L(s) = 1 | − 13.1i·3-s − 61.6·7-s − 91.5·9-s − 182.·11-s + 141.·13-s − 40.3i·17-s − 321.·19-s + 809. i·21-s − 816.·23-s + 138. i·27-s − 1.19e3i·29-s + 361. i·31-s + 2.39e3i·33-s − 0.0209·37-s − 1.86e3i·39-s + ⋯ |
L(s) = 1 | − 1.45i·3-s − 1.25·7-s − 1.12·9-s − 1.50·11-s + 0.838·13-s − 0.139i·17-s − 0.890·19-s + 1.83i·21-s − 1.54·23-s + 0.189i·27-s − 1.42i·29-s + 0.376i·31-s + 2.19i·33-s − 1.52e − 5·37-s − 1.22i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.999+0.0116i)Λ(5−s)
Λ(s)=(=(800s/2ΓC(s+2)L(s)(0.999+0.0116i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.999+0.0116i
|
Analytic conductor: |
82.6959 |
Root analytic conductor: |
9.09373 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :2), 0.999+0.0116i)
|
Particular Values
L(25) |
≈ |
0.5968261215 |
L(21) |
≈ |
0.5968261215 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+13.1iT−81T2 |
| 7 | 1+61.6T+2.40e3T2 |
| 11 | 1+182.T+1.46e4T2 |
| 13 | 1−141.T+2.85e4T2 |
| 17 | 1+40.3iT−8.35e4T2 |
| 19 | 1+321.T+1.30e5T2 |
| 23 | 1+816.T+2.79e5T2 |
| 29 | 1+1.19e3iT−7.07e5T2 |
| 31 | 1−361.iT−9.23e5T2 |
| 37 | 1+0.0209T+1.87e6T2 |
| 41 | 1+872.T+2.82e6T2 |
| 43 | 1−3.12e3iT−3.41e6T2 |
| 47 | 1−2.65e3T+4.87e6T2 |
| 53 | 1−2.95e3T+7.89e6T2 |
| 59 | 1−5.41e3T+1.21e7T2 |
| 61 | 1−2.25e3iT−1.38e7T2 |
| 67 | 1+2.35e3iT−2.01e7T2 |
| 71 | 1+660.iT−2.54e7T2 |
| 73 | 1−5.94e3iT−2.83e7T2 |
| 79 | 1+7.62e3iT−3.89e7T2 |
| 83 | 1−3.52e3iT−4.74e7T2 |
| 89 | 1+5.94e3T+6.27e7T2 |
| 97 | 1+679.iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.799589447081457836973796677823, −8.501917300122027481791811640678, −7.957126268849100945609803418268, −7.06652645074044052589272144522, −6.23092200932113509965026582400, −5.73259152544991928297435781411, −4.11467491492820987468543540673, −2.84118608705108982408317028783, −2.07174179901394854900230796956, −0.64097840774818177837666306991,
0.20738417081511124396963897595, 2.35178131783266834034525928849, 3.46979225077749585688355338518, 4.05107687208905419134367995484, 5.25584481077056159030884270627, 5.92846509055166384871821868962, 7.02269350124486191402654546240, 8.300609489188615820037045582374, 8.951572349482876397431820680518, 9.933882436174443296075240362601