Properties

Label 2-800-8.5-c5-0-42
Degree $2$
Conductor $800$
Sign $0.929 + 0.368i$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.4i·3-s − 66.0·7-s + 134.·9-s − 141. i·11-s + 246. i·13-s + 297.·17-s + 174. i·19-s + 688. i·21-s − 1.57e3·23-s − 3.93e3i·27-s − 922. i·29-s + 6.19e3·31-s − 1.48e3·33-s + 1.39e4i·37-s + 2.57e3·39-s + ⋯
L(s)  = 1  − 0.669i·3-s − 0.509·7-s + 0.551·9-s − 0.353i·11-s + 0.405i·13-s + 0.249·17-s + 0.110i·19-s + 0.340i·21-s − 0.621·23-s − 1.03i·27-s − 0.203i·29-s + 1.15·31-s − 0.236·33-s + 1.67i·37-s + 0.271·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 + 0.368i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.929 + 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $0.929 + 0.368i$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (401, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ 0.929 + 0.368i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.061404021\)
\(L(\frac12)\) \(\approx\) \(2.061404021\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 10.4iT - 243T^{2} \)
7 \( 1 + 66.0T + 1.68e4T^{2} \)
11 \( 1 + 141. iT - 1.61e5T^{2} \)
13 \( 1 - 246. iT - 3.71e5T^{2} \)
17 \( 1 - 297.T + 1.41e6T^{2} \)
19 \( 1 - 174. iT - 2.47e6T^{2} \)
23 \( 1 + 1.57e3T + 6.43e6T^{2} \)
29 \( 1 + 922. iT - 2.05e7T^{2} \)
31 \( 1 - 6.19e3T + 2.86e7T^{2} \)
37 \( 1 - 1.39e4iT - 6.93e7T^{2} \)
41 \( 1 + 3.00e3T + 1.15e8T^{2} \)
43 \( 1 - 1.62e4iT - 1.47e8T^{2} \)
47 \( 1 - 1.00e3T + 2.29e8T^{2} \)
53 \( 1 + 2.29e4iT - 4.18e8T^{2} \)
59 \( 1 + 3.18e4iT - 7.14e8T^{2} \)
61 \( 1 - 2.13e4iT - 8.44e8T^{2} \)
67 \( 1 - 3.86e4iT - 1.35e9T^{2} \)
71 \( 1 - 3.09e4T + 1.80e9T^{2} \)
73 \( 1 - 7.95e4T + 2.07e9T^{2} \)
79 \( 1 + 2.33e4T + 3.07e9T^{2} \)
83 \( 1 - 6.67e4iT - 3.93e9T^{2} \)
89 \( 1 - 6.61e4T + 5.58e9T^{2} \)
97 \( 1 - 1.25e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.685640067457867980143483927578, −8.391260525561573212425340425987, −7.81867912056846020891718741817, −6.65646778595259152699069746984, −6.33719263950396371190328081128, −5.01503260745124788954807165700, −3.96970796570595400676776765688, −2.86827947571865473398636421542, −1.70531085800221983416647956176, −0.71253368852011956101927937950, 0.61569480339858706485956968350, 2.00904764205824002901070685715, 3.26741638218319423441235663517, 4.11516027679407723827275585769, 5.01776695996754846788992161120, 6.01226987499762360570698170975, 7.00608283402982099693872866862, 7.82381031681308660399881988319, 8.918444307312892919303298818817, 9.679241686023298532512793844410

Graph of the $Z$-function along the critical line