Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [800,5,Mod(399,800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("800.399");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 800 = 2^{5} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 800.e (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(82.6959704671\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | no (minimal twist has level 40) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
399.1 | 0 | − | 5.51460i | 0 | 0 | 0 | 78.3513 | 0 | 50.5892 | 0 | |||||||||||||||||
399.2 | 0 | 5.51460i | 0 | 0 | 0 | 78.3513 | 0 | 50.5892 | 0 | ||||||||||||||||||
399.3 | 0 | − | 13.1346i | 0 | 0 | 0 | −61.6422 | 0 | −91.5179 | 0 | |||||||||||||||||
399.4 | 0 | 13.1346i | 0 | 0 | 0 | −61.6422 | 0 | −91.5179 | 0 | ||||||||||||||||||
399.5 | 0 | − | 15.9375i | 0 | 0 | 0 | −56.7751 | 0 | −173.005 | 0 | |||||||||||||||||
399.6 | 0 | 15.9375i | 0 | 0 | 0 | −56.7751 | 0 | −173.005 | 0 | ||||||||||||||||||
399.7 | 0 | − | 15.2196i | 0 | 0 | 0 | 47.5956 | 0 | −150.635 | 0 | |||||||||||||||||
399.8 | 0 | 15.2196i | 0 | 0 | 0 | 47.5956 | 0 | −150.635 | 0 | ||||||||||||||||||
399.9 | 0 | − | 10.2034i | 0 | 0 | 0 | 43.3025 | 0 | −23.1094 | 0 | |||||||||||||||||
399.10 | 0 | 10.2034i | 0 | 0 | 0 | 43.3025 | 0 | −23.1094 | 0 | ||||||||||||||||||
399.11 | 0 | − | 4.51805i | 0 | 0 | 0 | −50.0881 | 0 | 60.5872 | 0 | |||||||||||||||||
399.12 | 0 | 4.51805i | 0 | 0 | 0 | −50.0881 | 0 | 60.5872 | 0 | ||||||||||||||||||
399.13 | 0 | − | 0.715641i | 0 | 0 | 0 | 25.0983 | 0 | 80.4879 | 0 | |||||||||||||||||
399.14 | 0 | 0.715641i | 0 | 0 | 0 | 25.0983 | 0 | 80.4879 | 0 | ||||||||||||||||||
399.15 | 0 | − | 7.09911i | 0 | 0 | 0 | 2.59084 | 0 | 30.6027 | 0 | |||||||||||||||||
399.16 | 0 | 7.09911i | 0 | 0 | 0 | 2.59084 | 0 | 30.6027 | 0 | ||||||||||||||||||
399.17 | 0 | − | 7.09911i | 0 | 0 | 0 | −2.59084 | 0 | 30.6027 | 0 | |||||||||||||||||
399.18 | 0 | 7.09911i | 0 | 0 | 0 | −2.59084 | 0 | 30.6027 | 0 | ||||||||||||||||||
399.19 | 0 | − | 0.715641i | 0 | 0 | 0 | −25.0983 | 0 | 80.4879 | 0 | |||||||||||||||||
399.20 | 0 | 0.715641i | 0 | 0 | 0 | −25.0983 | 0 | 80.4879 | 0 | ||||||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
40.e | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 800.5.e.e | 32 | |
4.b | odd | 2 | 1 | 200.5.e.e | 32 | ||
5.b | even | 2 | 1 | inner | 800.5.e.e | 32 | |
5.c | odd | 4 | 1 | 160.5.g.a | 16 | ||
5.c | odd | 4 | 1 | 800.5.g.h | 16 | ||
8.b | even | 2 | 1 | 200.5.e.e | 32 | ||
8.d | odd | 2 | 1 | inner | 800.5.e.e | 32 | |
15.e | even | 4 | 1 | 1440.5.g.a | 16 | ||
20.d | odd | 2 | 1 | 200.5.e.e | 32 | ||
20.e | even | 4 | 1 | 40.5.g.a | ✓ | 16 | |
20.e | even | 4 | 1 | 200.5.g.h | 16 | ||
40.e | odd | 2 | 1 | inner | 800.5.e.e | 32 | |
40.f | even | 2 | 1 | 200.5.e.e | 32 | ||
40.i | odd | 4 | 1 | 40.5.g.a | ✓ | 16 | |
40.i | odd | 4 | 1 | 200.5.g.h | 16 | ||
40.k | even | 4 | 1 | 160.5.g.a | 16 | ||
40.k | even | 4 | 1 | 800.5.g.h | 16 | ||
60.l | odd | 4 | 1 | 360.5.g.a | 16 | ||
120.q | odd | 4 | 1 | 1440.5.g.a | 16 | ||
120.w | even | 4 | 1 | 360.5.g.a | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.5.g.a | ✓ | 16 | 20.e | even | 4 | 1 | |
40.5.g.a | ✓ | 16 | 40.i | odd | 4 | 1 | |
160.5.g.a | 16 | 5.c | odd | 4 | 1 | ||
160.5.g.a | 16 | 40.k | even | 4 | 1 | ||
200.5.e.e | 32 | 4.b | odd | 2 | 1 | ||
200.5.e.e | 32 | 8.b | even | 2 | 1 | ||
200.5.e.e | 32 | 20.d | odd | 2 | 1 | ||
200.5.e.e | 32 | 40.f | even | 2 | 1 | ||
200.5.g.h | 16 | 20.e | even | 4 | 1 | ||
200.5.g.h | 16 | 40.i | odd | 4 | 1 | ||
360.5.g.a | 16 | 60.l | odd | 4 | 1 | ||
360.5.g.a | 16 | 120.w | even | 4 | 1 | ||
800.5.e.e | 32 | 1.a | even | 1 | 1 | trivial | |
800.5.e.e | 32 | 5.b | even | 2 | 1 | inner | |
800.5.e.e | 32 | 8.d | odd | 2 | 1 | inner | |
800.5.e.e | 32 | 40.e | odd | 2 | 1 | inner | |
800.5.g.h | 16 | 5.c | odd | 4 | 1 | ||
800.5.g.h | 16 | 40.k | even | 4 | 1 | ||
1440.5.g.a | 16 | 15.e | even | 4 | 1 | ||
1440.5.g.a | 16 | 120.q | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} + 864 T_{3}^{14} + 291920 T_{3}^{12} + 48976000 T_{3}^{10} + 4307809120 T_{3}^{8} + \cdots + 16931579040000 \) acting on \(S_{5}^{\mathrm{new}}(800, [\chi])\).