Properties

Label 800.5.e.e
Level $800$
Weight $5$
Character orbit 800.e
Analytic conductor $82.696$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(399,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.399");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 864 q^{9} - 384 q^{11} - 1408 q^{19} - 4416 q^{41} + 4960 q^{49} + 35584 q^{51} + 28032 q^{59} + 20768 q^{81} - 13632 q^{89} - 49152 q^{91} + 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
399.1 0 5.51460i 0 0 0 78.3513 0 50.5892 0
399.2 0 5.51460i 0 0 0 78.3513 0 50.5892 0
399.3 0 13.1346i 0 0 0 −61.6422 0 −91.5179 0
399.4 0 13.1346i 0 0 0 −61.6422 0 −91.5179 0
399.5 0 15.9375i 0 0 0 −56.7751 0 −173.005 0
399.6 0 15.9375i 0 0 0 −56.7751 0 −173.005 0
399.7 0 15.2196i 0 0 0 47.5956 0 −150.635 0
399.8 0 15.2196i 0 0 0 47.5956 0 −150.635 0
399.9 0 10.2034i 0 0 0 43.3025 0 −23.1094 0
399.10 0 10.2034i 0 0 0 43.3025 0 −23.1094 0
399.11 0 4.51805i 0 0 0 −50.0881 0 60.5872 0
399.12 0 4.51805i 0 0 0 −50.0881 0 60.5872 0
399.13 0 0.715641i 0 0 0 25.0983 0 80.4879 0
399.14 0 0.715641i 0 0 0 25.0983 0 80.4879 0
399.15 0 7.09911i 0 0 0 2.59084 0 30.6027 0
399.16 0 7.09911i 0 0 0 2.59084 0 30.6027 0
399.17 0 7.09911i 0 0 0 −2.59084 0 30.6027 0
399.18 0 7.09911i 0 0 0 −2.59084 0 30.6027 0
399.19 0 0.715641i 0 0 0 −25.0983 0 80.4879 0
399.20 0 0.715641i 0 0 0 −25.0983 0 80.4879 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 399.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.d odd 2 1 inner
40.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.5.e.e 32
4.b odd 2 1 200.5.e.e 32
5.b even 2 1 inner 800.5.e.e 32
5.c odd 4 1 160.5.g.a 16
5.c odd 4 1 800.5.g.h 16
8.b even 2 1 200.5.e.e 32
8.d odd 2 1 inner 800.5.e.e 32
15.e even 4 1 1440.5.g.a 16
20.d odd 2 1 200.5.e.e 32
20.e even 4 1 40.5.g.a 16
20.e even 4 1 200.5.g.h 16
40.e odd 2 1 inner 800.5.e.e 32
40.f even 2 1 200.5.e.e 32
40.i odd 4 1 40.5.g.a 16
40.i odd 4 1 200.5.g.h 16
40.k even 4 1 160.5.g.a 16
40.k even 4 1 800.5.g.h 16
60.l odd 4 1 360.5.g.a 16
120.q odd 4 1 1440.5.g.a 16
120.w even 4 1 360.5.g.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.5.g.a 16 20.e even 4 1
40.5.g.a 16 40.i odd 4 1
160.5.g.a 16 5.c odd 4 1
160.5.g.a 16 40.k even 4 1
200.5.e.e 32 4.b odd 2 1
200.5.e.e 32 8.b even 2 1
200.5.e.e 32 20.d odd 2 1
200.5.e.e 32 40.f even 2 1
200.5.g.h 16 20.e even 4 1
200.5.g.h 16 40.i odd 4 1
360.5.g.a 16 60.l odd 4 1
360.5.g.a 16 120.w even 4 1
800.5.e.e 32 1.a even 1 1 trivial
800.5.e.e 32 5.b even 2 1 inner
800.5.e.e 32 8.d odd 2 1 inner
800.5.e.e 32 40.e odd 2 1 inner
800.5.g.h 16 5.c odd 4 1
800.5.g.h 16 40.k even 4 1
1440.5.g.a 16 15.e even 4 1
1440.5.g.a 16 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} + 864 T_{3}^{14} + 291920 T_{3}^{12} + 48976000 T_{3}^{10} + 4307809120 T_{3}^{8} + \cdots + 16931579040000 \) acting on \(S_{5}^{\mathrm{new}}(800, [\chi])\). Copy content Toggle raw display