Properties

Label 800.5.e.e.399.3
Level $800$
Weight $5$
Character 800.399
Analytic conductor $82.696$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(399,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.399");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.3
Character \(\chi\) \(=\) 800.399
Dual form 800.5.e.e.399.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-13.1346i q^{3} -61.6422 q^{7} -91.5179 q^{9} -182.209 q^{11} +141.781 q^{13} -40.3284i q^{17} -321.326 q^{19} +809.647i q^{21} -816.505 q^{23} +138.148i q^{27} -1199.96i q^{29} +361.487i q^{31} +2393.25i q^{33} -0.0209397 q^{37} -1862.23i q^{39} -872.793 q^{41} +3126.84i q^{43} +2659.89 q^{47} +1398.77 q^{49} -529.697 q^{51} +2951.01 q^{53} +4220.49i q^{57} +5410.19 q^{59} +2259.85i q^{61} +5641.37 q^{63} -2351.02i q^{67} +10724.5i q^{69} -660.927i q^{71} +5948.02i q^{73} +11231.8 q^{77} -7620.25i q^{79} -5598.43 q^{81} +3526.95i q^{83} -15760.9 q^{87} -5948.60 q^{89} -8739.68 q^{91} +4747.98 q^{93} -679.848i q^{97} +16675.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 864 q^{9} - 384 q^{11} - 1408 q^{19} - 4416 q^{41} + 4960 q^{49} + 35584 q^{51} + 28032 q^{59} + 20768 q^{81} - 13632 q^{89} - 49152 q^{91} + 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 13.1346i − 1.45940i −0.683767 0.729700i \(-0.739660\pi\)
0.683767 0.729700i \(-0.260340\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −61.6422 −1.25800 −0.629002 0.777403i \(-0.716536\pi\)
−0.629002 + 0.777403i \(0.716536\pi\)
\(8\) 0 0
\(9\) −91.5179 −1.12985
\(10\) 0 0
\(11\) −182.209 −1.50586 −0.752932 0.658099i \(-0.771361\pi\)
−0.752932 + 0.658099i \(0.771361\pi\)
\(12\) 0 0
\(13\) 141.781 0.838939 0.419470 0.907769i \(-0.362216\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 40.3284i − 0.139545i −0.997563 0.0697723i \(-0.977773\pi\)
0.997563 0.0697723i \(-0.0222273\pi\)
\(18\) 0 0
\(19\) −321.326 −0.890100 −0.445050 0.895506i \(-0.646814\pi\)
−0.445050 + 0.895506i \(0.646814\pi\)
\(20\) 0 0
\(21\) 809.647i 1.83593i
\(22\) 0 0
\(23\) −816.505 −1.54349 −0.771744 0.635934i \(-0.780615\pi\)
−0.771744 + 0.635934i \(0.780615\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 138.148i 0.189503i
\(28\) 0 0
\(29\) − 1199.96i − 1.42682i −0.700747 0.713410i \(-0.747150\pi\)
0.700747 0.713410i \(-0.252850\pi\)
\(30\) 0 0
\(31\) 361.487i 0.376157i 0.982154 + 0.188078i \(0.0602259\pi\)
−0.982154 + 0.188078i \(0.939774\pi\)
\(32\) 0 0
\(33\) 2393.25i 2.19766i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.0209397 −1.52956e−5 0 −7.64781e−6 1.00000i \(-0.500002\pi\)
−7.64781e−6 1.00000i \(0.500002\pi\)
\(38\) 0 0
\(39\) − 1862.23i − 1.22435i
\(40\) 0 0
\(41\) −872.793 −0.519211 −0.259605 0.965715i \(-0.583592\pi\)
−0.259605 + 0.965715i \(0.583592\pi\)
\(42\) 0 0
\(43\) 3126.84i 1.69110i 0.533899 + 0.845548i \(0.320726\pi\)
−0.533899 + 0.845548i \(0.679274\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2659.89 1.20411 0.602057 0.798453i \(-0.294348\pi\)
0.602057 + 0.798453i \(0.294348\pi\)
\(48\) 0 0
\(49\) 1398.77 0.582576
\(50\) 0 0
\(51\) −529.697 −0.203651
\(52\) 0 0
\(53\) 2951.01 1.05056 0.525278 0.850931i \(-0.323961\pi\)
0.525278 + 0.850931i \(0.323961\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4220.49i 1.29901i
\(58\) 0 0
\(59\) 5410.19 1.55421 0.777103 0.629373i \(-0.216688\pi\)
0.777103 + 0.629373i \(0.216688\pi\)
\(60\) 0 0
\(61\) 2259.85i 0.607324i 0.952780 + 0.303662i \(0.0982094\pi\)
−0.952780 + 0.303662i \(0.901791\pi\)
\(62\) 0 0
\(63\) 5641.37 1.42136
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 2351.02i − 0.523730i −0.965105 0.261865i \(-0.915662\pi\)
0.965105 0.261865i \(-0.0843375\pi\)
\(68\) 0 0
\(69\) 10724.5i 2.25257i
\(70\) 0 0
\(71\) − 660.927i − 0.131110i −0.997849 0.0655551i \(-0.979118\pi\)
0.997849 0.0655551i \(-0.0208818\pi\)
\(72\) 0 0
\(73\) 5948.02i 1.11616i 0.829787 + 0.558081i \(0.188462\pi\)
−0.829787 + 0.558081i \(0.811538\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11231.8 1.89438
\(78\) 0 0
\(79\) − 7620.25i − 1.22100i −0.792017 0.610499i \(-0.790969\pi\)
0.792017 0.610499i \(-0.209031\pi\)
\(80\) 0 0
\(81\) −5598.43 −0.853289
\(82\) 0 0
\(83\) 3526.95i 0.511969i 0.966681 + 0.255984i \(0.0823995\pi\)
−0.966681 + 0.255984i \(0.917600\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −15760.9 −2.08230
\(88\) 0 0
\(89\) −5948.60 −0.750991 −0.375495 0.926824i \(-0.622527\pi\)
−0.375495 + 0.926824i \(0.622527\pi\)
\(90\) 0 0
\(91\) −8739.68 −1.05539
\(92\) 0 0
\(93\) 4747.98 0.548963
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 679.848i − 0.0722551i −0.999347 0.0361275i \(-0.988498\pi\)
0.999347 0.0361275i \(-0.0115023\pi\)
\(98\) 0 0
\(99\) 16675.4 1.70140
\(100\) 0 0
\(101\) − 7870.10i − 0.771503i −0.922603 0.385751i \(-0.873942\pi\)
0.922603 0.385751i \(-0.126058\pi\)
\(102\) 0 0
\(103\) 3164.29 0.298265 0.149132 0.988817i \(-0.452352\pi\)
0.149132 + 0.988817i \(0.452352\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 2977.72i − 0.260086i −0.991508 0.130043i \(-0.958489\pi\)
0.991508 0.130043i \(-0.0415115\pi\)
\(108\) 0 0
\(109\) − 12111.3i − 1.01938i −0.860358 0.509690i \(-0.829760\pi\)
0.860358 0.509690i \(-0.170240\pi\)
\(110\) 0 0
\(111\) 0.275035i 0 2.23224e-5i
\(112\) 0 0
\(113\) 6297.71i 0.493203i 0.969117 + 0.246601i \(0.0793138\pi\)
−0.969117 + 0.246601i \(0.920686\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −12975.5 −0.947876
\(118\) 0 0
\(119\) 2485.93i 0.175548i
\(120\) 0 0
\(121\) 18559.3 1.26763
\(122\) 0 0
\(123\) 11463.8i 0.757736i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −19296.8 −1.19640 −0.598201 0.801346i \(-0.704118\pi\)
−0.598201 + 0.801346i \(0.704118\pi\)
\(128\) 0 0
\(129\) 41069.8 2.46799
\(130\) 0 0
\(131\) 30503.1 1.77747 0.888734 0.458422i \(-0.151585\pi\)
0.888734 + 0.458422i \(0.151585\pi\)
\(132\) 0 0
\(133\) 19807.3 1.11975
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19714.6i 1.05038i 0.850985 + 0.525190i \(0.176006\pi\)
−0.850985 + 0.525190i \(0.823994\pi\)
\(138\) 0 0
\(139\) 3780.14 0.195649 0.0978246 0.995204i \(-0.468812\pi\)
0.0978246 + 0.995204i \(0.468812\pi\)
\(140\) 0 0
\(141\) − 34936.6i − 1.75729i
\(142\) 0 0
\(143\) −25833.8 −1.26333
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 18372.2i − 0.850212i
\(148\) 0 0
\(149\) − 26261.3i − 1.18289i −0.806347 0.591443i \(-0.798558\pi\)
0.806347 0.591443i \(-0.201442\pi\)
\(150\) 0 0
\(151\) 2021.58i 0.0886618i 0.999017 + 0.0443309i \(0.0141156\pi\)
−0.999017 + 0.0443309i \(0.985884\pi\)
\(152\) 0 0
\(153\) 3690.77i 0.157664i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 30027.5 1.21820 0.609101 0.793093i \(-0.291530\pi\)
0.609101 + 0.793093i \(0.291530\pi\)
\(158\) 0 0
\(159\) − 38760.4i − 1.53318i
\(160\) 0 0
\(161\) 50331.2 1.94171
\(162\) 0 0
\(163\) − 37292.9i − 1.40362i −0.712362 0.701812i \(-0.752374\pi\)
0.712362 0.701812i \(-0.247626\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 28870.3 1.03519 0.517594 0.855627i \(-0.326828\pi\)
0.517594 + 0.855627i \(0.326828\pi\)
\(168\) 0 0
\(169\) −8459.22 −0.296181
\(170\) 0 0
\(171\) 29407.1 1.00568
\(172\) 0 0
\(173\) −44583.4 −1.48964 −0.744819 0.667267i \(-0.767464\pi\)
−0.744819 + 0.667267i \(0.767464\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 71060.7i − 2.26821i
\(178\) 0 0
\(179\) 8655.69 0.270144 0.135072 0.990836i \(-0.456873\pi\)
0.135072 + 0.990836i \(0.456873\pi\)
\(180\) 0 0
\(181\) 40289.9i 1.22981i 0.788600 + 0.614906i \(0.210806\pi\)
−0.788600 + 0.614906i \(0.789194\pi\)
\(182\) 0 0
\(183\) 29682.3 0.886330
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7348.21i 0.210135i
\(188\) 0 0
\(189\) − 8515.74i − 0.238396i
\(190\) 0 0
\(191\) 3633.00i 0.0995862i 0.998760 + 0.0497931i \(0.0158562\pi\)
−0.998760 + 0.0497931i \(0.984144\pi\)
\(192\) 0 0
\(193\) 15199.5i 0.408051i 0.978966 + 0.204025i \(0.0654025\pi\)
−0.978966 + 0.204025i \(0.934598\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −38028.3 −0.979884 −0.489942 0.871755i \(-0.662982\pi\)
−0.489942 + 0.871755i \(0.662982\pi\)
\(198\) 0 0
\(199\) 49239.7i 1.24339i 0.783258 + 0.621697i \(0.213557\pi\)
−0.783258 + 0.621697i \(0.786443\pi\)
\(200\) 0 0
\(201\) −30879.8 −0.764332
\(202\) 0 0
\(203\) 73967.9i 1.79495i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 74724.8 1.74391
\(208\) 0 0
\(209\) 58548.7 1.34037
\(210\) 0 0
\(211\) 8876.19 0.199371 0.0996855 0.995019i \(-0.468216\pi\)
0.0996855 + 0.995019i \(0.468216\pi\)
\(212\) 0 0
\(213\) −8681.01 −0.191342
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 22282.8i − 0.473207i
\(218\) 0 0
\(219\) 78124.9 1.62893
\(220\) 0 0
\(221\) − 5717.78i − 0.117069i
\(222\) 0 0
\(223\) 30807.0 0.619498 0.309749 0.950818i \(-0.399755\pi\)
0.309749 + 0.950818i \(0.399755\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4525.34i 0.0878212i 0.999035 + 0.0439106i \(0.0139817\pi\)
−0.999035 + 0.0439106i \(0.986018\pi\)
\(228\) 0 0
\(229\) − 6977.92i − 0.133062i −0.997784 0.0665311i \(-0.978807\pi\)
0.997784 0.0665311i \(-0.0211932\pi\)
\(230\) 0 0
\(231\) − 147525.i − 2.76466i
\(232\) 0 0
\(233\) − 6262.53i − 0.115355i −0.998335 0.0576777i \(-0.981630\pi\)
0.998335 0.0576777i \(-0.0183696\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −100089. −1.78193
\(238\) 0 0
\(239\) − 60581.1i − 1.06057i −0.847818 0.530287i \(-0.822084\pi\)
0.847818 0.530287i \(-0.177916\pi\)
\(240\) 0 0
\(241\) −6283.81 −0.108190 −0.0540952 0.998536i \(-0.517227\pi\)
−0.0540952 + 0.998536i \(0.517227\pi\)
\(242\) 0 0
\(243\) 84723.1i 1.43479i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −45557.9 −0.746740
\(248\) 0 0
\(249\) 46325.1 0.747167
\(250\) 0 0
\(251\) −40906.3 −0.649296 −0.324648 0.945835i \(-0.605246\pi\)
−0.324648 + 0.945835i \(0.605246\pi\)
\(252\) 0 0
\(253\) 148775. 2.32428
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 71127.0i 1.07688i 0.842663 + 0.538441i \(0.180987\pi\)
−0.842663 + 0.538441i \(0.819013\pi\)
\(258\) 0 0
\(259\) 1.29077 1.92420e−5 0
\(260\) 0 0
\(261\) 109817.i 1.61209i
\(262\) 0 0
\(263\) 108240. 1.56486 0.782430 0.622738i \(-0.213980\pi\)
0.782430 + 0.622738i \(0.213980\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 78132.5i 1.09600i
\(268\) 0 0
\(269\) − 31561.3i − 0.436165i −0.975930 0.218083i \(-0.930020\pi\)
0.975930 0.218083i \(-0.0699802\pi\)
\(270\) 0 0
\(271\) 106238.i 1.44657i 0.690549 + 0.723286i \(0.257369\pi\)
−0.690549 + 0.723286i \(0.742631\pi\)
\(272\) 0 0
\(273\) 114792.i 1.54024i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10816.7 −0.140973 −0.0704863 0.997513i \(-0.522455\pi\)
−0.0704863 + 0.997513i \(0.522455\pi\)
\(278\) 0 0
\(279\) − 33082.5i − 0.425001i
\(280\) 0 0
\(281\) −45497.1 −0.576197 −0.288099 0.957601i \(-0.593023\pi\)
−0.288099 + 0.957601i \(0.593023\pi\)
\(282\) 0 0
\(283\) 29609.1i 0.369703i 0.982766 + 0.184851i \(0.0591804\pi\)
−0.982766 + 0.184851i \(0.940820\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 53800.9 0.653169
\(288\) 0 0
\(289\) 81894.6 0.980527
\(290\) 0 0
\(291\) −8929.54 −0.105449
\(292\) 0 0
\(293\) −85118.8 −0.991495 −0.495747 0.868467i \(-0.665106\pi\)
−0.495747 + 0.868467i \(0.665106\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 25171.9i − 0.285366i
\(298\) 0 0
\(299\) −115765. −1.29489
\(300\) 0 0
\(301\) − 192745.i − 2.12741i
\(302\) 0 0
\(303\) −103371. −1.12593
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 76798.2i 0.814843i 0.913240 + 0.407422i \(0.133572\pi\)
−0.913240 + 0.407422i \(0.866428\pi\)
\(308\) 0 0
\(309\) − 41561.7i − 0.435288i
\(310\) 0 0
\(311\) 110813.i 1.14570i 0.819659 + 0.572851i \(0.194163\pi\)
−0.819659 + 0.572851i \(0.805837\pi\)
\(312\) 0 0
\(313\) − 59571.3i − 0.608062i −0.952662 0.304031i \(-0.901667\pi\)
0.952662 0.304031i \(-0.0983327\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 101309. 1.00816 0.504081 0.863656i \(-0.331831\pi\)
0.504081 + 0.863656i \(0.331831\pi\)
\(318\) 0 0
\(319\) 218643.i 2.14860i
\(320\) 0 0
\(321\) −39111.2 −0.379569
\(322\) 0 0
\(323\) 12958.6i 0.124209i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −159077. −1.48768
\(328\) 0 0
\(329\) −163962. −1.51478
\(330\) 0 0
\(331\) −54230.8 −0.494982 −0.247491 0.968890i \(-0.579606\pi\)
−0.247491 + 0.968890i \(0.579606\pi\)
\(332\) 0 0
\(333\) 1.91636 1.72817e−5 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 117299.i 1.03284i 0.856335 + 0.516421i \(0.172736\pi\)
−0.856335 + 0.516421i \(0.827264\pi\)
\(338\) 0 0
\(339\) 82717.9 0.719780
\(340\) 0 0
\(341\) − 65866.3i − 0.566441i
\(342\) 0 0
\(343\) 61779.9 0.525121
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 29463.2i − 0.244693i −0.992487 0.122347i \(-0.960958\pi\)
0.992487 0.122347i \(-0.0390419\pi\)
\(348\) 0 0
\(349\) − 79572.3i − 0.653297i −0.945146 0.326649i \(-0.894081\pi\)
0.945146 0.326649i \(-0.105919\pi\)
\(350\) 0 0
\(351\) 19586.7i 0.158982i
\(352\) 0 0
\(353\) 233242.i 1.87179i 0.352275 + 0.935896i \(0.385408\pi\)
−0.352275 + 0.935896i \(0.614592\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 32651.7 0.256194
\(358\) 0 0
\(359\) 52120.7i 0.404409i 0.979343 + 0.202205i \(0.0648106\pi\)
−0.979343 + 0.202205i \(0.935189\pi\)
\(360\) 0 0
\(361\) −27070.5 −0.207722
\(362\) 0 0
\(363\) − 243769.i − 1.84997i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 154981. 1.15066 0.575330 0.817921i \(-0.304874\pi\)
0.575330 + 0.817921i \(0.304874\pi\)
\(368\) 0 0
\(369\) 79876.1 0.586630
\(370\) 0 0
\(371\) −181907. −1.32160
\(372\) 0 0
\(373\) 105747. 0.760064 0.380032 0.924973i \(-0.375913\pi\)
0.380032 + 0.924973i \(0.375913\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 170131.i − 1.19701i
\(378\) 0 0
\(379\) −123203. −0.857712 −0.428856 0.903373i \(-0.641083\pi\)
−0.428856 + 0.903373i \(0.641083\pi\)
\(380\) 0 0
\(381\) 253455.i 1.74603i
\(382\) 0 0
\(383\) −41797.4 −0.284939 −0.142469 0.989799i \(-0.545504\pi\)
−0.142469 + 0.989799i \(0.545504\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 286161.i − 1.91069i
\(388\) 0 0
\(389\) 175902.i 1.16244i 0.813746 + 0.581220i \(0.197425\pi\)
−0.813746 + 0.581220i \(0.802575\pi\)
\(390\) 0 0
\(391\) 32928.3i 0.215385i
\(392\) 0 0
\(393\) − 400647.i − 2.59404i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 167811. 1.06473 0.532365 0.846515i \(-0.321303\pi\)
0.532365 + 0.846515i \(0.321303\pi\)
\(398\) 0 0
\(399\) − 260161.i − 1.63416i
\(400\) 0 0
\(401\) 208614. 1.29734 0.648670 0.761070i \(-0.275326\pi\)
0.648670 + 0.761070i \(0.275326\pi\)
\(402\) 0 0
\(403\) 51251.8i 0.315573i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.81541 2.30331e−5 0
\(408\) 0 0
\(409\) −283543. −1.69501 −0.847504 0.530789i \(-0.821896\pi\)
−0.847504 + 0.530789i \(0.821896\pi\)
\(410\) 0 0
\(411\) 258944. 1.53293
\(412\) 0 0
\(413\) −333496. −1.95520
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 49650.6i − 0.285531i
\(418\) 0 0
\(419\) −54938.6 −0.312932 −0.156466 0.987683i \(-0.550010\pi\)
−0.156466 + 0.987683i \(0.550010\pi\)
\(420\) 0 0
\(421\) − 95542.7i − 0.539055i −0.962993 0.269528i \(-0.913132\pi\)
0.962993 0.269528i \(-0.0868675\pi\)
\(422\) 0 0
\(423\) −243427. −1.36047
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 139302.i − 0.764017i
\(428\) 0 0
\(429\) 339317.i 1.84370i
\(430\) 0 0
\(431\) 90739.7i 0.488475i 0.969715 + 0.244238i \(0.0785377\pi\)
−0.969715 + 0.244238i \(0.921462\pi\)
\(432\) 0 0
\(433\) − 65987.8i − 0.351956i −0.984394 0.175978i \(-0.943691\pi\)
0.984394 0.175978i \(-0.0563087\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 262364. 1.37386
\(438\) 0 0
\(439\) − 75268.9i − 0.390559i −0.980748 0.195280i \(-0.937439\pi\)
0.980748 0.195280i \(-0.0625614\pi\)
\(440\) 0 0
\(441\) −128012. −0.658224
\(442\) 0 0
\(443\) − 52370.2i − 0.266856i −0.991059 0.133428i \(-0.957402\pi\)
0.991059 0.133428i \(-0.0425985\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −344931. −1.72631
\(448\) 0 0
\(449\) −282713. −1.40234 −0.701169 0.712995i \(-0.747338\pi\)
−0.701169 + 0.712995i \(0.747338\pi\)
\(450\) 0 0
\(451\) 159031. 0.781860
\(452\) 0 0
\(453\) 26552.6 0.129393
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 379431.i 1.81677i 0.418133 + 0.908386i \(0.362685\pi\)
−0.418133 + 0.908386i \(0.637315\pi\)
\(458\) 0 0
\(459\) 5571.28 0.0264441
\(460\) 0 0
\(461\) 203541.i 0.957744i 0.877885 + 0.478872i \(0.158954\pi\)
−0.877885 + 0.478872i \(0.841046\pi\)
\(462\) 0 0
\(463\) −400318. −1.86743 −0.933713 0.358023i \(-0.883451\pi\)
−0.933713 + 0.358023i \(0.883451\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 227026.i 1.04098i 0.853869 + 0.520488i \(0.174250\pi\)
−0.853869 + 0.520488i \(0.825750\pi\)
\(468\) 0 0
\(469\) 144922.i 0.658855i
\(470\) 0 0
\(471\) − 394399.i − 1.77784i
\(472\) 0 0
\(473\) − 569739.i − 2.54656i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −270070. −1.18697
\(478\) 0 0
\(479\) − 258233.i − 1.12549i −0.826631 0.562744i \(-0.809746\pi\)
0.826631 0.562744i \(-0.190254\pi\)
\(480\) 0 0
\(481\) −2.96884 −1.28321e−5 0
\(482\) 0 0
\(483\) − 661080.i − 2.83374i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −30343.6 −0.127941 −0.0639705 0.997952i \(-0.520376\pi\)
−0.0639705 + 0.997952i \(0.520376\pi\)
\(488\) 0 0
\(489\) −489828. −2.04845
\(490\) 0 0
\(491\) 82979.2 0.344196 0.172098 0.985080i \(-0.444945\pi\)
0.172098 + 0.985080i \(0.444945\pi\)
\(492\) 0 0
\(493\) −48392.2 −0.199105
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 40741.0i 0.164937i
\(498\) 0 0
\(499\) −212545. −0.853593 −0.426796 0.904348i \(-0.640358\pi\)
−0.426796 + 0.904348i \(0.640358\pi\)
\(500\) 0 0
\(501\) − 379201.i − 1.51075i
\(502\) 0 0
\(503\) 143873. 0.568648 0.284324 0.958728i \(-0.408231\pi\)
0.284324 + 0.958728i \(0.408231\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 111109.i 0.432247i
\(508\) 0 0
\(509\) 137724.i 0.531588i 0.964030 + 0.265794i \(0.0856341\pi\)
−0.964030 + 0.265794i \(0.914366\pi\)
\(510\) 0 0
\(511\) − 366650.i − 1.40414i
\(512\) 0 0
\(513\) − 44390.5i − 0.168677i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −484657. −1.81323
\(518\) 0 0
\(519\) 585585.i 2.17398i
\(520\) 0 0
\(521\) 33788.5 0.124478 0.0622392 0.998061i \(-0.480176\pi\)
0.0622392 + 0.998061i \(0.480176\pi\)
\(522\) 0 0
\(523\) − 314081.i − 1.14826i −0.818766 0.574128i \(-0.805341\pi\)
0.818766 0.574128i \(-0.194659\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14578.2 0.0524906
\(528\) 0 0
\(529\) 386839. 1.38235
\(530\) 0 0
\(531\) −495129. −1.75602
\(532\) 0 0
\(533\) −123745. −0.435586
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 113689.i − 0.394249i
\(538\) 0 0
\(539\) −254868. −0.877281
\(540\) 0 0
\(541\) 385898.i 1.31849i 0.751927 + 0.659246i \(0.229125\pi\)
−0.751927 + 0.659246i \(0.770875\pi\)
\(542\) 0 0
\(543\) 529192. 1.79479
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 98962.2i − 0.330746i −0.986231 0.165373i \(-0.947117\pi\)
0.986231 0.165373i \(-0.0528828\pi\)
\(548\) 0 0
\(549\) − 206817.i − 0.686185i
\(550\) 0 0
\(551\) 385577.i 1.27001i
\(552\) 0 0
\(553\) 469729.i 1.53602i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −150468. −0.484992 −0.242496 0.970152i \(-0.577966\pi\)
−0.242496 + 0.970152i \(0.577966\pi\)
\(558\) 0 0
\(559\) 443325.i 1.41873i
\(560\) 0 0
\(561\) 96515.8 0.306671
\(562\) 0 0
\(563\) 351815.i 1.10993i 0.831872 + 0.554967i \(0.187269\pi\)
−0.831872 + 0.554967i \(0.812731\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 345100. 1.07344
\(568\) 0 0
\(569\) −200171. −0.618269 −0.309135 0.951018i \(-0.600039\pi\)
−0.309135 + 0.951018i \(0.600039\pi\)
\(570\) 0 0
\(571\) −310946. −0.953701 −0.476851 0.878984i \(-0.658222\pi\)
−0.476851 + 0.878984i \(0.658222\pi\)
\(572\) 0 0
\(573\) 47718.1 0.145336
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 309106.i − 0.928443i −0.885719 0.464222i \(-0.846334\pi\)
0.885719 0.464222i \(-0.153666\pi\)
\(578\) 0 0
\(579\) 199639. 0.595509
\(580\) 0 0
\(581\) − 217409.i − 0.644059i
\(582\) 0 0
\(583\) −537702. −1.58199
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 328226.i 0.952569i 0.879291 + 0.476285i \(0.158017\pi\)
−0.879291 + 0.476285i \(0.841983\pi\)
\(588\) 0 0
\(589\) − 116155.i − 0.334817i
\(590\) 0 0
\(591\) 499487.i 1.43004i
\(592\) 0 0
\(593\) 26286.3i 0.0747516i 0.999301 + 0.0373758i \(0.0118999\pi\)
−0.999301 + 0.0373758i \(0.988100\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 646744. 1.81461
\(598\) 0 0
\(599\) − 195579.i − 0.545090i −0.962143 0.272545i \(-0.912135\pi\)
0.962143 0.272545i \(-0.0878654\pi\)
\(600\) 0 0
\(601\) −693475. −1.91991 −0.959957 0.280147i \(-0.909617\pi\)
−0.959957 + 0.280147i \(0.909617\pi\)
\(602\) 0 0
\(603\) 215161.i 0.591736i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −46263.1 −0.125562 −0.0627809 0.998027i \(-0.519997\pi\)
−0.0627809 + 0.998027i \(0.519997\pi\)
\(608\) 0 0
\(609\) 971539. 2.61955
\(610\) 0 0
\(611\) 377121. 1.01018
\(612\) 0 0
\(613\) 341759. 0.909491 0.454745 0.890621i \(-0.349730\pi\)
0.454745 + 0.890621i \(0.349730\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 422368.i 1.10948i 0.832023 + 0.554741i \(0.187183\pi\)
−0.832023 + 0.554741i \(0.812817\pi\)
\(618\) 0 0
\(619\) −546574. −1.42649 −0.713244 0.700916i \(-0.752775\pi\)
−0.713244 + 0.700916i \(0.752775\pi\)
\(620\) 0 0
\(621\) − 112798.i − 0.292496i
\(622\) 0 0
\(623\) 366685. 0.944750
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 769014.i − 1.95614i
\(628\) 0 0
\(629\) 0.844463i 0 2.13442e-6i
\(630\) 0 0
\(631\) 267266.i 0.671251i 0.941995 + 0.335626i \(0.108948\pi\)
−0.941995 + 0.335626i \(0.891052\pi\)
\(632\) 0 0
\(633\) − 116585.i − 0.290962i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 198318. 0.488746
\(638\) 0 0
\(639\) 60486.6i 0.148135i
\(640\) 0 0
\(641\) −39388.3 −0.0958629 −0.0479315 0.998851i \(-0.515263\pi\)
−0.0479315 + 0.998851i \(0.515263\pi\)
\(642\) 0 0
\(643\) 228811.i 0.553420i 0.960954 + 0.276710i \(0.0892441\pi\)
−0.960954 + 0.276710i \(0.910756\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 382095. 0.912772 0.456386 0.889782i \(-0.349144\pi\)
0.456386 + 0.889782i \(0.349144\pi\)
\(648\) 0 0
\(649\) −985788. −2.34042
\(650\) 0 0
\(651\) −292676. −0.690599
\(652\) 0 0
\(653\) 752435. 1.76458 0.882292 0.470702i \(-0.155999\pi\)
0.882292 + 0.470702i \(0.155999\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 544350.i − 1.26110i
\(658\) 0 0
\(659\) 317213. 0.730432 0.365216 0.930923i \(-0.380995\pi\)
0.365216 + 0.930923i \(0.380995\pi\)
\(660\) 0 0
\(661\) 491003.i 1.12378i 0.827212 + 0.561889i \(0.189925\pi\)
−0.827212 + 0.561889i \(0.810075\pi\)
\(662\) 0 0
\(663\) −75100.8 −0.170851
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 979769.i 2.20228i
\(668\) 0 0
\(669\) − 404638.i − 0.904096i
\(670\) 0 0
\(671\) − 411767.i − 0.914548i
\(672\) 0 0
\(673\) 469121.i 1.03575i 0.855456 + 0.517875i \(0.173277\pi\)
−0.855456 + 0.517875i \(0.826723\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 233625. 0.509732 0.254866 0.966976i \(-0.417969\pi\)
0.254866 + 0.966976i \(0.417969\pi\)
\(678\) 0 0
\(679\) 41907.4i 0.0908973i
\(680\) 0 0
\(681\) 59438.5 0.128166
\(682\) 0 0
\(683\) 780956.i 1.67411i 0.547116 + 0.837057i \(0.315726\pi\)
−0.547116 + 0.837057i \(0.684274\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −91652.2 −0.194191
\(688\) 0 0
\(689\) 418397. 0.881353
\(690\) 0 0
\(691\) −283619. −0.593990 −0.296995 0.954879i \(-0.595984\pi\)
−0.296995 + 0.954879i \(0.595984\pi\)
\(692\) 0 0
\(693\) −1.02791e6 −2.14037
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 35198.3i 0.0724530i
\(698\) 0 0
\(699\) −82255.8 −0.168350
\(700\) 0 0
\(701\) − 448693.i − 0.913088i −0.889701 0.456544i \(-0.849087\pi\)
0.889701 0.456544i \(-0.150913\pi\)
\(702\) 0 0
\(703\) 6.72847 1.36146e−5 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 485130.i 0.970554i
\(708\) 0 0
\(709\) − 191749.i − 0.381453i −0.981643 0.190727i \(-0.938916\pi\)
0.981643 0.190727i \(-0.0610844\pi\)
\(710\) 0 0
\(711\) 697389.i 1.37955i
\(712\) 0 0
\(713\) − 295156.i − 0.580593i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −795708. −1.54780
\(718\) 0 0
\(719\) 674986.i 1.30568i 0.757495 + 0.652840i \(0.226423\pi\)
−0.757495 + 0.652840i \(0.773577\pi\)
\(720\) 0 0
\(721\) −195054. −0.375218
\(722\) 0 0
\(723\) 82535.4i 0.157893i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 32697.5 0.0618652 0.0309326 0.999521i \(-0.490152\pi\)
0.0309326 + 0.999521i \(0.490152\pi\)
\(728\) 0 0
\(729\) 659332. 1.24065
\(730\) 0 0
\(731\) 126100. 0.235983
\(732\) 0 0
\(733\) −836629. −1.55713 −0.778565 0.627564i \(-0.784052\pi\)
−0.778565 + 0.627564i \(0.784052\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 428379.i 0.788666i
\(738\) 0 0
\(739\) 274618. 0.502852 0.251426 0.967877i \(-0.419100\pi\)
0.251426 + 0.967877i \(0.419100\pi\)
\(740\) 0 0
\(741\) 598384.i 1.08979i
\(742\) 0 0
\(743\) 758534. 1.37403 0.687017 0.726641i \(-0.258920\pi\)
0.687017 + 0.726641i \(0.258920\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 322779.i − 0.578448i
\(748\) 0 0
\(749\) 183553.i 0.327189i
\(750\) 0 0
\(751\) − 692253.i − 1.22740i −0.789540 0.613699i \(-0.789681\pi\)
0.789540 0.613699i \(-0.210319\pi\)
\(752\) 0 0
\(753\) 537288.i 0.947583i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −191429. −0.334053 −0.167027 0.985952i \(-0.553417\pi\)
−0.167027 + 0.985952i \(0.553417\pi\)
\(758\) 0 0
\(759\) − 1.95410e6i − 3.39206i
\(760\) 0 0
\(761\) 955895. 1.65060 0.825299 0.564697i \(-0.191007\pi\)
0.825299 + 0.564697i \(0.191007\pi\)
\(762\) 0 0
\(763\) 746565.i 1.28239i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 767061. 1.30388
\(768\) 0 0
\(769\) −512422. −0.866513 −0.433256 0.901271i \(-0.642636\pi\)
−0.433256 + 0.901271i \(0.642636\pi\)
\(770\) 0 0
\(771\) 934225. 1.57160
\(772\) 0 0
\(773\) −198501. −0.332203 −0.166101 0.986109i \(-0.553118\pi\)
−0.166101 + 0.986109i \(0.553118\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 16.9537i 0 2.80817e-5i
\(778\) 0 0
\(779\) 280451. 0.462149
\(780\) 0 0
\(781\) 120427.i 0.197434i
\(782\) 0 0
\(783\) 165771. 0.270387
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 730116.i − 1.17881i −0.807839 0.589403i \(-0.799363\pi\)
0.807839 0.589403i \(-0.200637\pi\)
\(788\) 0 0
\(789\) − 1.42169e6i − 2.28376i
\(790\) 0 0
\(791\) − 388205.i − 0.620451i
\(792\) 0 0
\(793\) 320404.i 0.509508i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −403135. −0.634649 −0.317325 0.948317i \(-0.602784\pi\)
−0.317325 + 0.948317i \(0.602784\pi\)
\(798\) 0 0
\(799\) − 107269.i − 0.168028i
\(800\) 0 0
\(801\) 544403. 0.848507
\(802\) 0 0
\(803\) − 1.08379e6i − 1.68079i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −414546. −0.636539
\(808\) 0 0
\(809\) 767840. 1.17320 0.586602 0.809875i \(-0.300465\pi\)
0.586602 + 0.809875i \(0.300465\pi\)
\(810\) 0 0
\(811\) 98686.7 0.150043 0.0750217 0.997182i \(-0.476097\pi\)
0.0750217 + 0.997182i \(0.476097\pi\)
\(812\) 0 0
\(813\) 1.39539e6 2.11113
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1.00473e6i − 1.50525i
\(818\) 0 0
\(819\) 799837. 1.19243
\(820\) 0 0
\(821\) − 578722.i − 0.858586i −0.903165 0.429293i \(-0.858763\pi\)
0.903165 0.429293i \(-0.141237\pi\)
\(822\) 0 0
\(823\) 262419. 0.387432 0.193716 0.981058i \(-0.437946\pi\)
0.193716 + 0.981058i \(0.437946\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.18411e6i 1.73133i 0.500624 + 0.865665i \(0.333104\pi\)
−0.500624 + 0.865665i \(0.666896\pi\)
\(828\) 0 0
\(829\) 86230.4i 0.125473i 0.998030 + 0.0627367i \(0.0199828\pi\)
−0.998030 + 0.0627367i \(0.980017\pi\)
\(830\) 0 0
\(831\) 142073.i 0.205735i
\(832\) 0 0
\(833\) − 56409.9i − 0.0812953i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −49938.6 −0.0712829
\(838\) 0 0
\(839\) 468085.i 0.664967i 0.943109 + 0.332484i \(0.107887\pi\)
−0.943109 + 0.332484i \(0.892113\pi\)
\(840\) 0 0
\(841\) −732611. −1.03581
\(842\) 0 0
\(843\) 597587.i 0.840903i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.14404e6 −1.59468
\(848\) 0 0
\(849\) 388904. 0.539545
\(850\) 0 0
\(851\) 17.0974 2.36086e−5 0
\(852\) 0 0
\(853\) 991144. 1.36219 0.681096 0.732194i \(-0.261503\pi\)
0.681096 + 0.732194i \(0.261503\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 579579.i − 0.789134i −0.918867 0.394567i \(-0.870895\pi\)
0.918867 0.394567i \(-0.129105\pi\)
\(858\) 0 0
\(859\) 477342. 0.646910 0.323455 0.946244i \(-0.395156\pi\)
0.323455 + 0.946244i \(0.395156\pi\)
\(860\) 0 0
\(861\) − 706654.i − 0.953236i
\(862\) 0 0
\(863\) 87877.1 0.117992 0.0589962 0.998258i \(-0.481210\pi\)
0.0589962 + 0.998258i \(0.481210\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.07565e6i − 1.43098i
\(868\) 0 0
\(869\) 1.38848e6i 1.83866i
\(870\) 0 0
\(871\) − 333330.i − 0.439378i
\(872\) 0 0
\(873\) 62218.2i 0.0816374i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 315735. 0.410510 0.205255 0.978709i \(-0.434198\pi\)
0.205255 + 0.978709i \(0.434198\pi\)
\(878\) 0 0
\(879\) 1.11800e6i 1.44699i
\(880\) 0 0
\(881\) −233732. −0.301138 −0.150569 0.988599i \(-0.548111\pi\)
−0.150569 + 0.988599i \(0.548111\pi\)
\(882\) 0 0
\(883\) − 1.12959e6i − 1.44876i −0.689399 0.724382i \(-0.742125\pi\)
0.689399 0.724382i \(-0.257875\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32714.8 0.0415812 0.0207906 0.999784i \(-0.493382\pi\)
0.0207906 + 0.999784i \(0.493382\pi\)
\(888\) 0 0
\(889\) 1.18950e6 1.50508
\(890\) 0 0
\(891\) 1.02009e6 1.28494
\(892\) 0 0
\(893\) −854692. −1.07178
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.52052e6i 1.88977i
\(898\) 0 0
\(899\) 433768. 0.536708
\(900\) 0 0
\(901\) − 119009.i − 0.146599i
\(902\) 0 0
\(903\) −2.53163e6 −3.10474
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.11093e6i − 1.35043i −0.737620 0.675216i \(-0.764050\pi\)
0.737620 0.675216i \(-0.235950\pi\)
\(908\) 0 0
\(909\) 720254.i 0.871682i
\(910\) 0 0
\(911\) − 1.12408e6i − 1.35445i −0.735777 0.677223i \(-0.763183\pi\)
0.735777 0.677223i \(-0.236817\pi\)
\(912\) 0 0
\(913\) − 642644.i − 0.770955i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.88028e6 −2.23606
\(918\) 0 0
\(919\) − 494243.i − 0.585207i −0.956234 0.292604i \(-0.905478\pi\)
0.956234 0.292604i \(-0.0945217\pi\)
\(920\) 0 0
\(921\) 1.00871e6 1.18918
\(922\) 0 0
\(923\) − 93706.7i − 0.109994i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −289589. −0.336994
\(928\) 0 0
\(929\) 19109.1 0.0221415 0.0110708 0.999939i \(-0.496476\pi\)
0.0110708 + 0.999939i \(0.496476\pi\)
\(930\) 0 0
\(931\) −449460. −0.518551
\(932\) 0 0
\(933\) 1.45549e6 1.67204
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 595577.i − 0.678357i −0.940722 0.339179i \(-0.889851\pi\)
0.940722 0.339179i \(-0.110149\pi\)
\(938\) 0 0
\(939\) −782445. −0.887407
\(940\) 0 0
\(941\) − 901249.i − 1.01781i −0.860823 0.508904i \(-0.830051\pi\)
0.860823 0.508904i \(-0.169949\pi\)
\(942\) 0 0
\(943\) 712640. 0.801395
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.00306e6i − 1.11848i −0.829006 0.559240i \(-0.811093\pi\)
0.829006 0.559240i \(-0.188907\pi\)
\(948\) 0 0
\(949\) 843315.i 0.936392i
\(950\) 0 0
\(951\) − 1.33066e6i − 1.47131i
\(952\) 0 0
\(953\) − 352429.i − 0.388048i −0.980997 0.194024i \(-0.937846\pi\)
0.980997 0.194024i \(-0.0621540\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.87179e6 3.13566
\(958\) 0 0
\(959\) − 1.21525e6i − 1.32138i
\(960\) 0 0
\(961\) 792848. 0.858506
\(962\) 0 0
\(963\) 272515.i 0.293858i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.50153e6 1.60577 0.802883 0.596137i \(-0.203298\pi\)
0.802883 + 0.596137i \(0.203298\pi\)
\(968\) 0 0
\(969\) 170206. 0.181270
\(970\) 0 0
\(971\) −909255. −0.964378 −0.482189 0.876067i \(-0.660158\pi\)
−0.482189 + 0.876067i \(0.660158\pi\)
\(972\) 0 0
\(973\) −233016. −0.246128
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.01442e6i 1.06274i 0.847139 + 0.531371i \(0.178323\pi\)
−0.847139 + 0.531371i \(0.821677\pi\)
\(978\) 0 0
\(979\) 1.08389e6 1.13089
\(980\) 0 0
\(981\) 1.10840e6i 1.15175i
\(982\) 0 0
\(983\) 1.44750e6 1.49800 0.748998 0.662573i \(-0.230535\pi\)
0.748998 + 0.662573i \(0.230535\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.15357e6i 2.21067i
\(988\) 0 0
\(989\) − 2.55308e6i − 2.61019i
\(990\) 0 0
\(991\) 1.20661e6i 1.22862i 0.789064 + 0.614311i \(0.210566\pi\)
−0.789064 + 0.614311i \(0.789434\pi\)
\(992\) 0 0
\(993\) 712300.i 0.722378i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 774945. 0.779616 0.389808 0.920896i \(-0.372541\pi\)
0.389808 + 0.920896i \(0.372541\pi\)
\(998\) 0 0
\(999\) − 2.89277i 0 2.89857e-6i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.e.e.399.3 32
4.3 odd 2 200.5.e.e.99.12 32
5.2 odd 4 160.5.g.a.111.4 16
5.3 odd 4 800.5.g.h.751.14 16
5.4 even 2 inner 800.5.e.e.399.30 32
8.3 odd 2 inner 800.5.e.e.399.29 32
8.5 even 2 200.5.e.e.99.22 32
15.2 even 4 1440.5.g.a.271.1 16
20.3 even 4 200.5.g.h.51.14 16
20.7 even 4 40.5.g.a.11.3 16
20.19 odd 2 200.5.e.e.99.21 32
40.3 even 4 800.5.g.h.751.13 16
40.13 odd 4 200.5.g.h.51.13 16
40.19 odd 2 inner 800.5.e.e.399.4 32
40.27 even 4 160.5.g.a.111.3 16
40.29 even 2 200.5.e.e.99.11 32
40.37 odd 4 40.5.g.a.11.4 yes 16
60.47 odd 4 360.5.g.a.91.14 16
120.77 even 4 360.5.g.a.91.13 16
120.107 odd 4 1440.5.g.a.271.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.3 16 20.7 even 4
40.5.g.a.11.4 yes 16 40.37 odd 4
160.5.g.a.111.3 16 40.27 even 4
160.5.g.a.111.4 16 5.2 odd 4
200.5.e.e.99.11 32 40.29 even 2
200.5.e.e.99.12 32 4.3 odd 2
200.5.e.e.99.21 32 20.19 odd 2
200.5.e.e.99.22 32 8.5 even 2
200.5.g.h.51.13 16 40.13 odd 4
200.5.g.h.51.14 16 20.3 even 4
360.5.g.a.91.13 16 120.77 even 4
360.5.g.a.91.14 16 60.47 odd 4
800.5.e.e.399.3 32 1.1 even 1 trivial
800.5.e.e.399.4 32 40.19 odd 2 inner
800.5.e.e.399.29 32 8.3 odd 2 inner
800.5.e.e.399.30 32 5.4 even 2 inner
800.5.g.h.751.13 16 40.3 even 4
800.5.g.h.751.14 16 5.3 odd 4
1440.5.g.a.271.1 16 15.2 even 4
1440.5.g.a.271.16 16 120.107 odd 4