Properties

Label 800.6.d.d.401.7
Level $800$
Weight $6$
Character 800.401
Analytic conductor $128.307$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(401,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.401");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 130 x^{17} + 144 x^{16} + 1560 x^{15} - 12320 x^{14} - 56128 x^{13} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{99}\cdot 5^{4}\cdot 31 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.7
Root \(-5.25771 + 2.08722i\) of defining polynomial
Character \(\chi\) \(=\) 800.401
Dual form 800.6.d.d.401.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.4354i q^{3} -66.0164 q^{7} +134.101 q^{9} -141.942i q^{11} +246.793i q^{13} +297.407 q^{17} +174.593i q^{19} +688.910i q^{21} -1576.89 q^{23} -3935.22i q^{27} -922.162i q^{29} +6194.91 q^{31} -1481.22 q^{33} +13956.6i q^{37} +2575.40 q^{39} -3008.44 q^{41} +16270.0i q^{43} +1004.93 q^{47} -12448.8 q^{49} -3103.57i q^{51} -22990.4i q^{53} +1821.96 q^{57} -31893.8i q^{59} +21370.1i q^{61} -8852.89 q^{63} +38648.6i q^{67} +16455.5i q^{69} +30998.5 q^{71} +79573.5 q^{73} +9370.46i q^{77} -23301.9 q^{79} -8479.17 q^{81} +66705.7i q^{83} -9623.18 q^{87} +66188.9 q^{89} -16292.4i q^{91} -64646.7i q^{93} +12550.8 q^{97} -19034.6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 196 q^{7} - 1620 q^{9} + 7184 q^{23} - 7160 q^{31} - 2836 q^{33} - 22452 q^{39} - 5804 q^{41} - 44180 q^{47} + 62652 q^{49} + 43696 q^{57} + 1240 q^{63} + 7724 q^{71} - 105136 q^{73} + 7780 q^{79}+ \cdots - 73688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 10.4354i − 0.669434i −0.942319 0.334717i \(-0.891359\pi\)
0.942319 0.334717i \(-0.108641\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −66.0164 −0.509221 −0.254611 0.967044i \(-0.581947\pi\)
−0.254611 + 0.967044i \(0.581947\pi\)
\(8\) 0 0
\(9\) 134.101 0.551858
\(10\) 0 0
\(11\) − 141.942i − 0.353694i −0.984238 0.176847i \(-0.943410\pi\)
0.984238 0.176847i \(-0.0565898\pi\)
\(12\) 0 0
\(13\) 246.793i 0.405018i 0.979280 + 0.202509i \(0.0649096\pi\)
−0.979280 + 0.202509i \(0.935090\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 297.407 0.249591 0.124795 0.992182i \(-0.460173\pi\)
0.124795 + 0.992182i \(0.460173\pi\)
\(18\) 0 0
\(19\) 174.593i 0.110954i 0.998460 + 0.0554770i \(0.0176680\pi\)
−0.998460 + 0.0554770i \(0.982332\pi\)
\(20\) 0 0
\(21\) 688.910i 0.340890i
\(22\) 0 0
\(23\) −1576.89 −0.621558 −0.310779 0.950482i \(-0.600590\pi\)
−0.310779 + 0.950482i \(0.600590\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 3935.22i − 1.03887i
\(28\) 0 0
\(29\) − 922.162i − 0.203616i −0.994804 0.101808i \(-0.967537\pi\)
0.994804 0.101808i \(-0.0324628\pi\)
\(30\) 0 0
\(31\) 6194.91 1.15779 0.578897 0.815401i \(-0.303484\pi\)
0.578897 + 0.815401i \(0.303484\pi\)
\(32\) 0 0
\(33\) −1481.22 −0.236775
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 13956.6i 1.67601i 0.545666 + 0.838003i \(0.316277\pi\)
−0.545666 + 0.838003i \(0.683723\pi\)
\(38\) 0 0
\(39\) 2575.40 0.271133
\(40\) 0 0
\(41\) −3008.44 −0.279500 −0.139750 0.990187i \(-0.544630\pi\)
−0.139750 + 0.990187i \(0.544630\pi\)
\(42\) 0 0
\(43\) 16270.0i 1.34189i 0.741508 + 0.670944i \(0.234111\pi\)
−0.741508 + 0.670944i \(0.765889\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1004.93 0.0663578 0.0331789 0.999449i \(-0.489437\pi\)
0.0331789 + 0.999449i \(0.489437\pi\)
\(48\) 0 0
\(49\) −12448.8 −0.740694
\(50\) 0 0
\(51\) − 3103.57i − 0.167085i
\(52\) 0 0
\(53\) − 22990.4i − 1.12424i −0.827057 0.562118i \(-0.809987\pi\)
0.827057 0.562118i \(-0.190013\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1821.96 0.0742764
\(58\) 0 0
\(59\) − 31893.8i − 1.19282i −0.802678 0.596412i \(-0.796592\pi\)
0.802678 0.596412i \(-0.203408\pi\)
\(60\) 0 0
\(61\) 21370.1i 0.735328i 0.929959 + 0.367664i \(0.119842\pi\)
−0.929959 + 0.367664i \(0.880158\pi\)
\(62\) 0 0
\(63\) −8852.89 −0.281018
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 38648.6i 1.05183i 0.850536 + 0.525916i \(0.176277\pi\)
−0.850536 + 0.525916i \(0.823723\pi\)
\(68\) 0 0
\(69\) 16455.5i 0.416092i
\(70\) 0 0
\(71\) 30998.5 0.729784 0.364892 0.931050i \(-0.381106\pi\)
0.364892 + 0.931050i \(0.381106\pi\)
\(72\) 0 0
\(73\) 79573.5 1.74768 0.873838 0.486217i \(-0.161623\pi\)
0.873838 + 0.486217i \(0.161623\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9370.46i 0.180109i
\(78\) 0 0
\(79\) −23301.9 −0.420072 −0.210036 0.977694i \(-0.567358\pi\)
−0.210036 + 0.977694i \(0.567358\pi\)
\(80\) 0 0
\(81\) −8479.17 −0.143596
\(82\) 0 0
\(83\) 66705.7i 1.06284i 0.847109 + 0.531420i \(0.178341\pi\)
−0.847109 + 0.531420i \(0.821659\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −9623.18 −0.136308
\(88\) 0 0
\(89\) 66188.9 0.885748 0.442874 0.896584i \(-0.353959\pi\)
0.442874 + 0.896584i \(0.353959\pi\)
\(90\) 0 0
\(91\) − 16292.4i − 0.206244i
\(92\) 0 0
\(93\) − 64646.7i − 0.775066i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12550.8 0.135439 0.0677194 0.997704i \(-0.478428\pi\)
0.0677194 + 0.997704i \(0.478428\pi\)
\(98\) 0 0
\(99\) − 19034.6i − 0.195189i
\(100\) 0 0
\(101\) 94627.3i 0.923024i 0.887134 + 0.461512i \(0.152693\pi\)
−0.887134 + 0.461512i \(0.847307\pi\)
\(102\) 0 0
\(103\) −74704.4 −0.693830 −0.346915 0.937897i \(-0.612771\pi\)
−0.346915 + 0.937897i \(0.612771\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 95390.0i 0.805459i 0.915319 + 0.402729i \(0.131938\pi\)
−0.915319 + 0.402729i \(0.868062\pi\)
\(108\) 0 0
\(109\) − 166091.i − 1.33900i −0.742814 0.669498i \(-0.766509\pi\)
0.742814 0.669498i \(-0.233491\pi\)
\(110\) 0 0
\(111\) 145643. 1.12198
\(112\) 0 0
\(113\) 174815. 1.28790 0.643951 0.765067i \(-0.277294\pi\)
0.643951 + 0.765067i \(0.277294\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 33095.3i 0.223512i
\(118\) 0 0
\(119\) −19633.7 −0.127097
\(120\) 0 0
\(121\) 140904. 0.874901
\(122\) 0 0
\(123\) 31394.4i 0.187107i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −94893.2 −0.522067 −0.261033 0.965330i \(-0.584063\pi\)
−0.261033 + 0.965330i \(0.584063\pi\)
\(128\) 0 0
\(129\) 169785. 0.898307
\(130\) 0 0
\(131\) − 263177.i − 1.33989i −0.742409 0.669947i \(-0.766317\pi\)
0.742409 0.669947i \(-0.233683\pi\)
\(132\) 0 0
\(133\) − 11526.0i − 0.0565001i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12040.5 −0.0548080 −0.0274040 0.999624i \(-0.508724\pi\)
−0.0274040 + 0.999624i \(0.508724\pi\)
\(138\) 0 0
\(139\) 357698.i 1.57029i 0.619312 + 0.785145i \(0.287412\pi\)
−0.619312 + 0.785145i \(0.712588\pi\)
\(140\) 0 0
\(141\) − 10486.9i − 0.0444222i
\(142\) 0 0
\(143\) 35030.2 0.143253
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 129909.i 0.495846i
\(148\) 0 0
\(149\) − 361479.i − 1.33388i −0.745111 0.666940i \(-0.767604\pi\)
0.745111 0.666940i \(-0.232396\pi\)
\(150\) 0 0
\(151\) 337938. 1.20613 0.603067 0.797691i \(-0.293945\pi\)
0.603067 + 0.797691i \(0.293945\pi\)
\(152\) 0 0
\(153\) 39882.7 0.137739
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 155005.i − 0.501876i −0.968003 0.250938i \(-0.919261\pi\)
0.968003 0.250938i \(-0.0807391\pi\)
\(158\) 0 0
\(159\) −239915. −0.752602
\(160\) 0 0
\(161\) 104100. 0.316510
\(162\) 0 0
\(163\) − 126397.i − 0.372621i −0.982491 0.186311i \(-0.940347\pi\)
0.982491 0.186311i \(-0.0596531\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −709796. −1.96944 −0.984719 0.174152i \(-0.944282\pi\)
−0.984719 + 0.174152i \(0.944282\pi\)
\(168\) 0 0
\(169\) 310386. 0.835960
\(170\) 0 0
\(171\) 23413.2i 0.0612308i
\(172\) 0 0
\(173\) − 395365.i − 1.00435i −0.864767 0.502173i \(-0.832534\pi\)
0.864767 0.502173i \(-0.167466\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −332826. −0.798517
\(178\) 0 0
\(179\) 265918.i 0.620318i 0.950685 + 0.310159i \(0.100382\pi\)
−0.950685 + 0.310159i \(0.899618\pi\)
\(180\) 0 0
\(181\) − 836091.i − 1.89696i −0.316843 0.948478i \(-0.602623\pi\)
0.316843 0.948478i \(-0.397377\pi\)
\(182\) 0 0
\(183\) 223006. 0.492254
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 42214.4i − 0.0882788i
\(188\) 0 0
\(189\) 259789.i 0.529013i
\(190\) 0 0
\(191\) 770184. 1.52761 0.763803 0.645450i \(-0.223330\pi\)
0.763803 + 0.645450i \(0.223330\pi\)
\(192\) 0 0
\(193\) 694883. 1.34282 0.671411 0.741085i \(-0.265688\pi\)
0.671411 + 0.741085i \(0.265688\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 304179.i − 0.558424i −0.960229 0.279212i \(-0.909927\pi\)
0.960229 0.279212i \(-0.0900733\pi\)
\(198\) 0 0
\(199\) 575412. 1.03002 0.515011 0.857184i \(-0.327788\pi\)
0.515011 + 0.857184i \(0.327788\pi\)
\(200\) 0 0
\(201\) 403315. 0.704133
\(202\) 0 0
\(203\) 60877.8i 0.103686i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −211463. −0.343011
\(208\) 0 0
\(209\) 24782.0 0.0392438
\(210\) 0 0
\(211\) − 154406.i − 0.238758i −0.992849 0.119379i \(-0.961910\pi\)
0.992849 0.119379i \(-0.0380903\pi\)
\(212\) 0 0
\(213\) − 323483.i − 0.488543i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −408966. −0.589573
\(218\) 0 0
\(219\) − 830385.i − 1.16995i
\(220\) 0 0
\(221\) 73398.0i 0.101089i
\(222\) 0 0
\(223\) 817613. 1.10100 0.550498 0.834836i \(-0.314438\pi\)
0.550498 + 0.834836i \(0.314438\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 45598.7i − 0.0587338i −0.999569 0.0293669i \(-0.990651\pi\)
0.999569 0.0293669i \(-0.00934912\pi\)
\(228\) 0 0
\(229\) 633888.i 0.798774i 0.916783 + 0.399387i \(0.130777\pi\)
−0.916783 + 0.399387i \(0.869223\pi\)
\(230\) 0 0
\(231\) 97785.0 0.120571
\(232\) 0 0
\(233\) 245572. 0.296339 0.148169 0.988962i \(-0.452662\pi\)
0.148169 + 0.988962i \(0.452662\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 243166.i 0.281211i
\(238\) 0 0
\(239\) 1.13159e6 1.28142 0.640711 0.767782i \(-0.278639\pi\)
0.640711 + 0.767782i \(0.278639\pi\)
\(240\) 0 0
\(241\) 1.56424e6 1.73484 0.867421 0.497575i \(-0.165776\pi\)
0.867421 + 0.497575i \(0.165776\pi\)
\(242\) 0 0
\(243\) − 867775.i − 0.942739i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −43088.4 −0.0449384
\(248\) 0 0
\(249\) 696104. 0.711501
\(250\) 0 0
\(251\) − 1.45223e6i − 1.45496i −0.686130 0.727479i \(-0.740692\pi\)
0.686130 0.727479i \(-0.259308\pi\)
\(252\) 0 0
\(253\) 223826.i 0.219841i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.67551e6 −1.58240 −0.791198 0.611560i \(-0.790542\pi\)
−0.791198 + 0.611560i \(0.790542\pi\)
\(258\) 0 0
\(259\) − 921364.i − 0.853458i
\(260\) 0 0
\(261\) − 123663.i − 0.112367i
\(262\) 0 0
\(263\) 977406. 0.871336 0.435668 0.900107i \(-0.356512\pi\)
0.435668 + 0.900107i \(0.356512\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 690711.i − 0.592950i
\(268\) 0 0
\(269\) − 15731.4i − 0.0132552i −0.999978 0.00662760i \(-0.997890\pi\)
0.999978 0.00662760i \(-0.00210964\pi\)
\(270\) 0 0
\(271\) 861364. 0.712465 0.356233 0.934397i \(-0.384061\pi\)
0.356233 + 0.934397i \(0.384061\pi\)
\(272\) 0 0
\(273\) −170018. −0.138067
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.16950e6i 1.69887i 0.527693 + 0.849435i \(0.323057\pi\)
−0.527693 + 0.849435i \(0.676943\pi\)
\(278\) 0 0
\(279\) 830746. 0.638937
\(280\) 0 0
\(281\) 1.81796e6 1.37347 0.686736 0.726907i \(-0.259043\pi\)
0.686736 + 0.726907i \(0.259043\pi\)
\(282\) 0 0
\(283\) − 998020.i − 0.740753i −0.928882 0.370376i \(-0.879229\pi\)
0.928882 0.370376i \(-0.120771\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 198606. 0.142327
\(288\) 0 0
\(289\) −1.33141e6 −0.937704
\(290\) 0 0
\(291\) − 130974.i − 0.0906674i
\(292\) 0 0
\(293\) 399603.i 0.271932i 0.990714 + 0.135966i \(0.0434138\pi\)
−0.990714 + 0.135966i \(0.956586\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −558571. −0.367441
\(298\) 0 0
\(299\) − 389165.i − 0.251742i
\(300\) 0 0
\(301\) − 1.07409e6i − 0.683318i
\(302\) 0 0
\(303\) 987479. 0.617904
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 368112.i − 0.222912i −0.993769 0.111456i \(-0.964449\pi\)
0.993769 0.111456i \(-0.0355515\pi\)
\(308\) 0 0
\(309\) 779573.i 0.464473i
\(310\) 0 0
\(311\) 1.13519e6 0.665530 0.332765 0.943010i \(-0.392018\pi\)
0.332765 + 0.943010i \(0.392018\pi\)
\(312\) 0 0
\(313\) 334474. 0.192975 0.0964877 0.995334i \(-0.469239\pi\)
0.0964877 + 0.995334i \(0.469239\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 837898.i 0.468321i 0.972198 + 0.234160i \(0.0752341\pi\)
−0.972198 + 0.234160i \(0.924766\pi\)
\(318\) 0 0
\(319\) −130893. −0.0720179
\(320\) 0 0
\(321\) 995437. 0.539202
\(322\) 0 0
\(323\) 51925.2i 0.0276931i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.73323e6 −0.896370
\(328\) 0 0
\(329\) −66341.9 −0.0337908
\(330\) 0 0
\(331\) 2.30318e6i 1.15547i 0.816225 + 0.577734i \(0.196063\pi\)
−0.816225 + 0.577734i \(0.803937\pi\)
\(332\) 0 0
\(333\) 1.87160e6i 0.924917i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −698751. −0.335156 −0.167578 0.985859i \(-0.553595\pi\)
−0.167578 + 0.985859i \(0.553595\pi\)
\(338\) 0 0
\(339\) − 1.82427e6i − 0.862166i
\(340\) 0 0
\(341\) − 879315.i − 0.409505i
\(342\) 0 0
\(343\) 1.93136e6 0.886398
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.30033e6i 1.47141i 0.677301 + 0.735706i \(0.263149\pi\)
−0.677301 + 0.735706i \(0.736851\pi\)
\(348\) 0 0
\(349\) − 121442.i − 0.0533711i −0.999644 0.0266855i \(-0.991505\pi\)
0.999644 0.0266855i \(-0.00849528\pi\)
\(350\) 0 0
\(351\) 971186. 0.420760
\(352\) 0 0
\(353\) −56609.0 −0.0241796 −0.0120898 0.999927i \(-0.503848\pi\)
−0.0120898 + 0.999927i \(0.503848\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 204887.i 0.0850831i
\(358\) 0 0
\(359\) 446755. 0.182950 0.0914751 0.995807i \(-0.470842\pi\)
0.0914751 + 0.995807i \(0.470842\pi\)
\(360\) 0 0
\(361\) 2.44562e6 0.987689
\(362\) 0 0
\(363\) − 1.47039e6i − 0.585688i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 304081. 0.117849 0.0589243 0.998262i \(-0.481233\pi\)
0.0589243 + 0.998262i \(0.481233\pi\)
\(368\) 0 0
\(369\) −403436. −0.154244
\(370\) 0 0
\(371\) 1.51774e6i 0.572484i
\(372\) 0 0
\(373\) − 932701.i − 0.347112i −0.984824 0.173556i \(-0.944474\pi\)
0.984824 0.173556i \(-0.0555258\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 227583. 0.0824683
\(378\) 0 0
\(379\) 760659.i 0.272014i 0.990708 + 0.136007i \(0.0434270\pi\)
−0.990708 + 0.136007i \(0.956573\pi\)
\(380\) 0 0
\(381\) 990254.i 0.349489i
\(382\) 0 0
\(383\) 1.80993e6 0.630470 0.315235 0.949014i \(-0.397917\pi\)
0.315235 + 0.949014i \(0.397917\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.18183e6i 0.740532i
\(388\) 0 0
\(389\) − 4.14597e6i − 1.38916i −0.719416 0.694579i \(-0.755591\pi\)
0.719416 0.694579i \(-0.244409\pi\)
\(390\) 0 0
\(391\) −468977. −0.155135
\(392\) 0 0
\(393\) −2.74637e6 −0.896971
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.67426e6i − 0.533145i −0.963815 0.266573i \(-0.914109\pi\)
0.963815 0.266573i \(-0.0858912\pi\)
\(398\) 0 0
\(399\) −120279. −0.0378231
\(400\) 0 0
\(401\) −2.20886e6 −0.685975 −0.342987 0.939340i \(-0.611439\pi\)
−0.342987 + 0.939340i \(0.611439\pi\)
\(402\) 0 0
\(403\) 1.52886e6i 0.468927i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.98102e6 0.592793
\(408\) 0 0
\(409\) 1.59010e6 0.470019 0.235010 0.971993i \(-0.424488\pi\)
0.235010 + 0.971993i \(0.424488\pi\)
\(410\) 0 0
\(411\) 125648.i 0.0366904i
\(412\) 0 0
\(413\) 2.10551e6i 0.607411i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.73274e6 1.05121
\(418\) 0 0
\(419\) 4.24535e6i 1.18135i 0.806909 + 0.590675i \(0.201139\pi\)
−0.806909 + 0.590675i \(0.798861\pi\)
\(420\) 0 0
\(421\) − 5.17330e6i − 1.42253i −0.702922 0.711267i \(-0.748122\pi\)
0.702922 0.711267i \(-0.251878\pi\)
\(422\) 0 0
\(423\) 134763. 0.0366200
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 1.41077e6i − 0.374445i
\(428\) 0 0
\(429\) − 365556.i − 0.0958982i
\(430\) 0 0
\(431\) −1.02248e6 −0.265132 −0.132566 0.991174i \(-0.542322\pi\)
−0.132566 + 0.991174i \(0.542322\pi\)
\(432\) 0 0
\(433\) 2.18503e6 0.560063 0.280031 0.959991i \(-0.409655\pi\)
0.280031 + 0.959991i \(0.409655\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 275314.i − 0.0689643i
\(438\) 0 0
\(439\) −1.22033e6 −0.302216 −0.151108 0.988517i \(-0.548284\pi\)
−0.151108 + 0.988517i \(0.548284\pi\)
\(440\) 0 0
\(441\) −1.66941e6 −0.408758
\(442\) 0 0
\(443\) − 509711.i − 0.123400i −0.998095 0.0617000i \(-0.980348\pi\)
0.998095 0.0617000i \(-0.0196522\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3.77219e6 −0.892945
\(448\) 0 0
\(449\) 3.54089e6 0.828890 0.414445 0.910074i \(-0.363976\pi\)
0.414445 + 0.910074i \(0.363976\pi\)
\(450\) 0 0
\(451\) 427022.i 0.0988573i
\(452\) 0 0
\(453\) − 3.52654e6i − 0.807427i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.06559e6 0.238671 0.119335 0.992854i \(-0.461924\pi\)
0.119335 + 0.992854i \(0.461924\pi\)
\(458\) 0 0
\(459\) − 1.17036e6i − 0.259292i
\(460\) 0 0
\(461\) 6.92975e6i 1.51868i 0.650696 + 0.759339i \(0.274477\pi\)
−0.650696 + 0.759339i \(0.725523\pi\)
\(462\) 0 0
\(463\) −7.21004e6 −1.56310 −0.781548 0.623845i \(-0.785569\pi\)
−0.781548 + 0.623845i \(0.785569\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.00541e6i − 0.637693i −0.947806 0.318846i \(-0.896705\pi\)
0.947806 0.318846i \(-0.103295\pi\)
\(468\) 0 0
\(469\) − 2.55144e6i − 0.535615i
\(470\) 0 0
\(471\) −1.61755e6 −0.335973
\(472\) 0 0
\(473\) 2.30939e6 0.474618
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 3.08305e6i − 0.620418i
\(478\) 0 0
\(479\) −2.47740e6 −0.493353 −0.246676 0.969098i \(-0.579338\pi\)
−0.246676 + 0.969098i \(0.579338\pi\)
\(480\) 0 0
\(481\) −3.44439e6 −0.678813
\(482\) 0 0
\(483\) − 1.08633e6i − 0.211883i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.58130e6 0.875320 0.437660 0.899141i \(-0.355807\pi\)
0.437660 + 0.899141i \(0.355807\pi\)
\(488\) 0 0
\(489\) −1.31901e6 −0.249446
\(490\) 0 0
\(491\) − 8.23983e6i − 1.54246i −0.636555 0.771231i \(-0.719641\pi\)
0.636555 0.771231i \(-0.280359\pi\)
\(492\) 0 0
\(493\) − 274257.i − 0.0508207i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.04641e6 −0.371622
\(498\) 0 0
\(499\) 4.49557e6i 0.808228i 0.914709 + 0.404114i \(0.132420\pi\)
−0.914709 + 0.404114i \(0.867580\pi\)
\(500\) 0 0
\(501\) 7.40704e6i 1.31841i
\(502\) 0 0
\(503\) −6.28876e6 −1.10827 −0.554134 0.832427i \(-0.686951\pi\)
−0.554134 + 0.832427i \(0.686951\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 3.23902e6i − 0.559620i
\(508\) 0 0
\(509\) 8.26032e6i 1.41320i 0.707615 + 0.706598i \(0.249771\pi\)
−0.707615 + 0.706598i \(0.750229\pi\)
\(510\) 0 0
\(511\) −5.25315e6 −0.889954
\(512\) 0 0
\(513\) 687063. 0.115266
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 142642.i − 0.0234704i
\(518\) 0 0
\(519\) −4.12581e6 −0.672344
\(520\) 0 0
\(521\) −1.09563e7 −1.76835 −0.884176 0.467154i \(-0.845279\pi\)
−0.884176 + 0.467154i \(0.845279\pi\)
\(522\) 0 0
\(523\) 9.74999e6i 1.55865i 0.626617 + 0.779327i \(0.284439\pi\)
−0.626617 + 0.779327i \(0.715561\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.84241e6 0.288975
\(528\) 0 0
\(529\) −3.94977e6 −0.613666
\(530\) 0 0
\(531\) − 4.27701e6i − 0.658269i
\(532\) 0 0
\(533\) − 742461.i − 0.113202i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.77497e6 0.415262
\(538\) 0 0
\(539\) 1.76701e6i 0.261979i
\(540\) 0 0
\(541\) 1.86030e6i 0.273268i 0.990622 + 0.136634i \(0.0436285\pi\)
−0.990622 + 0.136634i \(0.956372\pi\)
\(542\) 0 0
\(543\) −8.72499e6 −1.26989
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 725841.i − 0.103723i −0.998654 0.0518613i \(-0.983485\pi\)
0.998654 0.0518613i \(-0.0165154\pi\)
\(548\) 0 0
\(549\) 2.86576e6i 0.405796i
\(550\) 0 0
\(551\) 161003. 0.0225920
\(552\) 0 0
\(553\) 1.53831e6 0.213910
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 4.72234e6i − 0.644939i −0.946580 0.322470i \(-0.895487\pi\)
0.946580 0.322470i \(-0.104513\pi\)
\(558\) 0 0
\(559\) −4.01533e6 −0.543490
\(560\) 0 0
\(561\) −440526. −0.0590969
\(562\) 0 0
\(563\) 4.74239e6i 0.630560i 0.948999 + 0.315280i \(0.102098\pi\)
−0.948999 + 0.315280i \(0.897902\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 559764. 0.0731219
\(568\) 0 0
\(569\) −2.99470e6 −0.387768 −0.193884 0.981024i \(-0.562109\pi\)
−0.193884 + 0.981024i \(0.562109\pi\)
\(570\) 0 0
\(571\) 1.01416e7i 1.30172i 0.759198 + 0.650860i \(0.225591\pi\)
−0.759198 + 0.650860i \(0.774409\pi\)
\(572\) 0 0
\(573\) − 8.03722e6i − 1.02263i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.80870e6 0.476253 0.238126 0.971234i \(-0.423467\pi\)
0.238126 + 0.971234i \(0.423467\pi\)
\(578\) 0 0
\(579\) − 7.25142e6i − 0.898931i
\(580\) 0 0
\(581\) − 4.40367e6i − 0.541220i
\(582\) 0 0
\(583\) −3.26330e6 −0.397635
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 3.40054e6i − 0.407335i −0.979040 0.203668i \(-0.934714\pi\)
0.979040 0.203668i \(-0.0652862\pi\)
\(588\) 0 0
\(589\) 1.08159e6i 0.128462i
\(590\) 0 0
\(591\) −3.17425e6 −0.373828
\(592\) 0 0
\(593\) −1.27800e7 −1.49243 −0.746216 0.665704i \(-0.768132\pi\)
−0.746216 + 0.665704i \(0.768132\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 6.00468e6i − 0.689532i
\(598\) 0 0
\(599\) 614365. 0.0699616 0.0349808 0.999388i \(-0.488863\pi\)
0.0349808 + 0.999388i \(0.488863\pi\)
\(600\) 0 0
\(601\) −1.12864e7 −1.27459 −0.637294 0.770621i \(-0.719946\pi\)
−0.637294 + 0.770621i \(0.719946\pi\)
\(602\) 0 0
\(603\) 5.18283e6i 0.580462i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.81019e6 −0.199413 −0.0997065 0.995017i \(-0.531790\pi\)
−0.0997065 + 0.995017i \(0.531790\pi\)
\(608\) 0 0
\(609\) 635287. 0.0694108
\(610\) 0 0
\(611\) 248010.i 0.0268761i
\(612\) 0 0
\(613\) − 1.08728e7i − 1.16867i −0.811513 0.584335i \(-0.801355\pi\)
0.811513 0.584335i \(-0.198645\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.60152e6 0.698122 0.349061 0.937100i \(-0.386501\pi\)
0.349061 + 0.937100i \(0.386501\pi\)
\(618\) 0 0
\(619\) 8.83255e6i 0.926530i 0.886220 + 0.463265i \(0.153322\pi\)
−0.886220 + 0.463265i \(0.846678\pi\)
\(620\) 0 0
\(621\) 6.20541e6i 0.645716i
\(622\) 0 0
\(623\) −4.36955e6 −0.451042
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 258611.i − 0.0262711i
\(628\) 0 0
\(629\) 4.15079e6i 0.418316i
\(630\) 0 0
\(631\) −1.48464e7 −1.48439 −0.742194 0.670185i \(-0.766215\pi\)
−0.742194 + 0.670185i \(0.766215\pi\)
\(632\) 0 0
\(633\) −1.61129e6 −0.159833
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.07229e6i − 0.299995i
\(638\) 0 0
\(639\) 4.15694e6 0.402737
\(640\) 0 0
\(641\) −1.42105e7 −1.36604 −0.683022 0.730398i \(-0.739335\pi\)
−0.683022 + 0.730398i \(0.739335\pi\)
\(642\) 0 0
\(643\) 7.89022e6i 0.752595i 0.926499 + 0.376298i \(0.122803\pi\)
−0.926499 + 0.376298i \(0.877197\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.41387e7 1.32785 0.663924 0.747800i \(-0.268890\pi\)
0.663924 + 0.747800i \(0.268890\pi\)
\(648\) 0 0
\(649\) −4.52706e6 −0.421895
\(650\) 0 0
\(651\) 4.26774e6i 0.394680i
\(652\) 0 0
\(653\) 2.09667e7i 1.92419i 0.272720 + 0.962094i \(0.412077\pi\)
−0.272720 + 0.962094i \(0.587923\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.06709e7 0.964469
\(658\) 0 0
\(659\) − 5.17814e6i − 0.464473i −0.972659 0.232236i \(-0.925396\pi\)
0.972659 0.232236i \(-0.0746043\pi\)
\(660\) 0 0
\(661\) − 1.15802e7i − 1.03089i −0.856923 0.515444i \(-0.827627\pi\)
0.856923 0.515444i \(-0.172373\pi\)
\(662\) 0 0
\(663\) 765941. 0.0676724
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.45415e6i 0.126559i
\(668\) 0 0
\(669\) − 8.53216e6i − 0.737045i
\(670\) 0 0
\(671\) 3.03330e6 0.260081
\(672\) 0 0
\(673\) 3.44202e6 0.292938 0.146469 0.989215i \(-0.453209\pi\)
0.146469 + 0.989215i \(0.453209\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.81661e7i 1.52332i 0.647980 + 0.761658i \(0.275614\pi\)
−0.647980 + 0.761658i \(0.724386\pi\)
\(678\) 0 0
\(679\) −828560. −0.0689683
\(680\) 0 0
\(681\) −475843. −0.0393184
\(682\) 0 0
\(683\) − 1.58711e7i − 1.30184i −0.759148 0.650918i \(-0.774384\pi\)
0.759148 0.650918i \(-0.225616\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6.61490e6 0.534726
\(688\) 0 0
\(689\) 5.67388e6 0.455336
\(690\) 0 0
\(691\) 7.37470e6i 0.587556i 0.955874 + 0.293778i \(0.0949127\pi\)
−0.955874 + 0.293778i \(0.905087\pi\)
\(692\) 0 0
\(693\) 1.25659e6i 0.0993943i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −894730. −0.0697605
\(698\) 0 0
\(699\) − 2.56265e6i − 0.198379i
\(700\) 0 0
\(701\) 2.16654e7i 1.66522i 0.553857 + 0.832612i \(0.313155\pi\)
−0.553857 + 0.832612i \(0.686845\pi\)
\(702\) 0 0
\(703\) −2.43673e6 −0.185960
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 6.24695e6i − 0.470023i
\(708\) 0 0
\(709\) − 5.46373e6i − 0.408201i −0.978950 0.204100i \(-0.934573\pi\)
0.978950 0.204100i \(-0.0654269\pi\)
\(710\) 0 0
\(711\) −3.12482e6 −0.231820
\(712\) 0 0
\(713\) −9.76869e6 −0.719635
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1.18086e7i − 0.857829i
\(718\) 0 0
\(719\) −1.42857e7 −1.03058 −0.515288 0.857017i \(-0.672315\pi\)
−0.515288 + 0.857017i \(0.672315\pi\)
\(720\) 0 0
\(721\) 4.93171e6 0.353313
\(722\) 0 0
\(723\) − 1.63235e7i − 1.16136i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.55756e6 −0.249641 −0.124821 0.992179i \(-0.539836\pi\)
−0.124821 + 0.992179i \(0.539836\pi\)
\(728\) 0 0
\(729\) −1.11161e7 −0.774697
\(730\) 0 0
\(731\) 4.83881e6i 0.334923i
\(732\) 0 0
\(733\) 1.61816e7i 1.11240i 0.831048 + 0.556201i \(0.187742\pi\)
−0.831048 + 0.556201i \(0.812258\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.48584e6 0.372027
\(738\) 0 0
\(739\) 1.16551e7i 0.785063i 0.919739 + 0.392531i \(0.128401\pi\)
−0.919739 + 0.392531i \(0.871599\pi\)
\(740\) 0 0
\(741\) 449647.i 0.0300833i
\(742\) 0 0
\(743\) 2.41917e7 1.60766 0.803829 0.594860i \(-0.202792\pi\)
0.803829 + 0.594860i \(0.202792\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 8.94532e6i 0.586536i
\(748\) 0 0
\(749\) − 6.29730e6i − 0.410157i
\(750\) 0 0
\(751\) −2.13480e7 −1.38120 −0.690601 0.723236i \(-0.742654\pi\)
−0.690601 + 0.723236i \(0.742654\pi\)
\(752\) 0 0
\(753\) −1.51546e7 −0.973998
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.68129e7i 1.06636i 0.846002 + 0.533179i \(0.179003\pi\)
−0.846002 + 0.533179i \(0.820997\pi\)
\(758\) 0 0
\(759\) 2.33572e6 0.147169
\(760\) 0 0
\(761\) 1.07818e7 0.674888 0.337444 0.941346i \(-0.390438\pi\)
0.337444 + 0.941346i \(0.390438\pi\)
\(762\) 0 0
\(763\) 1.09647e7i 0.681845i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.87117e6 0.483116
\(768\) 0 0
\(769\) −3.03763e6 −0.185233 −0.0926166 0.995702i \(-0.529523\pi\)
−0.0926166 + 0.995702i \(0.529523\pi\)
\(770\) 0 0
\(771\) 1.74847e7i 1.05931i
\(772\) 0 0
\(773\) 2.73040e7i 1.64353i 0.569828 + 0.821764i \(0.307010\pi\)
−0.569828 + 0.821764i \(0.692990\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −9.61485e6 −0.571334
\(778\) 0 0
\(779\) − 525252.i − 0.0310116i
\(780\) 0 0
\(781\) − 4.39997e6i − 0.258120i
\(782\) 0 0
\(783\) −3.62891e6 −0.211530
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.58229e7i 0.910644i 0.890327 + 0.455322i \(0.150476\pi\)
−0.890327 + 0.455322i \(0.849524\pi\)
\(788\) 0 0
\(789\) − 1.01997e7i − 0.583302i
\(790\) 0 0
\(791\) −1.15407e7 −0.655827
\(792\) 0 0
\(793\) −5.27398e6 −0.297821
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.53728e6i 0.308781i 0.988010 + 0.154390i \(0.0493414\pi\)
−0.988010 + 0.154390i \(0.950659\pi\)
\(798\) 0 0
\(799\) 298874. 0.0165623
\(800\) 0 0
\(801\) 8.87602e6 0.488807
\(802\) 0 0
\(803\) − 1.12948e7i − 0.618143i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −164164. −0.00887348
\(808\) 0 0
\(809\) −4.59562e6 −0.246873 −0.123436 0.992352i \(-0.539391\pi\)
−0.123436 + 0.992352i \(0.539391\pi\)
\(810\) 0 0
\(811\) 3.14901e6i 0.168121i 0.996461 + 0.0840604i \(0.0267889\pi\)
−0.996461 + 0.0840604i \(0.973211\pi\)
\(812\) 0 0
\(813\) − 8.98872e6i − 0.476949i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.84063e6 −0.148888
\(818\) 0 0
\(819\) − 2.18483e6i − 0.113817i
\(820\) 0 0
\(821\) − 1.98853e7i − 1.02961i −0.857306 0.514807i \(-0.827864\pi\)
0.857306 0.514807i \(-0.172136\pi\)
\(822\) 0 0
\(823\) 1.53764e7 0.791328 0.395664 0.918395i \(-0.370515\pi\)
0.395664 + 0.918395i \(0.370515\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 8.95740e6i − 0.455426i −0.973728 0.227713i \(-0.926875\pi\)
0.973728 0.227713i \(-0.0731248\pi\)
\(828\) 0 0
\(829\) 2.95693e7i 1.49436i 0.664623 + 0.747179i \(0.268592\pi\)
−0.664623 + 0.747179i \(0.731408\pi\)
\(830\) 0 0
\(831\) 2.26397e7 1.13728
\(832\) 0 0
\(833\) −3.70237e6 −0.184870
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.43784e7i − 1.20279i
\(838\) 0 0
\(839\) 1.26360e7 0.619732 0.309866 0.950780i \(-0.399716\pi\)
0.309866 + 0.950780i \(0.399716\pi\)
\(840\) 0 0
\(841\) 1.96608e7 0.958540
\(842\) 0 0
\(843\) − 1.89713e7i − 0.919449i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −9.30194e6 −0.445518
\(848\) 0 0
\(849\) −1.04148e7 −0.495885
\(850\) 0 0
\(851\) − 2.20080e7i − 1.04173i
\(852\) 0 0
\(853\) − 6.41059e6i − 0.301665i −0.988559 0.150833i \(-0.951805\pi\)
0.988559 0.150833i \(-0.0481954\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.57309e7 −0.731646 −0.365823 0.930684i \(-0.619212\pi\)
−0.365823 + 0.930684i \(0.619212\pi\)
\(858\) 0 0
\(859\) − 3.33475e7i − 1.54199i −0.636844 0.770993i \(-0.719760\pi\)
0.636844 0.770993i \(-0.280240\pi\)
\(860\) 0 0
\(861\) − 2.07254e6i − 0.0952787i
\(862\) 0 0
\(863\) 1.62060e6 0.0740709 0.0370355 0.999314i \(-0.488209\pi\)
0.0370355 + 0.999314i \(0.488209\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.38938e7i 0.627732i
\(868\) 0 0
\(869\) 3.30751e6i 0.148577i
\(870\) 0 0
\(871\) −9.53820e6 −0.426011
\(872\) 0 0
\(873\) 1.68308e6 0.0747430
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.93461e6i 0.260551i 0.991478 + 0.130276i \(0.0415863\pi\)
−0.991478 + 0.130276i \(0.958414\pi\)
\(878\) 0 0
\(879\) 4.17004e6 0.182041
\(880\) 0 0
\(881\) 7.17940e6 0.311637 0.155818 0.987786i \(-0.450199\pi\)
0.155818 + 0.987786i \(0.450199\pi\)
\(882\) 0 0
\(883\) 5.72329e6i 0.247027i 0.992343 + 0.123513i \(0.0394162\pi\)
−0.992343 + 0.123513i \(0.960584\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.46048e7 0.623285 0.311643 0.950199i \(-0.399121\pi\)
0.311643 + 0.950199i \(0.399121\pi\)
\(888\) 0 0
\(889\) 6.26451e6 0.265847
\(890\) 0 0
\(891\) 1.20355e6i 0.0507889i
\(892\) 0 0
\(893\) 175454.i 0.00736266i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −4.06111e6 −0.168525
\(898\) 0 0
\(899\) − 5.71272e6i − 0.235745i
\(900\) 0 0
\(901\) − 6.83751e6i − 0.280599i
\(902\) 0 0
\(903\) −1.12086e7 −0.457437
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 5.43818e6i − 0.219501i −0.993959 0.109750i \(-0.964995\pi\)
0.993959 0.109750i \(-0.0350051\pi\)
\(908\) 0 0
\(909\) 1.26897e7i 0.509378i
\(910\) 0 0
\(911\) 3.71033e7 1.48121 0.740605 0.671941i \(-0.234539\pi\)
0.740605 + 0.671941i \(0.234539\pi\)
\(912\) 0 0
\(913\) 9.46831e6 0.375920
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.73740e7i 0.682302i
\(918\) 0 0
\(919\) 2.24895e7 0.878398 0.439199 0.898390i \(-0.355262\pi\)
0.439199 + 0.898390i \(0.355262\pi\)
\(920\) 0 0
\(921\) −3.84142e6 −0.149225
\(922\) 0 0
\(923\) 7.65021e6i 0.295576i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.00180e7 −0.382895
\(928\) 0 0
\(929\) 2.80271e7 1.06547 0.532733 0.846283i \(-0.321165\pi\)
0.532733 + 0.846283i \(0.321165\pi\)
\(930\) 0 0
\(931\) − 2.17348e6i − 0.0821830i
\(932\) 0 0
\(933\) − 1.18462e7i − 0.445528i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −62078.6 −0.00230990 −0.00115495 0.999999i \(-0.500368\pi\)
−0.00115495 + 0.999999i \(0.500368\pi\)
\(938\) 0 0
\(939\) − 3.49039e6i − 0.129184i
\(940\) 0 0
\(941\) − 4.45412e6i − 0.163979i −0.996633 0.0819894i \(-0.973873\pi\)
0.996633 0.0819894i \(-0.0261274\pi\)
\(942\) 0 0
\(943\) 4.74397e6 0.173725
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 4.59793e7i − 1.66605i −0.553237 0.833024i \(-0.686608\pi\)
0.553237 0.833024i \(-0.313392\pi\)
\(948\) 0 0
\(949\) 1.96382e7i 0.707841i
\(950\) 0 0
\(951\) 8.74385e6 0.313510
\(952\) 0 0
\(953\) 2.32064e7 0.827706 0.413853 0.910344i \(-0.364183\pi\)
0.413853 + 0.910344i \(0.364183\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.36593e6i 0.0482112i
\(958\) 0 0
\(959\) 794872. 0.0279094
\(960\) 0 0
\(961\) 9.74779e6 0.340485
\(962\) 0 0
\(963\) 1.27919e7i 0.444499i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −5.33110e7 −1.83337 −0.916686 0.399607i \(-0.869147\pi\)
−0.916686 + 0.399607i \(0.869147\pi\)
\(968\) 0 0
\(969\) 541863. 0.0185387
\(970\) 0 0
\(971\) − 2.49744e7i − 0.850056i −0.905180 0.425028i \(-0.860264\pi\)
0.905180 0.425028i \(-0.139736\pi\)
\(972\) 0 0
\(973\) − 2.36139e7i − 0.799625i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.97806e7 −1.33332 −0.666661 0.745361i \(-0.732277\pi\)
−0.666661 + 0.745361i \(0.732277\pi\)
\(978\) 0 0
\(979\) − 9.39495e6i − 0.313284i
\(980\) 0 0
\(981\) − 2.22730e7i − 0.738936i
\(982\) 0 0
\(983\) 3.80176e7 1.25488 0.627439 0.778666i \(-0.284103\pi\)
0.627439 + 0.778666i \(0.284103\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 692308.i 0.0226207i
\(988\) 0 0
\(989\) − 2.56560e7i − 0.834061i
\(990\) 0 0
\(991\) 4.34863e7 1.40659 0.703296 0.710897i \(-0.251711\pi\)
0.703296 + 0.710897i \(0.251711\pi\)
\(992\) 0 0
\(993\) 2.40347e7 0.773510
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9.27058e6i 0.295372i 0.989034 + 0.147686i \(0.0471825\pi\)
−0.989034 + 0.147686i \(0.952818\pi\)
\(998\) 0 0
\(999\) 5.49223e7 1.74115
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.d.d.401.7 20
4.3 odd 2 200.6.d.c.101.18 yes 20
5.2 odd 4 800.6.f.d.49.14 40
5.3 odd 4 800.6.f.d.49.27 40
5.4 even 2 800.6.d.b.401.14 20
8.3 odd 2 200.6.d.c.101.17 20
8.5 even 2 inner 800.6.d.d.401.14 20
20.3 even 4 200.6.f.d.149.25 40
20.7 even 4 200.6.f.d.149.16 40
20.19 odd 2 200.6.d.d.101.3 yes 20
40.3 even 4 200.6.f.d.149.15 40
40.13 odd 4 800.6.f.d.49.13 40
40.19 odd 2 200.6.d.d.101.4 yes 20
40.27 even 4 200.6.f.d.149.26 40
40.29 even 2 800.6.d.b.401.7 20
40.37 odd 4 800.6.f.d.49.28 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.17 20 8.3 odd 2
200.6.d.c.101.18 yes 20 4.3 odd 2
200.6.d.d.101.3 yes 20 20.19 odd 2
200.6.d.d.101.4 yes 20 40.19 odd 2
200.6.f.d.149.15 40 40.3 even 4
200.6.f.d.149.16 40 20.7 even 4
200.6.f.d.149.25 40 20.3 even 4
200.6.f.d.149.26 40 40.27 even 4
800.6.d.b.401.7 20 40.29 even 2
800.6.d.b.401.14 20 5.4 even 2
800.6.d.d.401.7 20 1.1 even 1 trivial
800.6.d.d.401.14 20 8.5 even 2 inner
800.6.f.d.49.13 40 40.13 odd 4
800.6.f.d.49.14 40 5.2 odd 4
800.6.f.d.49.27 40 5.3 odd 4
800.6.f.d.49.28 40 40.37 odd 4