Properties

Label 200.5.e.e.99.26
Level $200$
Weight $5$
Character 200.99
Analytic conductor $20.674$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,5,Mod(99,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.99");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 200.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6739926168\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.26
Character \(\chi\) \(=\) 200.99
Dual form 200.5.e.e.99.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.97910 + 2.66926i) q^{2} +4.51805i q^{3} +(1.75006 + 15.9040i) q^{4} +(-12.0599 + 13.4597i) q^{6} +50.0881 q^{7} +(-37.2384 + 52.0510i) q^{8} +60.5872 q^{9} +158.856 q^{11} +(-71.8551 + 7.90685i) q^{12} +97.3070 q^{13} +(149.217 + 133.698i) q^{14} +(-249.875 + 55.6658i) q^{16} +285.416i q^{17} +(180.495 + 161.723i) q^{18} -414.217 q^{19} +226.301i q^{21} +(473.249 + 424.030i) q^{22} -546.228 q^{23} +(-235.169 - 168.245i) q^{24} +(289.887 + 259.738i) q^{26} +639.698i q^{27} +(87.6570 + 796.601i) q^{28} -1162.39i q^{29} +369.759i q^{31} +(-892.988 - 501.147i) q^{32} +717.721i q^{33} +(-761.850 + 850.282i) q^{34} +(106.031 + 963.579i) q^{36} +1423.26 q^{37} +(-1233.99 - 1105.65i) q^{38} +439.638i q^{39} -2901.21 q^{41} +(-604.056 + 674.172i) q^{42} -905.493i q^{43} +(278.008 + 2526.45i) q^{44} +(-1627.27 - 1458.03i) q^{46} +3025.75 q^{47} +(-251.501 - 1128.95i) q^{48} +107.819 q^{49} -1289.52 q^{51} +(170.293 + 1547.57i) q^{52} +1605.79 q^{53} +(-1707.52 + 1905.72i) q^{54} +(-1865.20 + 2607.13i) q^{56} -1871.45i q^{57} +(3102.73 - 3462.88i) q^{58} +1809.93 q^{59} +1119.29i q^{61} +(-986.984 + 1101.55i) q^{62} +3034.70 q^{63} +(-1322.60 - 3876.59i) q^{64} +(-1915.79 + 2138.16i) q^{66} +3916.26i q^{67} +(-4539.25 + 499.494i) q^{68} -2467.89i q^{69} +4224.11i q^{71} +(-2256.17 + 3153.62i) q^{72} -4667.66i q^{73} +(4240.03 + 3799.06i) q^{74} +(-724.902 - 6587.70i) q^{76} +7956.81 q^{77} +(-1173.51 + 1309.73i) q^{78} -6812.31i q^{79} +2017.38 q^{81} +(-8642.99 - 7744.10i) q^{82} +3166.94i q^{83} +(-3599.09 + 396.039i) q^{84} +(2417.00 - 2697.55i) q^{86} +5251.74 q^{87} +(-5915.55 + 8268.62i) q^{88} -10721.2 q^{89} +4873.93 q^{91} +(-955.931 - 8687.22i) q^{92} -1670.59 q^{93} +(9014.02 + 8076.54i) q^{94} +(2264.21 - 4034.56i) q^{96} +10051.4i q^{97} +(321.203 + 287.797i) q^{98} +9624.66 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{4} + 168 q^{6} - 864 q^{9} + 384 q^{11} - 1944 q^{14} - 1648 q^{16} + 1408 q^{19} + 2512 q^{24} + 216 q^{26} - 1848 q^{34} - 4800 q^{36} - 4416 q^{41} - 7632 q^{44} - 1304 q^{46} + 4960 q^{49}+ \cdots - 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.97910 + 2.66926i 0.744775 + 0.667316i
\(3\) 4.51805i 0.502006i 0.967986 + 0.251003i \(0.0807603\pi\)
−0.967986 + 0.251003i \(0.919240\pi\)
\(4\) 1.75006 + 15.9040i 0.109379 + 0.994000i
\(5\) 0 0
\(6\) −12.0599 + 13.4597i −0.334996 + 0.373881i
\(7\) 50.0881 1.02221 0.511103 0.859519i \(-0.329237\pi\)
0.511103 + 0.859519i \(0.329237\pi\)
\(8\) −37.2384 + 52.0510i −0.581850 + 0.813296i
\(9\) 60.5872 0.747990
\(10\) 0 0
\(11\) 158.856 1.31286 0.656431 0.754386i \(-0.272065\pi\)
0.656431 + 0.754386i \(0.272065\pi\)
\(12\) −71.8551 + 7.90685i −0.498994 + 0.0549087i
\(13\) 97.3070 0.575781 0.287891 0.957663i \(-0.407046\pi\)
0.287891 + 0.957663i \(0.407046\pi\)
\(14\) 149.217 + 133.698i 0.761313 + 0.682135i
\(15\) 0 0
\(16\) −249.875 + 55.6658i −0.976073 + 0.217445i
\(17\) 285.416i 0.987598i 0.869576 + 0.493799i \(0.164392\pi\)
−0.869576 + 0.493799i \(0.835608\pi\)
\(18\) 180.495 + 161.723i 0.557084 + 0.499146i
\(19\) −414.217 −1.14741 −0.573707 0.819061i \(-0.694495\pi\)
−0.573707 + 0.819061i \(0.694495\pi\)
\(20\) 0 0
\(21\) 226.301i 0.513153i
\(22\) 473.249 + 424.030i 0.977787 + 0.876094i
\(23\) −546.228 −1.03257 −0.516284 0.856418i \(-0.672685\pi\)
−0.516284 + 0.856418i \(0.672685\pi\)
\(24\) −235.169 168.245i −0.408279 0.292092i
\(25\) 0 0
\(26\) 289.887 + 259.738i 0.428827 + 0.384228i
\(27\) 639.698i 0.877501i
\(28\) 87.6570 + 796.601i 0.111807 + 1.01607i
\(29\) 1162.39i 1.38215i −0.722781 0.691077i \(-0.757137\pi\)
0.722781 0.691077i \(-0.242863\pi\)
\(30\) 0 0
\(31\) 369.759i 0.384765i 0.981320 + 0.192382i \(0.0616214\pi\)
−0.981320 + 0.192382i \(0.938379\pi\)
\(32\) −892.988 501.147i −0.872058 0.489402i
\(33\) 717.721i 0.659064i
\(34\) −761.850 + 850.282i −0.659040 + 0.735538i
\(35\) 0 0
\(36\) 106.031 + 963.579i 0.0818141 + 0.743502i
\(37\) 1423.26 1.03964 0.519818 0.854277i \(-0.326000\pi\)
0.519818 + 0.854277i \(0.326000\pi\)
\(38\) −1233.99 1105.65i −0.854565 0.765688i
\(39\) 439.638i 0.289045i
\(40\) 0 0
\(41\) −2901.21 −1.72588 −0.862942 0.505303i \(-0.831381\pi\)
−0.862942 + 0.505303i \(0.831381\pi\)
\(42\) −604.056 + 674.172i −0.342435 + 0.382184i
\(43\) 905.493i 0.489720i −0.969558 0.244860i \(-0.921258\pi\)
0.969558 0.244860i \(-0.0787421\pi\)
\(44\) 278.008 + 2526.45i 0.143599 + 1.30499i
\(45\) 0 0
\(46\) −1627.27 1458.03i −0.769030 0.689049i
\(47\) 3025.75 1.36974 0.684870 0.728665i \(-0.259859\pi\)
0.684870 + 0.728665i \(0.259859\pi\)
\(48\) −251.501 1128.95i −0.109158 0.489994i
\(49\) 107.819 0.0449058
\(50\) 0 0
\(51\) −1289.52 −0.495780
\(52\) 170.293 + 1547.57i 0.0629781 + 0.572327i
\(53\) 1605.79 0.571661 0.285830 0.958280i \(-0.407731\pi\)
0.285830 + 0.958280i \(0.407731\pi\)
\(54\) −1707.52 + 1905.72i −0.585571 + 0.653541i
\(55\) 0 0
\(56\) −1865.20 + 2607.13i −0.594771 + 0.831357i
\(57\) 1871.45i 0.576008i
\(58\) 3102.73 3462.88i 0.922333 1.02939i
\(59\) 1809.93 0.519946 0.259973 0.965616i \(-0.416286\pi\)
0.259973 + 0.965616i \(0.416286\pi\)
\(60\) 0 0
\(61\) 1119.29i 0.300804i 0.988625 + 0.150402i \(0.0480567\pi\)
−0.988625 + 0.150402i \(0.951943\pi\)
\(62\) −986.984 + 1101.55i −0.256760 + 0.286563i
\(63\) 3034.70 0.764600
\(64\) −1322.60 3876.59i −0.322901 0.946433i
\(65\) 0 0
\(66\) −1915.79 + 2138.16i −0.439804 + 0.490854i
\(67\) 3916.26i 0.872412i 0.899847 + 0.436206i \(0.143678\pi\)
−0.899847 + 0.436206i \(0.856322\pi\)
\(68\) −4539.25 + 499.494i −0.981672 + 0.108022i
\(69\) 2467.89i 0.518355i
\(70\) 0 0
\(71\) 4224.11i 0.837951i 0.907998 + 0.418975i \(0.137611\pi\)
−0.907998 + 0.418975i \(0.862389\pi\)
\(72\) −2256.17 + 3153.62i −0.435218 + 0.608338i
\(73\) 4667.66i 0.875897i −0.899000 0.437949i \(-0.855705\pi\)
0.899000 0.437949i \(-0.144295\pi\)
\(74\) 4240.03 + 3799.06i 0.774294 + 0.693765i
\(75\) 0 0
\(76\) −724.902 6587.70i −0.125503 1.14053i
\(77\) 7956.81 1.34202
\(78\) −1173.51 + 1309.73i −0.192885 + 0.215274i
\(79\) 6812.31i 1.09154i −0.837935 0.545771i \(-0.816237\pi\)
0.837935 0.545771i \(-0.183763\pi\)
\(80\) 0 0
\(81\) 2017.38 0.307480
\(82\) −8642.99 7744.10i −1.28539 1.15171i
\(83\) 3166.94i 0.459709i 0.973225 + 0.229855i \(0.0738251\pi\)
−0.973225 + 0.229855i \(0.926175\pi\)
\(84\) −3599.09 + 396.039i −0.510075 + 0.0561280i
\(85\) 0 0
\(86\) 2417.00 2697.55i 0.326798 0.364731i
\(87\) 5251.74 0.693849
\(88\) −5915.55 + 8268.62i −0.763889 + 1.06775i
\(89\) −10721.2 −1.35351 −0.676756 0.736207i \(-0.736615\pi\)
−0.676756 + 0.736207i \(0.736615\pi\)
\(90\) 0 0
\(91\) 4873.93 0.588567
\(92\) −955.931 8687.22i −0.112941 1.02637i
\(93\) −1670.59 −0.193154
\(94\) 9014.02 + 8076.54i 1.02015 + 0.914049i
\(95\) 0 0
\(96\) 2264.21 4034.56i 0.245682 0.437778i
\(97\) 10051.4i 1.06828i 0.845396 + 0.534140i \(0.179364\pi\)
−0.845396 + 0.534140i \(0.820636\pi\)
\(98\) 321.203 + 287.797i 0.0334447 + 0.0299663i
\(99\) 9624.66 0.982008
\(100\) 0 0
\(101\) 15016.7i 1.47208i −0.676935 0.736042i \(-0.736692\pi\)
0.676935 0.736042i \(-0.263308\pi\)
\(102\) −3841.62 3442.08i −0.369244 0.330842i
\(103\) 13177.3 1.24209 0.621045 0.783775i \(-0.286708\pi\)
0.621045 + 0.783775i \(0.286708\pi\)
\(104\) −3623.56 + 5064.92i −0.335018 + 0.468281i
\(105\) 0 0
\(106\) 4783.82 + 4286.29i 0.425758 + 0.381478i
\(107\) 13284.8i 1.16035i −0.814493 0.580173i \(-0.802985\pi\)
0.814493 0.580173i \(-0.197015\pi\)
\(108\) −10173.8 + 1119.51i −0.872236 + 0.0959798i
\(109\) 19211.6i 1.61700i −0.588493 0.808502i \(-0.700279\pi\)
0.588493 0.808502i \(-0.299721\pi\)
\(110\) 0 0
\(111\) 6430.36i 0.521903i
\(112\) −12515.7 + 2788.20i −0.997748 + 0.222273i
\(113\) 20975.3i 1.64268i 0.570442 + 0.821338i \(0.306772\pi\)
−0.570442 + 0.821338i \(0.693228\pi\)
\(114\) 4995.40 5575.24i 0.384380 0.428996i
\(115\) 0 0
\(116\) 18486.7 2034.25i 1.37386 0.151178i
\(117\) 5895.56 0.430679
\(118\) 5391.96 + 4831.18i 0.387242 + 0.346968i
\(119\) 14295.9i 1.00953i
\(120\) 0 0
\(121\) 10594.3 0.723607
\(122\) −2987.68 + 3334.47i −0.200731 + 0.224031i
\(123\) 13107.8i 0.866403i
\(124\) −5880.65 + 647.099i −0.382456 + 0.0420850i
\(125\) 0 0
\(126\) 9040.67 + 8100.41i 0.569455 + 0.510230i
\(127\) −10769.3 −0.667696 −0.333848 0.942627i \(-0.608347\pi\)
−0.333848 + 0.942627i \(0.608347\pi\)
\(128\) 6407.47 15079.1i 0.391081 0.920356i
\(129\) 4091.06 0.245842
\(130\) 0 0
\(131\) 15667.6 0.912975 0.456487 0.889730i \(-0.349107\pi\)
0.456487 + 0.889730i \(0.349107\pi\)
\(132\) −11414.6 + 1256.05i −0.655110 + 0.0720875i
\(133\) −20747.3 −1.17289
\(134\) −10453.5 + 11666.9i −0.582175 + 0.649751i
\(135\) 0 0
\(136\) −14856.2 10628.4i −0.803210 0.574634i
\(137\) 25231.8i 1.34433i −0.740399 0.672167i \(-0.765364\pi\)
0.740399 0.672167i \(-0.234636\pi\)
\(138\) 6587.44 7352.08i 0.345906 0.386058i
\(139\) 21388.1 1.10699 0.553494 0.832853i \(-0.313294\pi\)
0.553494 + 0.832853i \(0.313294\pi\)
\(140\) 0 0
\(141\) 13670.5i 0.687617i
\(142\) −11275.3 + 12584.0i −0.559178 + 0.624084i
\(143\) 15457.8 0.755922
\(144\) −15139.2 + 3372.64i −0.730093 + 0.162646i
\(145\) 0 0
\(146\) 12459.2 13905.4i 0.584500 0.652346i
\(147\) 487.131i 0.0225429i
\(148\) 2490.79 + 22635.5i 0.113714 + 1.03340i
\(149\) 40319.2i 1.81610i −0.418863 0.908049i \(-0.637571\pi\)
0.418863 0.908049i \(-0.362429\pi\)
\(150\) 0 0
\(151\) 28388.2i 1.24504i −0.782603 0.622521i \(-0.786109\pi\)
0.782603 0.622521i \(-0.213891\pi\)
\(152\) 15424.8 21560.4i 0.667623 0.933188i
\(153\) 17292.5i 0.738714i
\(154\) 23704.1 + 21238.8i 0.999500 + 0.895549i
\(155\) 0 0
\(156\) −6992.01 + 769.392i −0.287311 + 0.0316154i
\(157\) 4835.50 0.196174 0.0980872 0.995178i \(-0.468728\pi\)
0.0980872 + 0.995178i \(0.468728\pi\)
\(158\) 18183.9 20294.5i 0.728403 0.812952i
\(159\) 7255.06i 0.286977i
\(160\) 0 0
\(161\) −27359.5 −1.05550
\(162\) 6009.96 + 5384.91i 0.229003 + 0.205186i
\(163\) 26938.1i 1.01389i −0.861977 0.506947i \(-0.830774\pi\)
0.861977 0.506947i \(-0.169226\pi\)
\(164\) −5077.28 46140.9i −0.188775 1.71553i
\(165\) 0 0
\(166\) −8453.39 + 9434.62i −0.306771 + 0.342380i
\(167\) 24228.8 0.868760 0.434380 0.900730i \(-0.356968\pi\)
0.434380 + 0.900730i \(0.356968\pi\)
\(168\) −11779.2 8427.07i −0.417346 0.298578i
\(169\) −19092.3 −0.668476
\(170\) 0 0
\(171\) −25096.2 −0.858255
\(172\) 14401.0 1584.66i 0.486782 0.0535649i
\(173\) −15853.9 −0.529716 −0.264858 0.964287i \(-0.585325\pi\)
−0.264858 + 0.964287i \(0.585325\pi\)
\(174\) 15645.5 + 14018.3i 0.516761 + 0.463017i
\(175\) 0 0
\(176\) −39694.2 + 8842.87i −1.28145 + 0.285475i
\(177\) 8177.36i 0.261016i
\(178\) −31939.4 28617.6i −1.00806 0.903220i
\(179\) −5340.06 −0.166663 −0.0833316 0.996522i \(-0.526556\pi\)
−0.0833316 + 0.996522i \(0.526556\pi\)
\(180\) 0 0
\(181\) 16455.4i 0.502286i −0.967950 0.251143i \(-0.919193\pi\)
0.967950 0.251143i \(-0.0808065\pi\)
\(182\) 14519.9 + 13009.8i 0.438350 + 0.392760i
\(183\) −5057.01 −0.151005
\(184\) 20340.7 28431.7i 0.600799 0.839783i
\(185\) 0 0
\(186\) −4976.85 4459.25i −0.143856 0.128895i
\(187\) 45340.1i 1.29658i
\(188\) 5295.24 + 48121.6i 0.149820 + 1.36152i
\(189\) 32041.3i 0.896987i
\(190\) 0 0
\(191\) 36286.3i 0.994663i 0.867561 + 0.497331i \(0.165687\pi\)
−0.867561 + 0.497331i \(0.834313\pi\)
\(192\) 17514.6 5975.59i 0.475115 0.162098i
\(193\) 1934.56i 0.0519358i −0.999663 0.0259679i \(-0.991733\pi\)
0.999663 0.0259679i \(-0.00826676\pi\)
\(194\) −26830.0 + 29944.2i −0.712880 + 0.795628i
\(195\) 0 0
\(196\) 188.689 + 1714.75i 0.00491173 + 0.0446363i
\(197\) −72587.7 −1.87038 −0.935192 0.354142i \(-0.884773\pi\)
−0.935192 + 0.354142i \(0.884773\pi\)
\(198\) 28672.8 + 25690.8i 0.731375 + 0.655310i
\(199\) 77717.2i 1.96251i 0.192723 + 0.981253i \(0.438268\pi\)
−0.192723 + 0.981253i \(0.561732\pi\)
\(200\) 0 0
\(201\) −17693.9 −0.437956
\(202\) 40083.6 44736.3i 0.982346 1.09637i
\(203\) 58222.0i 1.41285i
\(204\) −2256.74 20508.6i −0.0542277 0.492805i
\(205\) 0 0
\(206\) 39256.6 + 35173.8i 0.925078 + 0.828867i
\(207\) −33094.5 −0.772351
\(208\) −24314.6 + 5416.68i −0.562004 + 0.125201i
\(209\) −65800.9 −1.50640
\(210\) 0 0
\(211\) 35806.9 0.804271 0.402135 0.915580i \(-0.368268\pi\)
0.402135 + 0.915580i \(0.368268\pi\)
\(212\) 2810.23 + 25538.6i 0.0625274 + 0.568231i
\(213\) −19084.7 −0.420656
\(214\) 35460.6 39576.7i 0.774317 0.864196i
\(215\) 0 0
\(216\) −33296.9 23821.3i −0.713668 0.510574i
\(217\) 18520.5i 0.393309i
\(218\) 51280.9 57233.3i 1.07905 1.20430i
\(219\) 21088.7 0.439705
\(220\) 0 0
\(221\) 27773.0i 0.568640i
\(222\) −17164.3 + 19156.7i −0.348274 + 0.388700i
\(223\) 66087.5 1.32895 0.664477 0.747309i \(-0.268655\pi\)
0.664477 + 0.747309i \(0.268655\pi\)
\(224\) −44728.1 25101.5i −0.891424 0.500270i
\(225\) 0 0
\(226\) −55988.7 + 62487.6i −1.09618 + 1.22342i
\(227\) 6504.85i 0.126237i −0.998006 0.0631184i \(-0.979895\pi\)
0.998006 0.0631184i \(-0.0201046\pi\)
\(228\) 29763.6 3275.15i 0.572552 0.0630030i
\(229\) 5180.89i 0.0987946i −0.998779 0.0493973i \(-0.984270\pi\)
0.998779 0.0493973i \(-0.0157301\pi\)
\(230\) 0 0
\(231\) 35949.3i 0.673700i
\(232\) 60503.6 + 43285.6i 1.12410 + 0.804206i
\(233\) 45055.0i 0.829910i 0.909842 + 0.414955i \(0.136203\pi\)
−0.909842 + 0.414955i \(0.863797\pi\)
\(234\) 17563.5 + 15736.8i 0.320759 + 0.287399i
\(235\) 0 0
\(236\) 3167.48 + 28785.1i 0.0568709 + 0.516826i
\(237\) 30778.4 0.547960
\(238\) −38159.6 + 42589.0i −0.673675 + 0.751871i
\(239\) 71745.9i 1.25603i 0.778200 + 0.628017i \(0.216133\pi\)
−0.778200 + 0.628017i \(0.783867\pi\)
\(240\) 0 0
\(241\) −13213.7 −0.227504 −0.113752 0.993509i \(-0.536287\pi\)
−0.113752 + 0.993509i \(0.536287\pi\)
\(242\) 31561.6 + 28279.1i 0.538924 + 0.482875i
\(243\) 60930.2i 1.03186i
\(244\) −17801.2 + 1958.82i −0.298999 + 0.0329015i
\(245\) 0 0
\(246\) 34988.2 39049.5i 0.578165 0.645275i
\(247\) −40306.2 −0.660660
\(248\) −19246.3 13769.2i −0.312928 0.223875i
\(249\) −14308.4 −0.230777
\(250\) 0 0
\(251\) −9203.91 −0.146091 −0.0730457 0.997329i \(-0.523272\pi\)
−0.0730457 + 0.997329i \(0.523272\pi\)
\(252\) 5310.90 + 48263.9i 0.0836309 + 0.760013i
\(253\) −86771.8 −1.35562
\(254\) −32082.7 28746.0i −0.497283 0.445564i
\(255\) 0 0
\(256\) 59338.6 27818.9i 0.905436 0.424483i
\(257\) 32215.5i 0.487751i −0.969807 0.243876i \(-0.921581\pi\)
0.969807 0.243876i \(-0.0784189\pi\)
\(258\) 12187.7 + 10920.1i 0.183097 + 0.164055i
\(259\) 71288.4 1.06272
\(260\) 0 0
\(261\) 70426.0i 1.03384i
\(262\) 46675.2 + 41820.9i 0.679960 + 0.609243i
\(263\) −90235.1 −1.30456 −0.652280 0.757978i \(-0.726187\pi\)
−0.652280 + 0.757978i \(0.726187\pi\)
\(264\) −37358.1 26726.8i −0.536014 0.383476i
\(265\) 0 0
\(266\) −61808.3 55380.1i −0.873542 0.782691i
\(267\) 48438.8i 0.679471i
\(268\) −62284.2 + 6853.68i −0.867178 + 0.0954232i
\(269\) 10715.9i 0.148090i 0.997255 + 0.0740448i \(0.0235908\pi\)
−0.997255 + 0.0740448i \(0.976409\pi\)
\(270\) 0 0
\(271\) 40139.7i 0.546557i 0.961935 + 0.273278i \(0.0881080\pi\)
−0.961935 + 0.273278i \(0.911892\pi\)
\(272\) −15887.9 71318.1i −0.214748 0.963967i
\(273\) 22020.6i 0.295464i
\(274\) 67350.4 75168.1i 0.897096 1.00123i
\(275\) 0 0
\(276\) 39249.3 4318.94i 0.515245 0.0566969i
\(277\) 9941.96 0.129572 0.0647862 0.997899i \(-0.479363\pi\)
0.0647862 + 0.997899i \(0.479363\pi\)
\(278\) 63717.3 + 57090.5i 0.824456 + 0.738711i
\(279\) 22402.7i 0.287800i
\(280\) 0 0
\(281\) 3041.90 0.0385241 0.0192621 0.999814i \(-0.493868\pi\)
0.0192621 + 0.999814i \(0.493868\pi\)
\(282\) −36490.2 + 40725.8i −0.458858 + 0.512120i
\(283\) 63175.8i 0.788821i 0.918934 + 0.394410i \(0.129051\pi\)
−0.918934 + 0.394410i \(0.870949\pi\)
\(284\) −67180.2 + 7392.43i −0.832923 + 0.0916538i
\(285\) 0 0
\(286\) 46050.4 + 41261.1i 0.562991 + 0.504439i
\(287\) −145316. −1.76421
\(288\) −54103.6 30363.1i −0.652291 0.366068i
\(289\) 2058.84 0.0246506
\(290\) 0 0
\(291\) −45412.9 −0.536282
\(292\) 74234.4 8168.67i 0.870642 0.0958044i
\(293\) 50125.3 0.583877 0.291939 0.956437i \(-0.405700\pi\)
0.291939 + 0.956437i \(0.405700\pi\)
\(294\) −1300.28 + 1451.21i −0.0150433 + 0.0167894i
\(295\) 0 0
\(296\) −52999.9 + 74082.1i −0.604912 + 0.845531i
\(297\) 101620.i 1.15204i
\(298\) 107623. 120115.i 1.21191 1.35258i
\(299\) −53151.9 −0.594533
\(300\) 0 0
\(301\) 45354.4i 0.500595i
\(302\) 75775.6 84571.3i 0.830837 0.927276i
\(303\) 67846.4 0.738995
\(304\) 103502. 23057.7i 1.11996 0.249499i
\(305\) 0 0
\(306\) −46158.4 + 51516.2i −0.492955 + 0.550175i
\(307\) 49587.2i 0.526129i −0.964778 0.263065i \(-0.915267\pi\)
0.964778 0.263065i \(-0.0847332\pi\)
\(308\) 13924.9 + 126545.i 0.146788 + 1.33396i
\(309\) 59535.9i 0.623537i
\(310\) 0 0
\(311\) 122692.i 1.26852i −0.773120 0.634260i \(-0.781305\pi\)
0.773120 0.634260i \(-0.218695\pi\)
\(312\) −22883.6 16371.4i −0.235080 0.168181i
\(313\) 178246.i 1.81942i −0.415248 0.909708i \(-0.636305\pi\)
0.415248 0.909708i \(-0.363695\pi\)
\(314\) 14405.4 + 12907.2i 0.146106 + 0.130910i
\(315\) 0 0
\(316\) 108343. 11921.9i 1.08499 0.119391i
\(317\) −9020.39 −0.0897650 −0.0448825 0.998992i \(-0.514291\pi\)
−0.0448825 + 0.998992i \(0.514291\pi\)
\(318\) −19365.7 + 21613.5i −0.191504 + 0.213733i
\(319\) 184653.i 1.81458i
\(320\) 0 0
\(321\) 60021.4 0.582500
\(322\) −81506.8 73029.8i −0.786108 0.704350i
\(323\) 118224.i 1.13318i
\(324\) 3530.52 + 32084.3i 0.0336317 + 0.305635i
\(325\) 0 0
\(326\) 71905.0 80251.4i 0.676587 0.755122i
\(327\) 86799.1 0.811745
\(328\) 108036. 151011.i 1.00421 1.40365i
\(329\) 151554. 1.40016
\(330\) 0 0
\(331\) 70357.4 0.642175 0.321088 0.947049i \(-0.395952\pi\)
0.321088 + 0.947049i \(0.395952\pi\)
\(332\) −50367.0 + 5542.32i −0.456951 + 0.0502823i
\(333\) 86231.4 0.777637
\(334\) 72180.1 + 64673.2i 0.647030 + 0.579737i
\(335\) 0 0
\(336\) −12597.2 56546.8i −0.111582 0.500875i
\(337\) 148629.i 1.30871i −0.756186 0.654356i \(-0.772940\pi\)
0.756186 0.654356i \(-0.227060\pi\)
\(338\) −56878.0 50962.5i −0.497864 0.446085i
\(339\) −94767.6 −0.824633
\(340\) 0 0
\(341\) 58738.5i 0.505143i
\(342\) −74764.1 66988.5i −0.639206 0.572727i
\(343\) −114861. −0.976303
\(344\) 47131.8 + 33719.1i 0.398288 + 0.284944i
\(345\) 0 0
\(346\) −47230.2 42318.2i −0.394519 0.353488i
\(347\) 94414.8i 0.784117i 0.919940 + 0.392059i \(0.128237\pi\)
−0.919940 + 0.392059i \(0.871763\pi\)
\(348\) 9190.85 + 83523.7i 0.0758922 + 0.689686i
\(349\) 72082.1i 0.591802i −0.955219 0.295901i \(-0.904380\pi\)
0.955219 0.295901i \(-0.0956198\pi\)
\(350\) 0 0
\(351\) 62247.1i 0.505249i
\(352\) −141857. 79610.4i −1.14489 0.642517i
\(353\) 31879.4i 0.255836i 0.991785 + 0.127918i \(0.0408294\pi\)
−0.991785 + 0.127918i \(0.959171\pi\)
\(354\) −21827.5 + 24361.2i −0.174180 + 0.194398i
\(355\) 0 0
\(356\) −18762.7 170509.i −0.148045 1.34539i
\(357\) −64589.8 −0.506789
\(358\) −15908.6 14254.0i −0.124127 0.111217i
\(359\) 34649.8i 0.268851i 0.990924 + 0.134426i \(0.0429189\pi\)
−0.990924 + 0.134426i \(0.957081\pi\)
\(360\) 0 0
\(361\) 41254.3 0.316559
\(362\) 43923.8 49022.3i 0.335184 0.374090i
\(363\) 47865.7i 0.363255i
\(364\) 8529.65 + 77514.9i 0.0643766 + 0.585036i
\(365\) 0 0
\(366\) −15065.3 13498.5i −0.112465 0.100768i
\(367\) 90234.4 0.669946 0.334973 0.942228i \(-0.391273\pi\)
0.334973 + 0.942228i \(0.391273\pi\)
\(368\) 136489. 30406.2i 1.00786 0.224526i
\(369\) −175776. −1.29094
\(370\) 0 0
\(371\) 80431.2 0.584355
\(372\) −2923.63 26569.1i −0.0211269 0.191995i
\(373\) 18934.5 0.136093 0.0680466 0.997682i \(-0.478323\pi\)
0.0680466 + 0.997682i \(0.478323\pi\)
\(374\) −121025. + 135073.i −0.865229 + 0.965660i
\(375\) 0 0
\(376\) −112674. + 157493.i −0.796983 + 1.11400i
\(377\) 113109.i 0.795818i
\(378\) −85526.6 + 95454.1i −0.598574 + 0.668053i
\(379\) 146129. 1.01732 0.508661 0.860967i \(-0.330141\pi\)
0.508661 + 0.860967i \(0.330141\pi\)
\(380\) 0 0
\(381\) 48656.1i 0.335187i
\(382\) −96857.7 + 108100.i −0.663755 + 0.740800i
\(383\) −63738.0 −0.434511 −0.217255 0.976115i \(-0.569710\pi\)
−0.217255 + 0.976115i \(0.569710\pi\)
\(384\) 68128.2 + 28949.3i 0.462024 + 0.196325i
\(385\) 0 0
\(386\) 5163.84 5763.23i 0.0346576 0.0386804i
\(387\) 54861.3i 0.366306i
\(388\) −159858. + 17590.6i −1.06187 + 0.116847i
\(389\) 73071.2i 0.482889i −0.970415 0.241444i \(-0.922379\pi\)
0.970415 0.241444i \(-0.0776212\pi\)
\(390\) 0 0
\(391\) 155902.i 1.01976i
\(392\) −4015.00 + 5612.07i −0.0261284 + 0.0365217i
\(393\) 70786.8i 0.458318i
\(394\) −216246. 193756.i −1.39301 1.24814i
\(395\) 0 0
\(396\) 16843.7 + 153071.i 0.107411 + 0.976116i
\(397\) −17918.3 −0.113689 −0.0568443 0.998383i \(-0.518104\pi\)
−0.0568443 + 0.998383i \(0.518104\pi\)
\(398\) −207448. + 231527.i −1.30961 + 1.46162i
\(399\) 93737.5i 0.588799i
\(400\) 0 0
\(401\) −66769.8 −0.415232 −0.207616 0.978210i \(-0.566570\pi\)
−0.207616 + 0.978210i \(0.566570\pi\)
\(402\) −52711.7 47229.6i −0.326178 0.292255i
\(403\) 35980.1i 0.221540i
\(404\) 238826. 26280.1i 1.46325 0.161015i
\(405\) 0 0
\(406\) 155410. 173449.i 0.942815 1.05225i
\(407\) 226094. 1.36490
\(408\) 48019.8 67120.9i 0.288469 0.403216i
\(409\) 291009. 1.73964 0.869822 0.493366i \(-0.164234\pi\)
0.869822 + 0.493366i \(0.164234\pi\)
\(410\) 0 0
\(411\) 113999. 0.674863
\(412\) 23061.1 + 209572.i 0.135858 + 1.23464i
\(413\) 90656.0 0.531492
\(414\) −98591.6 88337.8i −0.575227 0.515402i
\(415\) 0 0
\(416\) −86894.0 48765.2i −0.502115 0.281788i
\(417\) 96632.6i 0.555714i
\(418\) −196027. 175640.i −1.12193 1.00524i
\(419\) −199703. −1.13751 −0.568757 0.822506i \(-0.692576\pi\)
−0.568757 + 0.822506i \(0.692576\pi\)
\(420\) 0 0
\(421\) 116540.i 0.657525i 0.944413 + 0.328763i \(0.106632\pi\)
−0.944413 + 0.328763i \(0.893368\pi\)
\(422\) 106672. + 95578.2i 0.599001 + 0.536703i
\(423\) 183322. 1.02455
\(424\) −59797.2 + 83583.1i −0.332621 + 0.464929i
\(425\) 0 0
\(426\) −56855.3 50942.2i −0.313294 0.280710i
\(427\) 56063.1i 0.307483i
\(428\) 211281. 23249.1i 1.15338 0.126917i
\(429\) 69839.3i 0.379477i
\(430\) 0 0
\(431\) 57475.2i 0.309404i 0.987961 + 0.154702i \(0.0494417\pi\)
−0.987961 + 0.154702i \(0.950558\pi\)
\(432\) −35609.3 159844.i −0.190808 0.856505i
\(433\) 78282.3i 0.417530i 0.977966 + 0.208765i \(0.0669444\pi\)
−0.977966 + 0.208765i \(0.933056\pi\)
\(434\) −49436.2 + 55174.5i −0.262461 + 0.292927i
\(435\) 0 0
\(436\) 305542. 33621.4i 1.60730 0.176866i
\(437\) 226257. 1.18478
\(438\) 62825.4 + 56291.3i 0.327481 + 0.293423i
\(439\) 248919.i 1.29160i −0.763506 0.645801i \(-0.776524\pi\)
0.763506 0.645801i \(-0.223476\pi\)
\(440\) 0 0
\(441\) 6532.44 0.0335891
\(442\) −74133.4 + 82738.4i −0.379463 + 0.423509i
\(443\) 305178.i 1.55505i 0.628849 + 0.777527i \(0.283526\pi\)
−0.628849 + 0.777527i \(0.716474\pi\)
\(444\) −102269. + 11253.5i −0.518771 + 0.0570850i
\(445\) 0 0
\(446\) 196881. + 176405.i 0.989771 + 0.886832i
\(447\) 182164. 0.911692
\(448\) −66246.7 194171.i −0.330072 0.967449i
\(449\) 106754. 0.529529 0.264765 0.964313i \(-0.414706\pi\)
0.264765 + 0.964313i \(0.414706\pi\)
\(450\) 0 0
\(451\) −460876. −2.26585
\(452\) −333592. + 36708.0i −1.63282 + 0.179673i
\(453\) 128259. 0.625018
\(454\) 17363.2 19378.6i 0.0842398 0.0940179i
\(455\) 0 0
\(456\) 97410.8 + 69689.8i 0.468465 + 0.335150i
\(457\) 212418.i 1.01709i 0.861036 + 0.508543i \(0.169816\pi\)
−0.861036 + 0.508543i \(0.830184\pi\)
\(458\) 13829.2 15434.4i 0.0659272 0.0735797i
\(459\) −182580. −0.866618
\(460\) 0 0
\(461\) 377548.i 1.77652i 0.459340 + 0.888261i \(0.348086\pi\)
−0.459340 + 0.888261i \(0.651914\pi\)
\(462\) −95958.2 + 107096.i −0.449571 + 0.501754i
\(463\) −64579.0 −0.301252 −0.150626 0.988591i \(-0.548129\pi\)
−0.150626 + 0.988591i \(0.548129\pi\)
\(464\) 64705.5 + 290452.i 0.300542 + 1.34908i
\(465\) 0 0
\(466\) −120264. + 134223.i −0.553812 + 0.618096i
\(467\) 100635.i 0.461439i 0.973020 + 0.230720i \(0.0741080\pi\)
−0.973020 + 0.230720i \(0.925892\pi\)
\(468\) 10317.6 + 93763.1i 0.0471070 + 0.428095i
\(469\) 196158.i 0.891785i
\(470\) 0 0
\(471\) 21847.0i 0.0984806i
\(472\) −67398.9 + 94208.6i −0.302530 + 0.422870i
\(473\) 143843.i 0.642936i
\(474\) 91691.8 + 82155.6i 0.408107 + 0.365662i
\(475\) 0 0
\(476\) −227363. + 25018.7i −1.00347 + 0.110421i
\(477\) 97290.6 0.427597
\(478\) −191509. + 213738.i −0.838171 + 0.935462i
\(479\) 188868.i 0.823168i −0.911372 0.411584i \(-0.864976\pi\)
0.911372 0.411584i \(-0.135024\pi\)
\(480\) 0 0
\(481\) 138493. 0.598603
\(482\) −39364.8 35270.7i −0.169439 0.151817i
\(483\) 123612.i 0.529866i
\(484\) 18540.7 + 168492.i 0.0791471 + 0.719266i
\(485\) 0 0
\(486\) −162639. + 181517.i −0.688575 + 0.768501i
\(487\) −105446. −0.444604 −0.222302 0.974978i \(-0.571357\pi\)
−0.222302 + 0.974978i \(0.571357\pi\)
\(488\) −58260.1 41680.6i −0.244642 0.175022i
\(489\) 121708. 0.508980
\(490\) 0 0
\(491\) −248385. −1.03030 −0.515149 0.857101i \(-0.672263\pi\)
−0.515149 + 0.857101i \(0.672263\pi\)
\(492\) 208467. 22939.4i 0.861205 0.0947659i
\(493\) 331765. 1.36501
\(494\) −120076. 107588.i −0.492043 0.440869i
\(495\) 0 0
\(496\) −20582.9 92393.4i −0.0836650 0.375558i
\(497\) 211578.i 0.856558i
\(498\) −42626.1 38192.8i −0.171877 0.154001i
\(499\) −194138. −0.779668 −0.389834 0.920885i \(-0.627468\pi\)
−0.389834 + 0.920885i \(0.627468\pi\)
\(500\) 0 0
\(501\) 109467.i 0.436122i
\(502\) −27419.4 24567.7i −0.108805 0.0974892i
\(503\) −323180. −1.27735 −0.638673 0.769478i \(-0.720516\pi\)
−0.638673 + 0.769478i \(0.720516\pi\)
\(504\) −113007. + 157959.i −0.444883 + 0.621847i
\(505\) 0 0
\(506\) −258502. 231617.i −1.00963 0.904626i
\(507\) 86260.2i 0.335579i
\(508\) −18846.8 171275.i −0.0730317 0.663690i
\(509\) 148319.i 0.572481i 0.958158 + 0.286240i \(0.0924056\pi\)
−0.958158 + 0.286240i \(0.907594\pi\)
\(510\) 0 0
\(511\) 233794.i 0.895348i
\(512\) 251032. + 75515.1i 0.957610 + 0.288067i
\(513\) 264974.i 1.00686i
\(514\) 85991.7 95973.1i 0.325484 0.363265i
\(515\) 0 0
\(516\) 7159.59 + 65064.3i 0.0268899 + 0.244367i
\(517\) 480660. 1.79828
\(518\) 212375. + 190288.i 0.791488 + 0.709171i
\(519\) 71628.6i 0.265920i
\(520\) 0 0
\(521\) 88345.8 0.325470 0.162735 0.986670i \(-0.447969\pi\)
0.162735 + 0.986670i \(0.447969\pi\)
\(522\) 187986. 209806.i 0.689896 0.769976i
\(523\) 116531.i 0.426028i −0.977049 0.213014i \(-0.931672\pi\)
0.977049 0.213014i \(-0.0683279\pi\)
\(524\) 27419.1 + 249177.i 0.0998598 + 0.907497i
\(525\) 0 0
\(526\) −268819. 240861.i −0.971603 0.870554i
\(527\) −105535. −0.379993
\(528\) −39952.5 179340.i −0.143310 0.643295i
\(529\) 18524.3 0.0661959
\(530\) 0 0
\(531\) 109659. 0.388914
\(532\) −36309.0 329965.i −0.128289 1.16586i
\(533\) −282308. −0.993732
\(534\) 129296. 144304.i 0.453422 0.506053i
\(535\) 0 0
\(536\) −203845. 145835.i −0.709530 0.507613i
\(537\) 24126.7i 0.0836659i
\(538\) −28603.6 + 31923.8i −0.0988226 + 0.110293i
\(539\) 17127.7 0.0589551
\(540\) 0 0
\(541\) 468624.i 1.60114i −0.599237 0.800572i \(-0.704529\pi\)
0.599237 0.800572i \(-0.295471\pi\)
\(542\) −107143. + 119580.i −0.364726 + 0.407062i
\(543\) 74346.4 0.252151
\(544\) 143035. 254873.i 0.483332 0.861243i
\(545\) 0 0
\(546\) −58778.9 + 65601.7i −0.197168 + 0.220054i
\(547\) 362111.i 1.21023i −0.796139 0.605114i \(-0.793128\pi\)
0.796139 0.605114i \(-0.206872\pi\)
\(548\) 401287. 44157.1i 1.33627 0.147041i
\(549\) 67814.7i 0.224998i
\(550\) 0 0
\(551\) 481482.i 1.58590i
\(552\) 128456. + 91900.2i 0.421576 + 0.301605i
\(553\) 341216.i 1.11578i
\(554\) 29618.1 + 26537.7i 0.0965022 + 0.0864657i
\(555\) 0 0
\(556\) 37430.4 + 340157.i 0.121081 + 1.10035i
\(557\) −498265. −1.60602 −0.803008 0.595968i \(-0.796769\pi\)
−0.803008 + 0.595968i \(0.796769\pi\)
\(558\) −59798.6 + 66739.7i −0.192054 + 0.214346i
\(559\) 88110.9i 0.281972i
\(560\) 0 0
\(561\) −204849. −0.650890
\(562\) 9062.13 + 8119.65i 0.0286918 + 0.0257078i
\(563\) 245981.i 0.776041i 0.921651 + 0.388021i \(0.126841\pi\)
−0.921651 + 0.388021i \(0.873159\pi\)
\(564\) −217416. + 23924.2i −0.683491 + 0.0752106i
\(565\) 0 0
\(566\) −168633. + 188207.i −0.526393 + 0.587494i
\(567\) 101047. 0.314308
\(568\) −219869. 157299.i −0.681502 0.487561i
\(569\) −385802. −1.19163 −0.595813 0.803123i \(-0.703170\pi\)
−0.595813 + 0.803123i \(0.703170\pi\)
\(570\) 0 0
\(571\) −14171.0 −0.0434640 −0.0217320 0.999764i \(-0.506918\pi\)
−0.0217320 + 0.999764i \(0.506918\pi\)
\(572\) 27052.1 + 245842.i 0.0826816 + 0.751386i
\(573\) −163943. −0.499326
\(574\) −432911. 387887.i −1.31394 1.17729i
\(575\) 0 0
\(576\) −80132.9 234872.i −0.241527 0.707922i
\(577\) 109691.i 0.329474i −0.986338 0.164737i \(-0.947323\pi\)
0.986338 0.164737i \(-0.0526775\pi\)
\(578\) 6133.50 + 5495.60i 0.0183591 + 0.0164497i
\(579\) 8740.42 0.0260720
\(580\) 0 0
\(581\) 158626.i 0.469918i
\(582\) −135290. 121219.i −0.399410 0.357870i
\(583\) 255091. 0.750512
\(584\) 242956. + 173816.i 0.712364 + 0.509641i
\(585\) 0 0
\(586\) 149328. + 133798.i 0.434857 + 0.389631i
\(587\) 377043.i 1.09425i 0.837052 + 0.547123i \(0.184277\pi\)
−0.837052 + 0.547123i \(0.815723\pi\)
\(588\) −7747.32 + 852.506i −0.0224077 + 0.00246571i
\(589\) 153160.i 0.441485i
\(590\) 0 0
\(591\) 327955.i 0.938943i
\(592\) −355637. + 79227.0i −1.01476 + 0.226063i
\(593\) 27615.5i 0.0785314i 0.999229 + 0.0392657i \(0.0125019\pi\)
−0.999229 + 0.0392657i \(0.987498\pi\)
\(594\) −271251. + 302736.i −0.768773 + 0.858009i
\(595\) 0 0
\(596\) 641237. 70560.9i 1.80520 0.198642i
\(597\) −351130. −0.985189
\(598\) −158345. 141876.i −0.442793 0.396742i
\(599\) 170000.i 0.473802i −0.971534 0.236901i \(-0.923868\pi\)
0.971534 0.236901i \(-0.0761316\pi\)
\(600\) 0 0
\(601\) 297213. 0.822846 0.411423 0.911445i \(-0.365032\pi\)
0.411423 + 0.911445i \(0.365032\pi\)
\(602\) 121063. 135115.i 0.334055 0.372831i
\(603\) 237275.i 0.652556i
\(604\) 451486. 49681.0i 1.23757 0.136181i
\(605\) 0 0
\(606\) 202121. + 181100.i 0.550385 + 0.493143i
\(607\) −23984.9 −0.0650969 −0.0325485 0.999470i \(-0.510362\pi\)
−0.0325485 + 0.999470i \(0.510362\pi\)
\(608\) 369890. + 207584.i 1.00061 + 0.561547i
\(609\) 263050. 0.709257
\(610\) 0 0
\(611\) 294427. 0.788671
\(612\) −275021. + 30262.9i −0.734281 + 0.0807994i
\(613\) 291516. 0.775785 0.387893 0.921705i \(-0.373203\pi\)
0.387893 + 0.921705i \(0.373203\pi\)
\(614\) 132361. 147725.i 0.351094 0.391848i
\(615\) 0 0
\(616\) −296299. + 414160.i −0.780852 + 1.09146i
\(617\) 111058.i 0.291729i −0.989305 0.145864i \(-0.953404\pi\)
0.989305 0.145864i \(-0.0465963\pi\)
\(618\) −158917. + 177363.i −0.416096 + 0.464394i
\(619\) 300205. 0.783496 0.391748 0.920073i \(-0.371871\pi\)
0.391748 + 0.920073i \(0.371871\pi\)
\(620\) 0 0
\(621\) 349421.i 0.906079i
\(622\) 327499. 365513.i 0.846503 0.944761i
\(623\) −537003. −1.38357
\(624\) −24472.8 109854.i −0.0628514 0.282129i
\(625\) 0 0
\(626\) 475787. 531014.i 1.21413 1.35506i
\(627\) 297292.i 0.756220i
\(628\) 8462.40 + 76903.8i 0.0214573 + 0.194997i
\(629\) 406221.i 1.02674i
\(630\) 0 0
\(631\) 150496.i 0.377979i −0.981979 0.188989i \(-0.939479\pi\)
0.981979 0.188989i \(-0.0605212\pi\)
\(632\) 354587. + 253679.i 0.887746 + 0.635113i
\(633\) 161778.i 0.403749i
\(634\) −26872.6 24077.8i −0.0668547 0.0599016i
\(635\) 0 0
\(636\) −115385. + 12696.8i −0.285255 + 0.0313891i
\(637\) 10491.5 0.0258559
\(638\) 492888. 550100.i 1.21090 1.35145i
\(639\) 255927.i 0.626779i
\(640\) 0 0
\(641\) −341612. −0.831414 −0.415707 0.909499i \(-0.636466\pi\)
−0.415707 + 0.909499i \(0.636466\pi\)
\(642\) 178810. + 160213.i 0.433831 + 0.388712i
\(643\) 89782.7i 0.217156i −0.994088 0.108578i \(-0.965370\pi\)
0.994088 0.108578i \(-0.0346297\pi\)
\(644\) −47880.8 435126.i −0.115449 1.04916i
\(645\) 0 0
\(646\) 315571. 352201.i 0.756192 0.843967i
\(647\) −569707. −1.36095 −0.680477 0.732770i \(-0.738227\pi\)
−0.680477 + 0.732770i \(0.738227\pi\)
\(648\) −75123.8 + 105006.i −0.178907 + 0.250072i
\(649\) 287519. 0.682617
\(650\) 0 0
\(651\) −83676.7 −0.197443
\(652\) 428424. 47143.3i 1.00781 0.110898i
\(653\) −258929. −0.607233 −0.303616 0.952794i \(-0.598194\pi\)
−0.303616 + 0.952794i \(0.598194\pi\)
\(654\) 258583. + 231690.i 0.604567 + 0.541691i
\(655\) 0 0
\(656\) 724939. 161498.i 1.68459 0.375284i
\(657\) 282800.i 0.655163i
\(658\) 451495. + 404539.i 1.04280 + 0.934347i
\(659\) 43971.3 0.101251 0.0506255 0.998718i \(-0.483879\pi\)
0.0506255 + 0.998718i \(0.483879\pi\)
\(660\) 0 0
\(661\) 216610.i 0.495765i 0.968790 + 0.247882i \(0.0797347\pi\)
−0.968790 + 0.247882i \(0.920265\pi\)
\(662\) 209602. + 187802.i 0.478276 + 0.428534i
\(663\) −125480. −0.285461
\(664\) −164842. 117932.i −0.373880 0.267482i
\(665\) 0 0
\(666\) 256892. + 230174.i 0.579164 + 0.518930i
\(667\) 634931.i 1.42717i
\(668\) 42401.8 + 385336.i 0.0950237 + 0.863547i
\(669\) 298587.i 0.667142i
\(670\) 0 0
\(671\) 177806.i 0.394914i
\(672\) 113410. 202084.i 0.251138 0.447500i
\(673\) 614134.i 1.35592i 0.735101 + 0.677958i \(0.237135\pi\)
−0.735101 + 0.677958i \(0.762865\pi\)
\(674\) 396730. 442781.i 0.873325 0.974696i
\(675\) 0 0
\(676\) −33412.7 303645.i −0.0731169 0.664465i
\(677\) −710586. −1.55038 −0.775192 0.631725i \(-0.782347\pi\)
−0.775192 + 0.631725i \(0.782347\pi\)
\(678\) −282322. 252960.i −0.614165 0.550291i
\(679\) 503458.i 1.09200i
\(680\) 0 0
\(681\) 29389.3 0.0633716
\(682\) −156789. + 174988.i −0.337090 + 0.376218i
\(683\) 187636.i 0.402231i 0.979568 + 0.201116i \(0.0644567\pi\)
−0.979568 + 0.201116i \(0.935543\pi\)
\(684\) −43919.8 399130.i −0.0938747 0.853105i
\(685\) 0 0
\(686\) −342183. 306595.i −0.727126 0.651503i
\(687\) 23407.5 0.0495955
\(688\) 50405.0 + 226260.i 0.106487 + 0.478003i
\(689\) 156255. 0.329151
\(690\) 0 0
\(691\) 628570. 1.31643 0.658215 0.752830i \(-0.271312\pi\)
0.658215 + 0.752830i \(0.271312\pi\)
\(692\) −27745.2 252140.i −0.0579396 0.526538i
\(693\) 482081. 1.00382
\(694\) −252018. + 281271.i −0.523254 + 0.583991i
\(695\) 0 0
\(696\) −195566. + 273358.i −0.403716 + 0.564305i
\(697\) 828051.i 1.70448i
\(698\) 192406. 214740.i 0.394919 0.440759i
\(699\) −203561. −0.416619
\(700\) 0 0
\(701\) 149078.i 0.303374i −0.988429 0.151687i \(-0.951529\pi\)
0.988429 0.151687i \(-0.0484705\pi\)
\(702\) −166154. + 185440.i −0.337161 + 0.376296i
\(703\) −589538. −1.19289
\(704\) −210104. 615821.i −0.423925 1.24254i
\(705\) 0 0
\(706\) −85094.7 + 94972.0i −0.170723 + 0.190540i
\(707\) 752160.i 1.50477i
\(708\) −130053. + 14310.8i −0.259450 + 0.0285495i
\(709\) 47510.9i 0.0945151i −0.998883 0.0472575i \(-0.984952\pi\)
0.998883 0.0472575i \(-0.0150481\pi\)
\(710\) 0 0
\(711\) 412739.i 0.816462i
\(712\) 399239. 558047.i 0.787541 1.10081i
\(713\) 201973.i 0.397296i
\(714\) −192419. 172407.i −0.377444 0.338189i
\(715\) 0 0
\(716\) −9345.40 84928.3i −0.0182294 0.165663i
\(717\) −324152. −0.630536
\(718\) −92489.5 + 103225.i −0.179409 + 0.200234i
\(719\) 843806.i 1.63224i 0.577880 + 0.816122i \(0.303880\pi\)
−0.577880 + 0.816122i \(0.696120\pi\)
\(720\) 0 0
\(721\) 660028. 1.26967
\(722\) 122901. + 110119.i 0.235765 + 0.211245i
\(723\) 59700.0i 0.114208i
\(724\) 261707. 28797.9i 0.499273 0.0549394i
\(725\) 0 0
\(726\) −127766. + 142597.i −0.242406 + 0.270543i
\(727\) −792065. −1.49862 −0.749311 0.662218i \(-0.769615\pi\)
−0.749311 + 0.662218i \(0.769615\pi\)
\(728\) −181497. + 253693.i −0.342458 + 0.478680i
\(729\) −111878. −0.210519
\(730\) 0 0
\(731\) 258442. 0.483647
\(732\) −8850.05 80426.7i −0.0165167 0.150099i
\(733\) 4047.83 0.00753380 0.00376690 0.999993i \(-0.498801\pi\)
0.00376690 + 0.999993i \(0.498801\pi\)
\(734\) 268817. + 240859.i 0.498959 + 0.447066i
\(735\) 0 0
\(736\) 487775. + 273741.i 0.900459 + 0.505340i
\(737\) 622123.i 1.14536i
\(738\) −523655. 469193.i −0.961463 0.861468i
\(739\) −895023. −1.63887 −0.819437 0.573170i \(-0.805714\pi\)
−0.819437 + 0.573170i \(0.805714\pi\)
\(740\) 0 0
\(741\) 182105.i 0.331655i
\(742\) 239613. + 214692.i 0.435213 + 0.389950i
\(743\) 616018. 1.11588 0.557938 0.829883i \(-0.311593\pi\)
0.557938 + 0.829883i \(0.311593\pi\)
\(744\) 62210.1 86955.8i 0.112387 0.157091i
\(745\) 0 0
\(746\) 56407.8 + 50541.2i 0.101359 + 0.0908172i
\(747\) 191876.i 0.343858i
\(748\) −721089. + 79347.8i −1.28880 + 0.141818i
\(749\) 665410.i 1.18611i
\(750\) 0 0
\(751\) 232448.i 0.412141i −0.978537 0.206071i \(-0.933932\pi\)
0.978537 0.206071i \(-0.0660677\pi\)
\(752\) −756059. + 168431.i −1.33697 + 0.297842i
\(753\) 41583.7i 0.0733387i
\(754\) 301917. 336962.i 0.531062 0.592705i
\(755\) 0 0
\(756\) −509585. + 56074.1i −0.891605 + 0.0981111i
\(757\) 431771. 0.753462 0.376731 0.926323i \(-0.377048\pi\)
0.376731 + 0.926323i \(0.377048\pi\)
\(758\) 435333. + 390057.i 0.757675 + 0.678875i
\(759\) 392040.i 0.680528i
\(760\) 0 0
\(761\) −368807. −0.636840 −0.318420 0.947950i \(-0.603152\pi\)
−0.318420 + 0.947950i \(0.603152\pi\)
\(762\) 129876. 144951.i 0.223676 0.249639i
\(763\) 962274.i 1.65291i
\(764\) −577097. + 63503.1i −0.988695 + 0.108795i
\(765\) 0 0
\(766\) −189882. 170133.i −0.323613 0.289956i
\(767\) 176119. 0.299375
\(768\) 125687. + 268095.i 0.213093 + 0.454534i
\(769\) −850748. −1.43863 −0.719313 0.694686i \(-0.755544\pi\)
−0.719313 + 0.694686i \(0.755544\pi\)
\(770\) 0 0
\(771\) 145551. 0.244854
\(772\) 30767.2 3385.58i 0.0516242 0.00568066i
\(773\) −967445. −1.61908 −0.809538 0.587067i \(-0.800282\pi\)
−0.809538 + 0.587067i \(0.800282\pi\)
\(774\) 146439. 163437.i 0.244442 0.272816i
\(775\) 0 0
\(776\) −523187. 374300.i −0.868828 0.621578i
\(777\) 322085.i 0.533492i
\(778\) 195046. 217686.i 0.322240 0.359643i
\(779\) 1.20173e6 1.98030
\(780\) 0 0
\(781\) 671026.i 1.10011i
\(782\) 416144. 464448.i 0.680503 0.759493i
\(783\) 743580. 1.21284
\(784\) −26941.2 + 6001.82i −0.0438313 + 0.00976451i
\(785\) 0 0
\(786\) −188949. + 210881.i −0.305843 + 0.341344i
\(787\) 434908.i 0.702178i 0.936342 + 0.351089i \(0.114189\pi\)
−0.936342 + 0.351089i \(0.885811\pi\)
\(788\) −127033. 1.15443e6i −0.204580 1.85916i
\(789\) 407687.i 0.654896i
\(790\) 0 0
\(791\) 1.05061e6i 1.67915i
\(792\) −358407. + 500973.i −0.571381 + 0.798664i
\(793\) 108915.i 0.173197i
\(794\) −53380.5 47828.8i −0.0846723 0.0758662i
\(795\) 0 0
\(796\) −1.23601e6 + 136010.i −1.95073 + 0.214656i
\(797\) 648541. 1.02099 0.510494 0.859881i \(-0.329463\pi\)
0.510494 + 0.859881i \(0.329463\pi\)
\(798\) 250210. 279253.i 0.392915 0.438523i
\(799\) 863598.i 1.35275i
\(800\) 0 0
\(801\) −649566. −1.01241
\(802\) −198914. 178226.i −0.309255 0.277091i
\(803\) 741487.i 1.14993i
\(804\) −30965.3 281403.i −0.0479030 0.435328i
\(805\) 0 0
\(806\) −96040.5 + 107188.i −0.147837 + 0.164998i
\(807\) −48415.0 −0.0743418
\(808\) 781636. + 559199.i 1.19724 + 0.856532i
\(809\) −338083. −0.516567 −0.258284 0.966069i \(-0.583157\pi\)
−0.258284 + 0.966069i \(0.583157\pi\)
\(810\) 0 0
\(811\) −941405. −1.43131 −0.715657 0.698452i \(-0.753872\pi\)
−0.715657 + 0.698452i \(0.753872\pi\)
\(812\) 925962. 101892.i 1.40437 0.154535i
\(813\) −181353. −0.274375
\(814\) 673556. + 603505.i 1.01654 + 0.910818i
\(815\) 0 0
\(816\) 322219. 71782.3i 0.483917 0.107805i
\(817\) 375070.i 0.561912i
\(818\) 866945. + 776781.i 1.29564 + 1.16089i
\(819\) 295298. 0.440243
\(820\) 0 0
\(821\) 702066.i 1.04158i −0.853686 0.520789i \(-0.825638\pi\)
0.853686 0.520789i \(-0.174362\pi\)
\(822\) 339613. + 304292.i 0.502621 + 0.450347i
\(823\) 736652. 1.08758 0.543792 0.839220i \(-0.316988\pi\)
0.543792 + 0.839220i \(0.316988\pi\)
\(824\) −490703. + 685893.i −0.722710 + 1.01019i
\(825\) 0 0
\(826\) 270073. + 241985.i 0.395842 + 0.354673i
\(827\) 698186.i 1.02085i −0.859923 0.510423i \(-0.829489\pi\)
0.859923 0.510423i \(-0.170511\pi\)
\(828\) −57917.2 526334.i −0.0844786 0.767717i
\(829\) 609784.i 0.887293i 0.896202 + 0.443647i \(0.146315\pi\)
−0.896202 + 0.443647i \(0.853685\pi\)
\(830\) 0 0
\(831\) 44918.3i 0.0650461i
\(832\) −128699. 377219.i −0.185921 0.544938i
\(833\) 30773.2i 0.0443488i
\(834\) −257938. + 287878.i −0.370837 + 0.413882i
\(835\) 0 0
\(836\) −115155. 1.04650e6i −0.164767 1.49736i
\(837\) −236534. −0.337631
\(838\) −594935. 533060.i −0.847192 0.759081i
\(839\) 245795.i 0.349179i 0.984641 + 0.174590i \(0.0558599\pi\)
−0.984641 + 0.174590i \(0.944140\pi\)
\(840\) 0 0
\(841\) −643872. −0.910348
\(842\) −311077. + 347185.i −0.438777 + 0.489708i
\(843\) 13743.5i 0.0193393i
\(844\) 62664.2 + 569474.i 0.0879700 + 0.799445i
\(845\) 0 0
\(846\) 546135. + 489335.i 0.763060 + 0.683700i
\(847\) 530650. 0.739676
\(848\) −401247. + 89387.9i −0.557982 + 0.124304i
\(849\) −285432. −0.395992
\(850\) 0 0
\(851\) −777425. −1.07349
\(852\) −33399.4 303524.i −0.0460107 0.418132i
\(853\) −482861. −0.663627 −0.331813 0.943345i \(-0.607660\pi\)
−0.331813 + 0.943345i \(0.607660\pi\)
\(854\) −149647. + 167018.i −0.205189 + 0.229006i
\(855\) 0 0
\(856\) 691486. + 494704.i 0.943705 + 0.675147i
\(857\) 275704.i 0.375389i 0.982227 + 0.187695i \(0.0601015\pi\)
−0.982227 + 0.187695i \(0.939898\pi\)
\(858\) −186420. + 208058.i −0.253231 + 0.282625i
\(859\) 874456. 1.18509 0.592546 0.805537i \(-0.298123\pi\)
0.592546 + 0.805537i \(0.298123\pi\)
\(860\) 0 0
\(861\) 656546.i 0.885643i
\(862\) −153416. + 171224.i −0.206470 + 0.230436i
\(863\) −207383. −0.278453 −0.139227 0.990261i \(-0.544462\pi\)
−0.139227 + 0.990261i \(0.544462\pi\)
\(864\) 320583. 571243.i 0.429451 0.765232i
\(865\) 0 0
\(866\) −208956. + 233211.i −0.278624 + 0.310966i
\(867\) 9301.96i 0.0123747i
\(868\) −294550. + 32412.0i −0.390949 + 0.0430196i
\(869\) 1.08218e6i 1.43304i
\(870\) 0 0
\(871\) 381080.i 0.502319i
\(872\) 999984. + 715410.i 1.31510 + 0.940854i
\(873\) 608989.i 0.799063i
\(874\) 674041. + 603939.i 0.882396 + 0.790625i
\(875\) 0 0
\(876\) 36906.4 + 335395.i 0.0480943 + 0.437067i
\(877\) 287580. 0.373903 0.186952 0.982369i \(-0.440139\pi\)
0.186952 + 0.982369i \(0.440139\pi\)
\(878\) 664430. 741553.i 0.861906 0.961952i
\(879\) 226468.i 0.293110i
\(880\) 0 0
\(881\) 72878.9 0.0938966 0.0469483 0.998897i \(-0.485050\pi\)
0.0469483 + 0.998897i \(0.485050\pi\)
\(882\) 19460.8 + 17436.8i 0.0250163 + 0.0224145i
\(883\) 587119.i 0.753017i 0.926413 + 0.376509i \(0.122875\pi\)
−0.926413 + 0.376509i \(0.877125\pi\)
\(884\) −441701. + 48604.3i −0.565229 + 0.0621971i
\(885\) 0 0
\(886\) −814601. + 909155.i −1.03771 + 1.15817i
\(887\) 525528. 0.667958 0.333979 0.942581i \(-0.391609\pi\)
0.333979 + 0.942581i \(0.391609\pi\)
\(888\) −334707. 239456.i −0.424462 0.303669i
\(889\) −539413. −0.682523
\(890\) 0 0
\(891\) 320473. 0.403679
\(892\) 115657. + 1.05106e6i 0.145359 + 1.32098i
\(893\) −1.25332e6 −1.57166
\(894\) 542685. + 486244.i 0.679005 + 0.608387i
\(895\) 0 0
\(896\) 320938. 755284.i 0.399765 0.940794i
\(897\) 240143.i 0.298459i
\(898\) 318030. + 284954.i 0.394380 + 0.353363i
\(899\) 429804. 0.531804
\(900\) 0 0
\(901\) 458319.i 0.564571i
\(902\) −1.37299e6 1.23020e6i −1.68755 1.51204i
\(903\) 204914. 0.251302
\(904\) −1.09179e6 781088.i −1.33598 0.955791i
\(905\) 0 0
\(906\) 382097. + 342358.i 0.465498 + 0.417085i
\(907\) 1.45695e6i 1.77105i 0.464596 + 0.885523i \(0.346199\pi\)
−0.464596 + 0.885523i \(0.653801\pi\)
\(908\) 103453. 11383.9i 0.125479 0.0138076i
\(909\) 909822.i 1.10111i
\(910\) 0 0
\(911\) 546104.i 0.658020i 0.944326 + 0.329010i \(0.106715\pi\)
−0.944326 + 0.329010i \(0.893285\pi\)
\(912\) 104176. + 467628.i 0.125250 + 0.562226i
\(913\) 503088.i 0.603535i
\(914\) −566999. + 632813.i −0.678718 + 0.757500i
\(915\) 0 0
\(916\) 82396.9 9066.85i 0.0982019 0.0108060i
\(917\) 784758. 0.933248
\(918\) −543924. 487354.i −0.645435 0.578308i
\(919\) 1.30937e6i 1.55036i −0.631740 0.775180i \(-0.717659\pi\)
0.631740 0.775180i \(-0.282341\pi\)
\(920\) 0 0
\(921\) 224037. 0.264120
\(922\) −1.00778e6 + 1.12475e6i −1.18550 + 1.32311i
\(923\) 411036.i 0.482476i
\(924\) −571738. + 62913.3i −0.669658 + 0.0736883i
\(925\) 0 0
\(926\) −192387. 172378.i −0.224364 0.201030i
\(927\) 798378. 0.929072
\(928\) −582529. + 1.03800e6i −0.676428 + 1.20532i
\(929\) −731556. −0.847649 −0.423824 0.905744i \(-0.639313\pi\)
−0.423824 + 0.905744i \(0.639313\pi\)
\(930\) 0 0
\(931\) −44660.3 −0.0515255
\(932\) −716554. + 78848.8i −0.824930 + 0.0907743i
\(933\) 554331. 0.636804
\(934\) −268621. + 299801.i −0.307926 + 0.343668i
\(935\) 0 0
\(936\) −219541. + 306870.i −0.250590 + 0.350269i
\(937\) 368844.i 0.420111i 0.977690 + 0.210055i \(0.0673644\pi\)
−0.977690 + 0.210055i \(0.932636\pi\)
\(938\) −523598. + 584374.i −0.595103 + 0.664179i
\(939\) 805327. 0.913358
\(940\) 0 0
\(941\) 1.05710e6i 1.19381i 0.802310 + 0.596907i \(0.203604\pi\)
−0.802310 + 0.596907i \(0.796396\pi\)
\(942\) −58315.5 + 65084.5i −0.0657177 + 0.0733459i
\(943\) 1.58472e6 1.78209
\(944\) −452256. + 100751.i −0.507505 + 0.113059i
\(945\) 0 0
\(946\) 383956. 428523.i 0.429041 0.478842i
\(947\) 1.05246e6i 1.17356i −0.809748 0.586778i \(-0.800396\pi\)
0.809748 0.586778i \(-0.199604\pi\)
\(948\) 53863.9 + 489499.i 0.0599351 + 0.544672i
\(949\) 454196.i 0.504325i
\(950\) 0 0
\(951\) 40754.6i 0.0450625i
\(952\) −744117. 532358.i −0.821046 0.587394i
\(953\) 65088.8i 0.0716672i −0.999358 0.0358336i \(-0.988591\pi\)
0.999358 0.0358336i \(-0.0114086\pi\)
\(954\) 289838. + 259694.i 0.318463 + 0.285342i
\(955\) 0 0
\(956\) −1.14105e6 + 125559.i −1.24850 + 0.137383i
\(957\) 834273. 0.910928
\(958\) 504140. 562658.i 0.549313 0.613074i
\(959\) 1.26381e6i 1.37419i
\(960\) 0 0
\(961\) 786799. 0.851956
\(962\) 412585. + 369675.i 0.445824 + 0.399457i
\(963\) 804889.i 0.867927i
\(964\) −23124.6 210150.i −0.0248840 0.226139i
\(965\) 0 0
\(966\) 329953. 368252.i 0.353588 0.394630i
\(967\) 481804. 0.515250 0.257625 0.966245i \(-0.417060\pi\)
0.257625 + 0.966245i \(0.417060\pi\)
\(968\) −394516. + 551445.i −0.421031 + 0.588507i
\(969\) 534142. 0.568865
\(970\) 0 0
\(971\) 439500. 0.466144 0.233072 0.972459i \(-0.425122\pi\)
0.233072 + 0.972459i \(0.425122\pi\)
\(972\) −969033. + 106631.i −1.02567 + 0.112863i
\(973\) 1.07129e6 1.13157
\(974\) −314135. 281464.i −0.331130 0.296691i
\(975\) 0 0
\(976\) −62306.2 279682.i −0.0654081 0.293606i
\(977\) 1.37613e6i 1.44169i −0.693098 0.720844i \(-0.743755\pi\)
0.693098 0.720844i \(-0.256245\pi\)
\(978\) 362580. + 324870.i 0.379076 + 0.339651i
\(979\) −1.70313e6 −1.77697
\(980\) 0 0
\(981\) 1.16398e6i 1.20950i
\(982\) −739964. 663005.i −0.767339 0.687534i
\(983\) −767551. −0.794328 −0.397164 0.917748i \(-0.630006\pi\)
−0.397164 + 0.917748i \(0.630006\pi\)
\(984\) 682274. + 488114.i 0.704643 + 0.504117i
\(985\) 0 0
\(986\) 988360. + 885568.i 1.01663 + 0.910894i
\(987\) 684730.i 0.702887i
\(988\) −70538.1 641030.i −0.0722620 0.656696i
\(989\) 494606.i 0.505670i
\(990\) 0 0
\(991\) 1.85016e6i 1.88392i −0.335722 0.941961i \(-0.608980\pi\)
0.335722 0.941961i \(-0.391020\pi\)
\(992\) 185304. 330190.i 0.188305 0.335537i
\(993\) 317878.i 0.322376i
\(994\) −564757. + 630311.i −0.571595 + 0.637943i
\(995\) 0 0
\(996\) −25040.5 227561.i −0.0252420 0.229392i
\(997\) −337598. −0.339633 −0.169816 0.985476i \(-0.554317\pi\)
−0.169816 + 0.985476i \(0.554317\pi\)
\(998\) −578356. 518206.i −0.580677 0.520285i
\(999\) 910457.i 0.912281i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.5.e.e.99.26 32
4.3 odd 2 800.5.e.e.399.11 32
5.2 odd 4 200.5.g.h.51.4 16
5.3 odd 4 40.5.g.a.11.13 16
5.4 even 2 inner 200.5.e.e.99.7 32
8.3 odd 2 inner 200.5.e.e.99.8 32
8.5 even 2 800.5.e.e.399.21 32
15.8 even 4 360.5.g.a.91.4 16
20.3 even 4 160.5.g.a.111.9 16
20.7 even 4 800.5.g.h.751.7 16
20.19 odd 2 800.5.e.e.399.22 32
40.3 even 4 40.5.g.a.11.14 yes 16
40.13 odd 4 160.5.g.a.111.10 16
40.19 odd 2 inner 200.5.e.e.99.25 32
40.27 even 4 200.5.g.h.51.3 16
40.29 even 2 800.5.e.e.399.12 32
40.37 odd 4 800.5.g.h.751.8 16
60.23 odd 4 1440.5.g.a.271.15 16
120.53 even 4 1440.5.g.a.271.2 16
120.83 odd 4 360.5.g.a.91.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.13 16 5.3 odd 4
40.5.g.a.11.14 yes 16 40.3 even 4
160.5.g.a.111.9 16 20.3 even 4
160.5.g.a.111.10 16 40.13 odd 4
200.5.e.e.99.7 32 5.4 even 2 inner
200.5.e.e.99.8 32 8.3 odd 2 inner
200.5.e.e.99.25 32 40.19 odd 2 inner
200.5.e.e.99.26 32 1.1 even 1 trivial
200.5.g.h.51.3 16 40.27 even 4
200.5.g.h.51.4 16 5.2 odd 4
360.5.g.a.91.3 16 120.83 odd 4
360.5.g.a.91.4 16 15.8 even 4
800.5.e.e.399.11 32 4.3 odd 2
800.5.e.e.399.12 32 40.29 even 2
800.5.e.e.399.21 32 8.5 even 2
800.5.e.e.399.22 32 20.19 odd 2
800.5.g.h.751.7 16 20.7 even 4
800.5.g.h.751.8 16 40.37 odd 4
1440.5.g.a.271.2 16 120.53 even 4
1440.5.g.a.271.15 16 60.23 odd 4