2i 0.482889i 0.970415 + 0.241444i \(0.0776212\pi\)
−0.970415 + 0.241444i \(0.922379\pi\)
\(390\) 0 0
\(391\) 155902.i 1.01976i
\(392\) −5612.07 4015.00i −0.0365217 0.0261284i
\(393\) 70786.8 0.458318
\(394\) 216246. + 193756.i 1.39301 + 1.24814i
\(395\) 0 0
\(396\) 16843.7 + 153071.i 0.107411 + 0.976116i
\(397\) 17918.3i 0.113689i −0.998383 0.0568443i \(-0.981896\pi\)
0.998383 0.0568443i \(-0.0181038\pi\)
\(398\) 231527. + 207448.i 1.46162 + 1.30961i
\(399\) 93737.5i 0.588799i
\(400\) 0 0
\(401\) −66769.8 −0.415232 −0.207616 0.978210i \(-0.566570\pi\)
−0.207616 + 0.978210i \(0.566570\pi\)
\(402\) 47229.6 52711.7i 0.292255 0.326178i
\(403\) 35980.1 0.221540
\(404\) −238826. + 26280.1i −1.46325 + 0.161015i
\(405\) 0 0
\(406\) 155410. 173449.i 0.942815 1.05225i
\(407\) 226094.i 1.36490i
\(408\) −67120.9 48019.8i −0.403216 0.288469i
\(409\) −291009. −1.73964 −0.869822 0.493366i \(-0.835766\pi\)
−0.869822 + 0.493366i \(0.835766\pi\)
\(410\) 0 0
\(411\) 113999. 0.674863
\(412\) −209572. + 23061.1i −1.23464 + 0.135858i
\(413\) 90656.0i 0.531492i
\(414\) 98591.6 + 88337.8i 0.575227 + 0.515402i
\(415\) 0 0
\(416\) −86894.0 48765.2i −0.502115 0.281788i
\(417\) −96632.6 −0.555714
\(418\) −175640. + 196027.i −1.00524 + 1.12193i
\(419\) 199703. 1.13751 0.568757 0.822506i \(-0.307424\pi\)
0.568757 + 0.822506i \(0.307424\pi\)
\(420\) 0 0
\(421\) 116540.i 0.657525i 0.944413 + 0.328763i \(0.106632\pi\)
−0.944413 + 0.328763i \(0.893368\pi\)
\(422\) −95578.2 + 106672.i −0.536703 + 0.599001i
\(423\) 183322.i 1.02455i
\(424\) 59797.2 83583.1i 0.332621 0.464929i
\(425\) 0 0
\(426\) −56855.3 50942.2i −0.313294 0.280710i
\(427\) −56063.1 −0.307483
\(428\) −23249.1 211281.i −0.126917 1.15338i
\(429\) 69839.3i 0.379477i
\(430\) 0 0
\(431\) 57475.2i 0.309404i 0.987961 + 0.154702i \(0.0494417\pi\)
−0.987961 + 0.154702i \(0.950558\pi\)
\(432\) 159844. 35609.3i 0.856505 0.190808i
\(433\) 78282.3 0.417530 0.208765 0.977966i \(-0.433056\pi\)
0.208765 + 0.977966i \(0.433056\pi\)
\(434\) 49436.2 55174.5i 0.262461 0.292927i
\(435\) 0 0
\(436\) 305542. 33621.4i 1.60730 0.176866i
\(437\) 226257.i 1.18478i
\(438\) 56291.3 62825.4i 0.293423 0.327481i
\(439\) 248919.i 1.29160i 0.763506 + 0.645801i \(0.223476\pi\)
−0.763506 + 0.645801i \(0.776524\pi\)
\(440\) 0 0
\(441\) 6532.44 0.0335891
\(442\) −82738.4 74133.4i −0.423509 0.379463i
\(443\) 305178. 1.55505 0.777527 0.628849i \(-0.216474\pi\)
0.777527 + 0.628849i \(0.216474\pi\)
\(444\) 102269. 11253.5i 0.518771 0.0570850i
\(445\) 0 0
\(446\) 196881. + 176405.i 0.989771 + 0.886832i
\(447\) 182164.i 0.911692i
\(448\) −194171. + 66246.7i −0.967449 + 0.330072i
\(449\) −106754. −0.529529 −0.264765 0.964313i \(-0.585294\pi\)
−0.264765 + 0.964313i \(0.585294\pi\)
\(450\) 0 0
\(451\) −460876. −2.26585
\(452\) −36708.0 333592.i −0.179673 1.63282i
\(453\) 128259.i 0.625018i
\(454\) −17363.2 + 19378.6i −0.0842398 + 0.0940179i
\(455\) 0 0
\(456\) 97410.8 + 69689.8i 0.468465 + 0.335150i
\(457\) −212418. −1.01709 −0.508543 0.861036i \(-0.669816\pi\)
−0.508543 + 0.861036i \(0.669816\pi\)
\(458\) −15434.4 13829.2i −0.0735797 0.0659272i
\(459\) 182580. 0.866618
\(460\) 0 0
\(461\) 377548.i 1.77652i 0.459340 + 0.888261i \(0.348086\pi\)
−0.459340 + 0.888261i \(0.651914\pi\)
\(462\) −107096. 95958.2i −0.501754 0.449571i
\(463\) 64579.0i 0.301252i 0.988591 + 0.150626i \(0.0481288\pi\)
−0.988591 + 0.150626i \(0.951871\pi\)
\(464\) −64705.5 290452.i −0.300542 1.34908i
\(465\) 0 0
\(466\) −120264. + 134223.i −0.553812 + 0.618096i
\(467\) −100635. −0.461439 −0.230720 0.973020i \(-0.574108\pi\)
−0.230720 + 0.973020i \(0.574108\pi\)
\(468\) 93763.1 10317.6i 0.428095 0.0471070i
\(469\) 196158.i 0.891785i
\(470\) 0 0
\(471\) 21847.0i 0.0984806i
\(472\) −94208.6 67398.9i −0.422870 0.302530i
\(473\) −143843. −0.642936
\(474\) −91691.8 82155.6i −0.408107 0.365662i
\(475\) 0 0
\(476\) −227363. + 25018.7i −1.00347 + 0.110421i
\(477\) 97290.6i 0.427597i
\(478\) 213738. + 191509.i 0.935462 + 0.838171i
\(479\) 188868.i 0.823168i 0.911372 + 0.411584i \(0.135024\pi\)
−0.911372 + 0.411584i \(0.864976\pi\)
\(480\) 0 0
\(481\) 138493. 0.598603
\(482\) 35270.7 39364.8i 0.151817 0.169439i
\(483\) −123612. −0.529866
\(484\) −18540.7 168492.i −0.0791471 0.719266i
\(485\) 0 0
\(486\) −162639. + 181517.i −0.688575 + 0.768501i
\(487\) 105446.i 0.444604i −0.974978 0.222302i \(-0.928643\pi\)
0.974978 0.222302i \(-0.0713571\pi\)
\(488\) −41680.6 + 58260.1i −0.175022 + 0.244642i
\(489\) −121708. −0.508980
\(490\) 0 0
\(491\) −248385. −1.03030 −0.515149 0.857101i \(-0.672263\pi\)
−0.515149 + 0.857101i \(0.672263\pi\)
\(492\) 22939.4 + 208467.i 0.0947659 + 0.861205i
\(493\) 331765.i 1.36501i
\(494\) 120076. + 107588.i 0.492043 + 0.440869i
\(495\) 0 0
\(496\) −20582.9 92393.4i −0.0836650 0.375558i
\(497\) −211578. −0.856558
\(498\) −38192.8 + 42626.1i −0.154001 + 0.171877i
\(499\) 194138. 0.779668 0.389834 0.920885i \(-0.372532\pi\)
0.389834 + 0.920885i \(0.372532\pi\)
\(500\) 0 0
\(501\) 109467.i 0.436122i
\(502\) 24567.7 27419.4i 0.0974892 0.108805i
\(503\) 323180.i 1.27735i 0.769478 + 0.638673i \(0.220516\pi\)
−0.769478 + 0.638673i \(0.779484\pi\)
\(504\) 113007. 157959.i 0.444883 0.621847i
\(505\) 0 0
\(506\) −258502. 231617.i −1.00963 0.904626i
\(507\) 86260.2 0.335579
\(508\) −171275. + 18846.8i −0.663690 + 0.0730317i
\(509\) 148319.i 0.572481i −0.958158 0.286240i \(-0.907594\pi\)
0.958158 0.286240i \(-0.0924056\pi\)
\(510\) 0 0
\(511\) 233794.i 0.895348i
\(512\) −75515.1 + 251032.i −0.288067 + 0.957610i
\(513\) −264974. −1.00686
\(514\) −85991.7 + 95973.1i −0.325484 + 0.363265i
\(515\) 0 0
\(516\) 7159.59 + 65064.3i 0.0268899 + 0.244367i
\(517\) 480660.i 1.79828i
\(518\) 190288. 212375.i 0.709171 0.791488i
\(519\) 71628.6i 0.265920i
\(520\) 0 0
\(521\) 88345.8 0.325470 0.162735 0.986670i \(-0.447969\pi\)
0.162735 + 0.986670i \(0.447969\pi\)
\(522\) 209806. + 187986.i 0.769976 + 0.689896i
\(523\) −116531. −0.426028 −0.213014 0.977049i \(-0.568328\pi\)
−0.213014 + 0.977049i \(0.568328\pi\)
\(524\) −27419.1 249177.i −0.0998598 0.907497i
\(525\) 0 0
\(526\) −268819. 240861.i −0.971603 0.870554i
\(527\) 105535.i 0.379993i
\(528\) −179340. + 39952.5i −0.643295 + 0.143310i
\(529\) −18524.3 −0.0661959
\(530\) 0 0
\(531\) 109659. 0.388914
\(532\) 329965. 36309.0i 1.16586 0.128289i
\(533\) 282308.i 0.993732i
\(534\) −129296. + 144304.i −0.453422 + 0.506053i
\(535\) 0 0
\(536\) −203845. 145835.i −0.709530 0.507613i
\(537\) 24126.7 0.0836659
\(538\) 31923.8 + 28603.6i 0.110293 + 0.0988226i
\(539\) −17127.7 −0.0589551
\(540\) 0 0
\(541\) 468624.i 1.60114i −0.599237 0.800572i \(-0.704529\pi\)
0.599237 0.800572i \(-0.295471\pi\)
\(542\) −119580. 107143.i −0.407062 0.364726i
\(543\) 74346.4i 0.252151i
\(544\) −143035. + 254873.i −0.483332 + 0.861243i
\(545\) 0 0
\(546\) −58778.9 + 65601.7i −0.197168 + 0.220054i
\(547\) 362111. 1.21023 0.605114 0.796139i \(-0.293128\pi\)
0.605114 + 0.796139i \(0.293128\pi\)
\(548\) −44157.1 401287.i −0.147041 1.33627i
\(549\) 67814.7i 0.224998i
\(550\) 0 0
\(551\) 481482.i 1.58590i
\(552\) −91900.2 + 128456.i −0.301605 + 0.421576i
\(553\) −341216. −1.11578
\(554\) −29618.1 26537.7i −0.0965022 0.0864657i
\(555\) 0 0
\(556\) 37430.4 + 340157.i 0.121081 + 1.10035i
\(557\) 498265.i 1.60602i −0.595968 0.803008i \(-0.703231\pi\)
0.595968 0.803008i \(-0.296769\pi\)
\(558\) 66739.7 + 59798.6i 0.214346 + 0.192054i
\(559\) 88110.9i 0.281972i
\(560\) 0 0
\(561\) −204849. −0.650890
\(562\) −8119.65 + 9062.13i −0.0257078 + 0.0286918i
\(563\) 245981. 0.776041 0.388021 0.921651i \(-0.373159\pi\)
0.388021 + 0.921651i \(0.373159\pi\)
\(564\) 217416. 23924.2i 0.683491 0.0752106i
\(565\) 0 0
\(566\) −168633. + 188207.i −0.526393 + 0.587494i
\(567\) 101047.i 0.314308i
\(568\) −157299. + 219869.i −0.487561 + 0.681502i
\(569\) 385802. 1.19163 0.595813 0.803123i \(-0.296830\pi\)
0.595813 + 0.803123i \(0.296830\pi\)
\(570\) 0 0
\(571\) −14171.0 −0.0434640 −0.0217320 0.999764i \(-0.506918\pi\)
−0.0217320 + 0.999764i \(0.506918\pi\)
\(572\) −245842. + 27052.1i −0.751386 + 0.0826816i
\(573\) 163943.i 0.499326i
\(574\) 432911. + 387887.i 1.31394 + 1.17729i
\(575\) 0 0
\(576\) −80132.9 234872.i −0.241527 0.707922i
\(577\) 109691. 0.329474 0.164737 0.986338i \(-0.447323\pi\)
0.164737 + 0.986338i \(0.447323\pi\)
\(578\) 5495.60 6133.50i 0.0164497 0.0183591i
\(579\) −8740.42 −0.0260720
\(580\) 0 0
\(581\) 158626.i 0.469918i
\(582\) 121219. 135290.i 0.357870 0.399410i
\(583\) 255091.i 0.750512i
\(584\) −242956. 173816.i −0.712364 0.509641i
\(585\) 0 0
\(586\) 149328. + 133798.i 0.434857 + 0.389631i
\(587\) −377043. −1.09425 −0.547123 0.837052i \(-0.684277\pi\)
−0.547123 + 0.837052i \(0.684277\pi\)
\(588\) 852.506 + 7747.32i 0.00246571 + 0.0224077i
\(589\) 153160.i 0.441485i
\(590\) 0 0
\(591\) 327955.i 0.938943i
\(592\) −79227.0 355637.i −0.226063 1.01476i
\(593\) 27615.5 0.0785314 0.0392657 0.999229i \(-0.487498\pi\)
0.0392657 + 0.999229i \(0.487498\pi\)
\(594\) 271251. 302736.i 0.768773 0.858009i
\(595\) 0 0
\(596\) 641237. 70560.9i 1.80520 0.198642i
\(597\) 351130.i 0.985189i
\(598\) −141876. + 158345.i −0.396742 + 0.442793i
\(599\) 170000.i 0.473802i 0.971534 + 0.236901i \(0.0761316\pi\)
−0.971534 + 0.236901i \(0.923868\pi\)
\(600\) 0 0
\(601\) 297213. 0.822846 0.411423 0.911445i \(-0.365032\pi\)
0.411423 + 0.911445i \(0.365032\pi\)
\(602\) 135115. + 121063.i 0.372831 + 0.334055i
\(603\) 237275. 0.652556
\(604\) −451486. + 49681.0i −1.23757 + 0.136181i
\(605\) 0 0
\(606\) 202121. + 181100.i 0.550385 + 0.493143i
\(607\) 23984.9i 0.0650969i −0.999470 0.0325485i \(-0.989638\pi\)
0.999470 0.0325485i \(-0.0103623\pi\)
\(608\) 207584. 369890.i 0.561547 1.00061i
\(609\) −263050. −0.709257
\(610\) 0 0
\(611\) 294427. 0.788671
\(612\) −30262.9 275021.i −0.0807994 0.734281i
\(613\) 291516.i 0.775785i −0.921705 0.387893i \(-0.873203\pi\)
0.921705 0.387893i \(-0.126797\pi\)
\(614\) −132361. + 147725.i −0.351094 + 0.391848i
\(615\) 0 0
\(616\) −296299. + 414160.i −0.780852 + 1.09146i
\(617\) 111058. 0.291729 0.145864 0.989305i \(-0.453404\pi\)
0.145864 + 0.989305i \(0.453404\pi\)
\(618\) 177363. + 158917.i 0.464394 + 0.416096i
\(619\) −300205. −0.783496 −0.391748 0.920073i \(-0.628129\pi\)
−0.391748 + 0.920073i \(0.628129\pi\)
\(620\) 0 0
\(621\) 349421.i 0.906079i
\(622\) 365513. + 327499.i 0.944761 + 0.846503i
\(623\) 537003.i 1.38357i
\(624\) 24472.8 + 109854.i 0.0628514 + 0.282129i
\(625\) 0 0
\(626\) 475787. 531014.i 1.21413 1.35506i
\(627\) 297292. 0.756220
\(628\) 76903.8 8462.40i 0.194997 0.0214573i
\(629\) 406221.i 1.02674i
\(630\) 0 0
\(631\) 150496.i 0.377979i −0.981979 0.188989i \(-0.939479\pi\)
0.981979 0.188989i \(-0.0605212\pi\)
\(632\) −253679. + 354587.i −0.635113 + 0.887746i
\(633\) 161778. 0.403749
\(634\) 26872.6 + 24077.8i 0.0668547 + 0.0599016i
\(635\) 0 0
\(636\) −115385. + 12696.8i −0.285255 + 0.0313891i
\(637\) 10491.5i 0.0258559i
\(638\) −550100. 492888.i −1.35145 1.21090i
\(639\) 255927.i 0.626779i
\(640\) 0 0
\(641\) −341612. −0.831414 −0.415707 0.909499i \(-0.636466\pi\)
−0.415707 + 0.909499i \(0.636466\pi\)
\(642\) −160213. + 178810.i −0.388712 + 0.433831i
\(643\) −89782.7 −0.217156 −0.108578 0.994088i \(-0.534630\pi\)
−0.108578 + 0.994088i \(0.534630\pi\)
\(644\) 47880.8 + 435126.i 0.115449 + 1.04916i
\(645\) 0 0
\(646\) 315571. 352201.i 0.756192 0.843967i
\(647\) 569707.i 1.36095i −0.732770 0.680477i \(-0.761773\pi\)
0.732770 0.680477i \(-0.238227\pi\)
\(648\) 105006. + 75123.8i 0.250072 + 0.178907i
\(649\) −287519. −0.682617
\(650\) 0 0
\(651\) −83676.7 −0.197443
\(652\) 47143.3 + 428424.i 0.110898 + 1.00781i
\(653\) 258929.i 0.607233i 0.952794 + 0.303616i \(0.0981941\pi\)
−0.952794 + 0.303616i \(0.901806\pi\)
\(654\) −258583. 231690.i −0.604567 0.541691i
\(655\) 0 0
\(656\) 724939. 161498.i 1.68459 0.375284i
\(657\) 282800. 0.655163
\(658\) 404539. 451495.i 0.934347 1.04280i
\(659\) −43971.3 −0.101251 −0.0506255 0.998718i \(-0.516121\pi\)
−0.0506255 + 0.998718i \(0.516121\pi\)
\(660\) 0 0
\(661\) 216610.i 0.495765i 0.968790 + 0.247882i \(0.0797347\pi\)
−0.968790 + 0.247882i \(0.920265\pi\)
\(662\) −187802. + 209602.i −0.428534 + 0.478276i
\(663\) 125480.i 0.285461i
\(664\) 164842. + 117932.i 0.373880 + 0.267482i
\(665\) 0 0
\(666\) 256892. + 230174.i 0.579164 + 0.518930i
\(667\) −634931. −1.42717
\(668\) 385336. 42401.8i 0.863547 0.0950237i
\(669\) 298587.i 0.667142i
\(670\) 0 0
\(671\) 177806.i 0.394914i
\(672\) 202084. + 113410.i 0.447500 + 0.251138i
\(673\) 614134. 1.35592 0.677958 0.735101i \(-0.262865\pi\)
0.677958 + 0.735101i \(0.262865\pi\)
\(674\) −396730. + 442781.i −0.873325 + 0.974696i
\(675\) 0 0
\(676\) −33412.7 303645.i −0.0731169 0.664465i
\(677\) 710586.i 1.55038i −0.631725 0.775192i \(-0.717653\pi\)
0.631725 0.775192i \(-0.282347\pi\)
\(678\) −252960. + 282322.i −0.550291 + 0.614165i
\(679\) 503458.i 1.09200i
\(680\) 0 0
\(681\) 29389.3 0.0633716
\(682\) −174988. 156789.i −0.376218 0.337090i
\(683\) 187636. 0.402231 0.201116 0.979568i \(-0.435543\pi\)
0.201116 + 0.979568i \(0.435543\pi\)
\(684\) 43919.8 + 399130.i 0.0938747 + 0.853105i
\(685\) 0 0
\(686\) −342183. 306595.i −0.727126 0.651503i
\(687\) 23407.5i 0.0495955i
\(688\) 226260. 50405.0i 0.478003 0.106487i
\(689\) −156255. −0.329151
\(690\) 0 0
\(691\) 628570. 1.31643 0.658215 0.752830i \(-0.271312\pi\)
0.658215 + 0.752830i \(0.271312\pi\)
\(692\) 252140. 27745.2i 0.526538 0.0579396i
\(693\) 482081.i 1.00382i
\(694\) 252018. 281271.i 0.523254 0.583991i
\(695\) 0 0
\(696\) −195566. + 273358.i −0.403716 + 0.564305i
\(697\) 828051. 1.70448
\(698\) −214740. 192406.i −0.440759 0.394919i
\(699\) 203561. 0.416619
\(700\) 0 0
\(701\) 149078.i 0.303374i −0.988429 0.151687i \(-0.951529\pi\)
0.988429 0.151687i \(-0.0484705\pi\)
\(702\) −185440. 166154.i −0.376296 0.337161i
\(703\) 589538.i 1.19289i
\(704\) 210104. + 615821.i 0.423925 + 1.24254i
\(705\) 0 0
\(706\) −85094.7 + 94972.0i −0.170723 + 0.190540i
\(707\) 752160. 1.50477
\(708\) 14310.8 + 130053.i 0.0285495 + 0.259450i
\(709\) 47510.9i 0.0945151i 0.998883 + 0.0472575i \(0.0150481\pi\)
−0.998883 + 0.0472575i \(0.984952\pi\)
\(710\) 0 0
\(711\) 412739.i 0.816462i
\(712\) 558047. + 399239.i 1.10081 + 0.787541i
\(713\) −201973. −0.397296
\(714\) 192419. + 172407.i 0.377444 + 0.338189i
\(715\) 0 0
\(716\) −9345.40 84928.3i −0.0182294 0.165663i
\(717\) 324152.i 0.630536i
\(718\) 103225. + 92489.5i 0.200234 + 0.179409i
\(719\) 843806.i 1.63224i −0.577880 0.816122i \(-0.696120\pi\)
0.577880 0.816122i \(-0.303880\pi\)
\(720\) 0 0
\(721\) 660028. 1.26967
\(722\) −110119. + 122901.i −0.211245 + 0.235765i
\(723\) −59700.0 −0.114208
\(724\) −261707. + 28797.9i −0.499273 + 0.0549394i
\(725\) 0 0
\(726\) −127766. + 142597.i −0.242406 + 0.270543i
\(727\) 792065.i 1.49862i −0.662218 0.749311i \(-0.730385\pi\)
0.662218 0.749311i \(-0.269615\pi\)
\(728\) 253693. + 181497.i 0.478680 + 0.342458i
\(729\) 111878. 0.210519
\(730\) 0 0
\(731\) 258442. 0.483647
\(732\) 80426.7 8850.05i 0.150099 0.0165167i
\(733\) 4047.83i 0.00753380i −0.999993 0.00376690i \(-0.998801\pi\)
0.999993 0.00376690i \(-0.00119904\pi\)
\(734\) −268817. 240859.i −0.498959 0.447066i
\(735\) 0 0
\(736\) 487775. + 273741.i 0.900459 + 0.505340i
\(737\) −622123. −1.14536
\(738\) −469193. + 523655.i −0.861468 + 0.961463i
\(739\) 895023. 1.63887 0.819437 0.573170i \(-0.194286\pi\)
0.819437 + 0.573170i \(0.194286\pi\)
\(740\) 0 0
\(741\) 182105.i 0.331655i
\(742\) −214692. + 239613.i −0.389950 + 0.435213i
\(743\) 616018.i 1.11588i −0.829883 0.557938i \(-0.811593\pi\)
0.829883 0.557938i \(-0.188407\pi\)
\(744\) −62210.1 + 86955.8i −0.112387 + 0.157091i
\(745\) 0 0
\(746\) 56407.8 + 50541.2i 0.101359 + 0.0908172i
\(747\) −191876. −0.343858
\(748\) 79347.8 + 721089.i 0.141818 + 1.28880i
\(749\) 665410.i 1.18611i
\(750\) 0 0
\(751\) 232448.i 0.412141i −0.978537 0.206071i \(-0.933932\pi\)
0.978537 0.206071i \(-0.0660677\pi\)
\(752\) −168431. 756059.i −0.297842 1.33697i
\(753\) −41583.7 −0.0733387
\(754\) −301917. + 336962.i −0.531062 + 0.592705i
\(755\) 0 0
\(756\) −509585. + 56074.1i −0.891605 + 0.0981111i
\(757\) 431771.i 0.753462i 0.926323 + 0.376731i \(0.122952\pi\)
−0.926323 + 0.376731i \(0.877048\pi\)
\(758\) 390057. 435333.i 0.678875 0.757675i
\(759\) 392040.i 0.680528i
\(760\) 0 0
\(761\) −368807. −0.636840 −0.318420 0.947950i \(-0.603152\pi\)
−0.318420 + 0.947950i \(0.603152\pi\)
\(762\) 144951. + 129876.i 0.249639 + 0.223676i
\(763\) −962274. −1.65291
\(764\) 577097. 63503.1i 0.988695 0.108795i
\(765\) 0 0
\(766\) −189882. 170133.i −0.323613 0.289956i
\(767\) 176119.i 0.299375i
\(768\) 268095. 125687.i 0.454534 0.213093i
\(769\) 850748. 1.43863 0.719313 0.694686i \(-0.244456\pi\)
0.719313 + 0.694686i \(0.244456\pi\)
\(770\) 0 0
\(771\) 145551. 0.244854
\(772\) 3385.58 + 30767.2i 0.00568066 + 0.0516242i
\(773\) 967445.i 1.61908i 0.587067 + 0.809538i \(0.300282\pi\)
−0.587067 + 0.809538i \(0.699718\pi\)
\(774\) −146439. + 163437.i −0.244442 + 0.272816i
\(775\) 0 0
\(776\) −523187. 374300.i −0.868828 0.621578i
\(777\) −322085. −0.533492
\(778\) −217686. 195046.i −0.359643 0.322240i
\(779\) −1.20173e6 −1.98030
\(780\) 0 0
\(781\) 671026.i 1.10011i
\(782\) 464448. + 416144.i 0.759493 + 0.680503i
\(783\) 743580.i 1.21284i
\(784\) 26941.2 6001.82i 0.0438313 0.00976451i
\(785\) 0 0
\(786\) −188949. + 210881.i −0.305843 + 0.341344i
\(787\) −434908. −0.702178 −0.351089 0.936342i \(-0.614189\pi\)
−0.351089 + 0.936342i \(0.614189\pi\)
\(788\) −1.15443e6 + 127033.i −1.85916 + 0.204580i
\(789\) 407687.i 0.654896i
\(790\) 0 0
\(791\) 1.05061e6i 1.67915i
\(792\) −500973. 358407.i −0.798664 0.571381i
\(793\) 108915. 0.173197
\(794\) 53380.5 + 47828.8i 0.0846723 + 0.0758662i
\(795\) 0 0
\(796\) −1.23601e6 + 136010.i −1.95073 + 0.214656i
\(797\) 648541.i 1.02099i 0.859881 + 0.510494i \(0.170537\pi\)
−0.859881 + 0.510494i \(0.829463\pi\)
\(798\) −279253. 250210.i −0.438523 0.392915i
\(799\) 863598.i 1.35275i
\(800\) 0 0
\(801\) −649566. −1.01241
\(802\) 178226. 198914.i 0.277091 0.309255i
\(803\) −741487. −1.14993
\(804\) 30965.3 + 281403.i 0.0479030 + 0.435328i
\(805\) 0 0
\(806\) −96040.5 + 107188.i −0.147837 + 0.164998i
\(807\) 48415.0i 0.0743418i
\(808\) 559199. 781636.i 0.856532 1.19724i
\(809\) 338083. 0.516567 0.258284 0.966069i \(-0.416843\pi\)
0.258284 + 0.966069i \(0.416843\pi\)
\(810\) 0 0
\(811\) −941405. −1.43131 −0.715657 0.698452i \(-0.753872\pi\)
−0.715657 + 0.698452i \(0.753872\pi\)
\(812\) 101892. + 925962.i 0.154535 + 1.40437i
\(813\) 181353.i 0.274375i
\(814\) −673556. 603505.i −1.01654 0.910818i
\(815\) 0 0
\(816\) 322219. 71782.3i 0.483917 0.107805i
\(817\) −375070. −0.561912
\(818\) 776781. 866945.i 1.16089 1.29564i
\(819\) −295298. −0.440243
\(820\) 0 0
\(821\) 702066.i 1.04158i −0.853686 0.520789i \(-0.825638\pi\)
0.853686 0.520789i \(-0.174362\pi\)
\(822\) −304292. + 339613.i −0.450347 + 0.502621i
\(823\) 736652.i 1.08758i −0.839220 0.543792i \(-0.816988\pi\)
0.839220 0.543792i \(-0.183012\pi\)
\(824\) 490703. 685893.i 0.722710 1.01019i
\(825\) 0 0
\(826\) 270073. + 241985.i 0.395842 + 0.354673i
\(827\) 698186. 1.02085 0.510423 0.859923i \(-0.329489\pi\)
0.510423 + 0.859923i \(0.329489\pi\)
\(828\) −526334. + 57917.2i −0.767717 + 0.0844786i
\(829\) 609784.i 0.887293i −0.896202 0.443647i \(-0.853685\pi\)
0.896202 0.443647i \(-0.146315\pi\)
\(830\) 0 0
\(831\) 44918.3i 0.0650461i
\(832\) 377219. 128699.i 0.544938 0.185921i
\(833\) 30773.2 0.0443488
\(834\) 257938. 287878.i 0.370837 0.413882i
\(835\) 0 0
\(836\) −115155. 1.04650e6i −0.164767 1.49736i
\(837\) 236534.i 0.337631i
\(838\) −533060. + 594935.i −0.759081 + 0.847192i
\(839\) 245795.i 0.349179i −0.984641 0.174590i \(-0.944140\pi\)
0.984641 0.174590i \(-0.0558599\pi\)
\(840\) 0 0
\(841\) −643872. −0.910348
\(842\) −347185. 311077.i −0.489708 0.438777i
\(843\) 13743.5 0.0193393
\(844\) −62664.2 569474.i −0.0879700 0.799445i
\(845\) 0 0
\(846\) 546135. + 489335.i 0.763060 + 0.683700i
\(847\) 530650.i 0.739676i
\(848\) 89387.9 + 401247.i 0.124304 + 0.557982i
\(849\) 285432. 0.395992
\(850\) 0 0
\(851\) −777425. −1.07349
\(852\) 303524. 33399.4i 0.418132 0.0460107i
\(853\) 482861.i 0.663627i 0.943345 + 0.331813i \(0.107660\pi\)
−0.943345 + 0.331813i \(0.892340\pi\)
\(854\) 149647. 167018.i 0.205189 0.229006i
\(855\) 0 0
\(856\) 691486. + 494704.i 0.943705 + 0.675147i
\(857\) −275704. −0.375389 −0.187695 0.982227i \(-0.560102\pi\)
−0.187695 + 0.982227i \(0.560102\pi\)
\(858\) 208058. + 186420.i 0.282625 + 0.253231i
\(859\) −874456. −1.18509 −0.592546 0.805537i \(-0.701877\pi\)
−0.592546 + 0.805537i \(0.701877\pi\)
\(860\) 0 0
\(861\) 656546.i 0.885643i
\(862\) −171224. 153416.i −0.230436 0.206470i
\(863\) 207383.i 0.278453i 0.990261 + 0.139227i \(0.0444616\pi\)
−0.990261 + 0.139227i \(0.955538\pi\)
\(864\) −320583. + 571243.i −0.429451 + 0.765232i
\(865\) 0 0
\(866\) −208956. + 233211.i −0.278624 + 0.310966i
\(867\) −9301.96 −0.0123747
\(868\) 32412.0 + 294550.i 0.0430196 + 0.390949i
\(869\) 1.08218e6i 1.43304i
\(870\) 0 0
\(871\) 381080.i 0.502319i
\(872\) −715410. + 999984.i −0.940854 + 1.31510i
\(873\) 608989. 0.799063
\(874\) −674041. 603939.i −0.882396 0.790625i
\(875\) 0 0
\(876\) 36906.4 + 335395.i 0.0480943 + 0.437067i
\(877\) 287580.i 0.373903i 0.982369 + 0.186952i \(0.0598607\pi\)
−0.982369 + 0.186952i \(0.940139\pi\)
\(878\) −741553. 664430.i −0.961952 0.861906i
\(879\) 226468.i 0.293110i
\(880\) 0 0
\(881\) 72878.9 0.0938966 0.0469483 0.998897i \(-0.485050\pi\)
0.0469483 + 0.998897i \(0.485050\pi\)
\(882\) −17436.8 + 19460.8i −0.0224145 + 0.0250163i
\(883\) 587119. 0.753017 0.376509 0.926413i \(-0.377125\pi\)
0.376509 + 0.926413i \(0.377125\pi\)
\(884\) 441701. 48604.3i 0.565229 0.0621971i
\(885\) 0 0
\(886\) −814601. + 909155.i −1.03771 + 1.15817i
\(887\) 525528.i 0.667958i 0.942581 + 0.333979i \(0.108391\pi\)
−0.942581 + 0.333979i \(0.891609\pi\)
\(888\) −239456. + 334707.i −0.303669 + 0.424462i
\(889\) 539413. 0.682523
\(890\) 0 0
\(891\) 320473. 0.403679
\(892\) −1.05106e6 + 115657.i −1.32098 + 0.145359i
\(893\) 1.25332e6i 1.57166i
\(894\) −542685. 486244.i −0.679005 0.608387i
\(895\) 0 0
\(896\) 320938. 755284.i 0.399765 0.940794i
\(897\) 240143. 0.298459
\(898\) 284954. 318030.i 0.353363 0.394380i
\(899\) −429804. −0.531804
\(900\) 0 0
\(901\) 458319.i 0.564571i
\(902\) 1.23020e6 1.37299e6i 1.51204 1.68755i
\(903\) 204914.i 0.251302i
\(904\) 1.09179e6 + 781088.i 1.33598 + 0.955791i
\(905\) 0 0
\(906\) 382097. + 342358.i 0.465498 + 0.417085i
\(907\) −1.45695e6 −1.77105 −0.885523 0.464596i \(-0.846199\pi\)
−0.885523 + 0.464596i \(0.846199\pi\)
\(908\) −11383.9 103453.i −0.0138076 0.125479i
\(909\) 909822.i 1.10111i
\(910\) 0 0
\(911\) 546104.i 0.658020i 0.944326 + 0.329010i \(0.106715\pi\)
−0.944326 + 0.329010i \(0.893285\pi\)
\(912\) −467628. + 104176.i −0.562226 + 0.125250i
\(913\) 503088. 0.603535
\(914\) 566999. 632813.i 0.678718 0.757500i
\(915\) 0 0
\(916\) 82396.9 9066.85i 0.0982019 0.0108060i
\(917\) 784758.i 0.933248i
\(918\) −487354. + 543924.i −0.578308 + 0.645435i
\(919\) 1.30937e6i 1.55036i 0.631740 + 0.775180i \(0.282341\pi\)
−0.631740 + 0.775180i \(0.717659\pi\)
\(920\) 0 0
\(921\) 224037. 0.264120
\(922\) −1.12475e6 1.00778e6i −1.32311 1.18550i
\(923\) 411036. 0.482476
\(924\) 571738. 62913.3i 0.669658 0.0736883i
\(925\) 0 0
\(926\) −192387. 172378.i −0.224364 0.201030i
\(927\) 798378.i 0.929072i
\(928\) 1.03800e6 + 582529.i 1.20532 + 0.676428i
\(929\) 731556. 0.847649 0.423824 0.905744i \(-0.360687\pi\)
0.423824 + 0.905744i \(0.360687\pi\)
\(930\) 0 0
\(931\) −44660.3 −0.0515255
\(932\) −78848.8 716554.i −0.0907743 0.824930i
\(933\) 554331.i 0.636804i
\(934\) 268621. 299801.i 0.307926 0.343668i
\(935\) 0 0
\(936\) −219541. + 306870.i −0.250590 + 0.350269i
\(937\) −368844. −0.420111 −0.210055 0.977690i \(-0.567364\pi\)
−0.210055 + 0.977690i \(0.567364\pi\)
\(938\) 584374. + 523598.i 0.664179 + 0.595103i
\(939\) −805327. −0.913358
\(940\) 0 0
\(941\) 1.05710e6i 1.19381i 0.802310 + 0.596907i \(0.203604\pi\)
−0.802310 + 0.596907i \(0.796396\pi\)
\(942\) −65084.5 58315.5i −0.0733459 0.0657177i
\(943\) 1.58472e6i 1.78209i
\(944\) 452256. 100751.i 0.507505 0.113059i
\(945\) 0 0
\(946\) 383956. 428523.i 0.429041 0.478842i
\(947\) 1.05246e6 1.17356 0.586778 0.809748i \(-0.300396\pi\)
0.586778 + 0.809748i \(0.300396\pi\)
\(948\) 489499. 53863.9i 0.544672 0.0599351i
\(949\) 454196.i 0.504325i
\(950\) 0 0
\(951\) 40754.6i 0.0450625i
\(952\) 532358. 744117.i 0.587394 0.821046i
\(953\) −65088.8 −0.0716672 −0.0358336 0.999358i \(-0.511409\pi\)
−0.0358336 + 0.999358i \(0.511409\pi\)
\(954\) −289838. 259694.i −0.318463 0.285342i
\(955\) 0 0
\(956\) −1.14105e6 + 125559.i −1.24850 + 0.137383i
\(957\) 834273.i 0.910928i
\(958\) −562658. 504140.i −0.613074 0.549313i
\(959\) 1.26381e6i 1.37419i
\(960\) 0 0
\(961\) 786799. 0.851956
\(962\) −369675. + 412585.i −0.399457 + 0.445824i
\(963\) −804889. −0.867927
\(964\) 23124.6 + 210150.i 0.0248840 + 0.226139i
\(965\) 0 0
\(966\) 329953. 368252.i 0.353588 0.394630i
\(967\) 481804.i 0.515250i 0.966245 + 0.257625i \(0.0829399\pi\)
−0.966245 + 0.257625i \(0.917060\pi\)
\(968\) 551445. + 394516.i 0.588507 + 0.421031i
\(969\) −534142. −0.568865
\(970\) 0 0
\(971\) 439500. 0.466144 0.233072 0.972459i \(-0.425122\pi\)
0.233072 + 0.972459i \(0.425122\pi\)
\(972\) −106631. 969033.i −0.112863 1.02567i
\(973\) 1.07129e6i 1.13157i
\(974\) 314135. + 281464.i 0.331130 + 0.296691i
\(975\) 0 0
\(976\) −62306.2 279682.i −0.0654081 0.293606i
\(977\) 1.37613e6 1.44169 0.720844 0.693098i \(-0.243755\pi\)
0.720844 + 0.693098i \(0.243755\pi\)
\(978\) 324870. 362580.i 0.339651 0.379076i
\(979\) 1.70313e6 1.77697
\(980\) 0 0
\(981\) 1.16398e6i 1.20950i
\(982\) 663005. 739964.i 0.687534 0.767339i
\(983\) 767551.i 0.794328i 0.917748 + 0.397164i \(0.130006\pi\)
−0.917748 + 0.397164i \(0.869994\pi\)
\(984\) −682274. 488114.i −0.704643 0.504117i
\(985\) 0 0
\(986\) 988360. + 885568.i 1.01663 + 0.910894i
\(987\) −684730. −0.702887
\(988\) −641030. + 70538.1i −0.656696 + 0.0722620i
\(989\) 494606.i 0.505670i
\(990\) 0 0
\(991\) 1.85016e6i 1.88392i −0.335722 0.941961i \(-0.608980\pi\)
0.335722 0.941961i \(-0.391020\pi\)
\(992\) 330190. + 185304.i 0.335537 + 0.188305i
\(993\) 317878. 0.322376
\(994\) 564757. 630311.i 0.571595 0.637943i
\(995\) 0 0
\(996\) −25040.5 227561.i −0.0252420 0.229392i
\(997\) 337598.i 0.339633i −0.985476 0.169816i \(-0.945683\pi\)
0.985476 0.169816i \(-0.0543175\pi\)
\(998\) −518206. + 578356.i −0.520285 + 0.580677i
\(999\) 910457.i 0.912281i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.5.g.h.51.4 16
4.3 odd 2 800.5.g.h.751.7 16
5.2 odd 4 200.5.e.e.99.7 32
5.3 odd 4 200.5.e.e.99.26 32
5.4 even 2 40.5.g.a.11.13 16
8.3 odd 2 inner 200.5.g.h.51.3 16
8.5 even 2 800.5.g.h.751.8 16
15.14 odd 2 360.5.g.a.91.4 16
20.3 even 4 800.5.e.e.399.11 32
20.7 even 4 800.5.e.e.399.22 32
20.19 odd 2 160.5.g.a.111.9 16
40.3 even 4 200.5.e.e.99.8 32
40.13 odd 4 800.5.e.e.399.21 32
40.19 odd 2 40.5.g.a.11.14 yes 16
40.27 even 4 200.5.e.e.99.25 32
40.29 even 2 160.5.g.a.111.10 16
40.37 odd 4 800.5.e.e.399.12 32
60.59 even 2 1440.5.g.a.271.15 16
120.29 odd 2 1440.5.g.a.271.2 16
120.59 even 2 360.5.g.a.91.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.13 16 5.4 even 2
40.5.g.a.11.14 yes 16 40.19 odd 2
160.5.g.a.111.9 16 20.19 odd 2
160.5.g.a.111.10 16 40.29 even 2
200.5.e.e.99.7 32 5.2 odd 4
200.5.e.e.99.8 32 40.3 even 4
200.5.e.e.99.25 32 40.27 even 4
200.5.e.e.99.26 32 5.3 odd 4
200.5.g.h.51.3 16 8.3 odd 2 inner
200.5.g.h.51.4 16 1.1 even 1 trivial
360.5.g.a.91.3 16 120.59 even 2
360.5.g.a.91.4 16 15.14 odd 2
800.5.e.e.399.11 32 20.3 even 4
800.5.e.e.399.12 32 40.37 odd 4
800.5.e.e.399.21 32 40.13 odd 4
800.5.e.e.399.22 32 20.7 even 4
800.5.g.h.751.7 16 4.3 odd 2
800.5.g.h.751.8 16 8.5 even 2
1440.5.g.a.271.2 16 120.29 odd 2
1440.5.g.a.271.15 16 60.59 even 2