Properties

Label 200.6.d.d.101.3
Level $200$
Weight $6$
Character 200.101
Analytic conductor $32.077$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(101,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.101");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0767639626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 130 x^{17} + 144 x^{16} + 1560 x^{15} - 12320 x^{14} - 56128 x^{13} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{49}\cdot 5^{4}\cdot 31 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.3
Root \(-5.25771 + 2.08722i\) of defining polynomial
Character \(\chi\) \(=\) 200.101
Dual form 200.6.d.d.101.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.25771 - 2.08722i) q^{2} -10.4354i q^{3} +(23.2871 + 21.9480i) q^{4} +(-21.7810 + 54.8666i) q^{6} -66.0164 q^{7} +(-76.6266 - 164.001i) q^{8} +134.101 q^{9} +141.942i q^{11} +(229.037 - 243.011i) q^{12} -246.793i q^{13} +(347.095 + 137.790i) q^{14} +(60.5748 + 1022.21i) q^{16} -297.407 q^{17} +(-705.067 - 279.898i) q^{18} -174.593i q^{19} +688.910i q^{21} +(296.263 - 746.288i) q^{22} -1576.89 q^{23} +(-1711.43 + 799.633i) q^{24} +(-515.110 + 1297.57i) q^{26} -3935.22i q^{27} +(-1537.33 - 1448.92i) q^{28} -922.162i q^{29} -6194.91 q^{31} +(1815.08 - 5500.90i) q^{32} +1481.22 q^{33} +(1563.68 + 620.752i) q^{34} +(3122.83 + 2943.25i) q^{36} -13956.6i q^{37} +(-364.413 + 917.960i) q^{38} -2575.40 q^{39} -3008.44 q^{41} +(1437.90 - 3622.09i) q^{42} +16270.0i q^{43} +(-3115.33 + 3305.40i) q^{44} +(8290.83 + 3291.31i) q^{46} +1004.93 q^{47} +(10667.2 - 632.125i) q^{48} -12448.8 q^{49} +3103.57i q^{51} +(5416.60 - 5747.09i) q^{52} +22990.4i q^{53} +(-8213.66 + 20690.3i) q^{54} +(5058.61 + 10826.8i) q^{56} -1821.96 q^{57} +(-1924.75 + 4848.46i) q^{58} +31893.8i q^{59} +21370.1i q^{61} +(32571.1 + 12930.1i) q^{62} -8852.89 q^{63} +(-21024.7 + 25133.7i) q^{64} +(-7787.85 - 3091.63i) q^{66} +38648.6i q^{67} +(-6925.73 - 6527.47i) q^{68} +16455.5i q^{69} -30998.5 q^{71} +(-10275.7 - 21992.8i) q^{72} -79573.5 q^{73} +(-29130.4 + 73379.8i) q^{74} +(3831.96 - 4065.76i) q^{76} -9370.46i q^{77} +(13540.7 + 5375.41i) q^{78} +23301.9 q^{79} -8479.17 q^{81} +(15817.5 + 6279.25i) q^{82} +66705.7i q^{83} +(-15120.2 + 16042.7i) q^{84} +(33959.0 - 85543.0i) q^{86} -9623.18 q^{87} +(23278.6 - 10876.5i) q^{88} +66188.9 q^{89} +16292.4i q^{91} +(-36721.1 - 34609.5i) q^{92} +64646.7i q^{93} +(-5283.64 - 2097.51i) q^{94} +(-57404.4 - 18941.2i) q^{96} -12550.8 q^{97} +(65452.4 + 25983.4i) q^{98} +19034.6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + q^{4} + 33 q^{6} + 196 q^{7} + 391 q^{8} - 1620 q^{9} + 241 q^{12} - 424 q^{14} - 55 q^{16} + 3368 q^{18} - 1197 q^{22} + 7184 q^{23} + 9459 q^{24} + 9172 q^{26} + 13492 q^{28} + 7160 q^{31}+ \cdots - 164655 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.25771 2.08722i −0.929441 0.368971i
\(3\) 10.4354i 0.669434i −0.942319 0.334717i \(-0.891359\pi\)
0.942319 0.334717i \(-0.108641\pi\)
\(4\) 23.2871 + 21.9480i 0.727721 + 0.685874i
\(5\) 0 0
\(6\) −21.7810 + 54.8666i −0.247002 + 0.622200i
\(7\) −66.0164 −0.509221 −0.254611 0.967044i \(-0.581947\pi\)
−0.254611 + 0.967044i \(0.581947\pi\)
\(8\) −76.6266 164.001i −0.423306 0.905987i
\(9\) 134.101 0.551858
\(10\) 0 0
\(11\) 141.942i 0.353694i 0.984238 + 0.176847i \(0.0565898\pi\)
−0.984238 + 0.176847i \(0.943410\pi\)
\(12\) 229.037 243.011i 0.459147 0.487161i
\(13\) 246.793i 0.405018i −0.979280 0.202509i \(-0.935090\pi\)
0.979280 0.202509i \(-0.0649096\pi\)
\(14\) 347.095 + 137.790i 0.473291 + 0.187888i
\(15\) 0 0
\(16\) 60.5748 + 1022.21i 0.0591551 + 0.998249i
\(17\) −297.407 −0.249591 −0.124795 0.992182i \(-0.539827\pi\)
−0.124795 + 0.992182i \(0.539827\pi\)
\(18\) −705.067 279.898i −0.512919 0.203619i
\(19\) 174.593i 0.110954i −0.998460 0.0554770i \(-0.982332\pi\)
0.998460 0.0554770i \(-0.0176680\pi\)
\(20\) 0 0
\(21\) 688.910i 0.340890i
\(22\) 296.263 746.288i 0.130503 0.328738i
\(23\) −1576.89 −0.621558 −0.310779 0.950482i \(-0.600590\pi\)
−0.310779 + 0.950482i \(0.600590\pi\)
\(24\) −1711.43 + 799.633i −0.606499 + 0.283376i
\(25\) 0 0
\(26\) −515.110 + 1297.57i −0.149440 + 0.376441i
\(27\) 3935.22i 1.03887i
\(28\) −1537.33 1448.92i −0.370571 0.349261i
\(29\) 922.162i 0.203616i −0.994804 0.101808i \(-0.967537\pi\)
0.994804 0.101808i \(-0.0324628\pi\)
\(30\) 0 0
\(31\) −6194.91 −1.15779 −0.578897 0.815401i \(-0.696516\pi\)
−0.578897 + 0.815401i \(0.696516\pi\)
\(32\) 1815.08 5500.90i 0.313344 0.949640i
\(33\) 1481.22 0.236775
\(34\) 1563.68 + 620.752i 0.231980 + 0.0920918i
\(35\) 0 0
\(36\) 3122.83 + 2943.25i 0.401598 + 0.378505i
\(37\) 13956.6i 1.67601i −0.545666 0.838003i \(-0.683723\pi\)
0.545666 0.838003i \(-0.316277\pi\)
\(38\) −364.413 + 917.960i −0.0409388 + 0.103125i
\(39\) −2575.40 −0.271133
\(40\) 0 0
\(41\) −3008.44 −0.279500 −0.139750 0.990187i \(-0.544630\pi\)
−0.139750 + 0.990187i \(0.544630\pi\)
\(42\) 1437.90 3622.09i 0.125779 0.316837i
\(43\) 16270.0i 1.34189i 0.741508 + 0.670944i \(0.234111\pi\)
−0.741508 + 0.670944i \(0.765889\pi\)
\(44\) −3115.33 + 3305.40i −0.242589 + 0.257391i
\(45\) 0 0
\(46\) 8290.83 + 3291.31i 0.577701 + 0.229337i
\(47\) 1004.93 0.0663578 0.0331789 0.999449i \(-0.489437\pi\)
0.0331789 + 0.999449i \(0.489437\pi\)
\(48\) 10667.2 632.125i 0.668262 0.0396004i
\(49\) −12448.8 −0.740694
\(50\) 0 0
\(51\) 3103.57i 0.167085i
\(52\) 5416.60 5747.09i 0.277791 0.294740i
\(53\) 22990.4i 1.12424i 0.827057 + 0.562118i \(0.190013\pi\)
−0.827057 + 0.562118i \(0.809987\pi\)
\(54\) −8213.66 + 20690.3i −0.383312 + 0.965565i
\(55\) 0 0
\(56\) 5058.61 + 10826.8i 0.215556 + 0.461348i
\(57\) −1821.96 −0.0742764
\(58\) −1924.75 + 4848.46i −0.0751285 + 0.189249i
\(59\) 31893.8i 1.19282i 0.802678 + 0.596412i \(0.203408\pi\)
−0.802678 + 0.596412i \(0.796592\pi\)
\(60\) 0 0
\(61\) 21370.1i 0.735328i 0.929959 + 0.367664i \(0.119842\pi\)
−0.929959 + 0.367664i \(0.880158\pi\)
\(62\) 32571.1 + 12930.1i 1.07610 + 0.427192i
\(63\) −8852.89 −0.281018
\(64\) −21024.7 + 25133.7i −0.641624 + 0.767019i
\(65\) 0 0
\(66\) −7787.85 3091.63i −0.220068 0.0873631i
\(67\) 38648.6i 1.05183i 0.850536 + 0.525916i \(0.176277\pi\)
−0.850536 + 0.525916i \(0.823723\pi\)
\(68\) −6925.73 6527.47i −0.181632 0.171188i
\(69\) 16455.5i 0.416092i
\(70\) 0 0
\(71\) −30998.5 −0.729784 −0.364892 0.931050i \(-0.618894\pi\)
−0.364892 + 0.931050i \(0.618894\pi\)
\(72\) −10275.7 21992.8i −0.233605 0.499976i
\(73\) −79573.5 −1.74768 −0.873838 0.486217i \(-0.838377\pi\)
−0.873838 + 0.486217i \(0.838377\pi\)
\(74\) −29130.4 + 73379.8i −0.618398 + 1.55775i
\(75\) 0 0
\(76\) 3831.96 4065.76i 0.0761004 0.0807436i
\(77\) 9370.46i 0.180109i
\(78\) 13540.7 + 5375.41i 0.252002 + 0.100040i
\(79\) 23301.9 0.420072 0.210036 0.977694i \(-0.432642\pi\)
0.210036 + 0.977694i \(0.432642\pi\)
\(80\) 0 0
\(81\) −8479.17 −0.143596
\(82\) 15817.5 + 6279.25i 0.259778 + 0.103127i
\(83\) 66705.7i 1.06284i 0.847109 + 0.531420i \(0.178341\pi\)
−0.847109 + 0.531420i \(0.821659\pi\)
\(84\) −15120.2 + 16042.7i −0.233808 + 0.248073i
\(85\) 0 0
\(86\) 33959.0 85543.0i 0.495118 1.24721i
\(87\) −9623.18 −0.136308
\(88\) 23278.6 10876.5i 0.320442 0.149721i
\(89\) 66188.9 0.885748 0.442874 0.896584i \(-0.353959\pi\)
0.442874 + 0.896584i \(0.353959\pi\)
\(90\) 0 0
\(91\) 16292.4i 0.206244i
\(92\) −36721.1 34609.5i −0.452320 0.426310i
\(93\) 64646.7i 0.775066i
\(94\) −5283.64 2097.51i −0.0616756 0.0244841i
\(95\) 0 0
\(96\) −57404.4 18941.2i −0.635721 0.209763i
\(97\) −12550.8 −0.135439 −0.0677194 0.997704i \(-0.521572\pi\)
−0.0677194 + 0.997704i \(0.521572\pi\)
\(98\) 65452.4 + 25983.4i 0.688431 + 0.273295i
\(99\) 19034.6i 0.195189i
\(100\) 0 0
\(101\) 94627.3i 0.923024i 0.887134 + 0.461512i \(0.152693\pi\)
−0.887134 + 0.461512i \(0.847307\pi\)
\(102\) 6477.83 16317.7i 0.0616494 0.155295i
\(103\) −74704.4 −0.693830 −0.346915 0.937897i \(-0.612771\pi\)
−0.346915 + 0.937897i \(0.612771\pi\)
\(104\) −40474.3 + 18910.9i −0.366941 + 0.171447i
\(105\) 0 0
\(106\) 47986.0 120877.i 0.414810 1.04491i
\(107\) 95390.0i 0.805459i 0.915319 + 0.402729i \(0.131938\pi\)
−0.915319 + 0.402729i \(0.868062\pi\)
\(108\) 86370.1 91639.8i 0.712531 0.756005i
\(109\) 166091.i 1.33900i −0.742814 0.669498i \(-0.766509\pi\)
0.742814 0.669498i \(-0.233491\pi\)
\(110\) 0 0
\(111\) −145643. −1.12198
\(112\) −3998.93 67482.4i −0.0301230 0.508329i
\(113\) −174815. −1.28790 −0.643951 0.765067i \(-0.722706\pi\)
−0.643951 + 0.765067i \(0.722706\pi\)
\(114\) 9579.33 + 3802.82i 0.0690356 + 0.0274059i
\(115\) 0 0
\(116\) 20239.6 21474.5i 0.139655 0.148176i
\(117\) 33095.3i 0.223512i
\(118\) 66569.3 167688.i 0.440118 1.10866i
\(119\) 19633.7 0.127097
\(120\) 0 0
\(121\) 140904. 0.874901
\(122\) 44603.9 112358.i 0.271315 0.683444i
\(123\) 31394.4i 0.187107i
\(124\) −144261. 135966.i −0.842550 0.794100i
\(125\) 0 0
\(126\) 46545.9 + 18477.9i 0.261189 + 0.103687i
\(127\) −94893.2 −0.522067 −0.261033 0.965330i \(-0.584063\pi\)
−0.261033 + 0.965330i \(0.584063\pi\)
\(128\) 163001. 88262.5i 0.879360 0.476158i
\(129\) 169785. 0.898307
\(130\) 0 0
\(131\) 263177.i 1.33989i 0.742409 + 0.669947i \(0.233683\pi\)
−0.742409 + 0.669947i \(0.766317\pi\)
\(132\) 34493.4 + 32509.8i 0.172306 + 0.162398i
\(133\) 11526.0i 0.0565001i
\(134\) 80667.9 203203.i 0.388096 0.977616i
\(135\) 0 0
\(136\) 22789.3 + 48775.1i 0.105653 + 0.226126i
\(137\) 12040.5 0.0548080 0.0274040 0.999624i \(-0.491276\pi\)
0.0274040 + 0.999624i \(0.491276\pi\)
\(138\) 34346.3 86518.5i 0.153526 0.386733i
\(139\) 357698.i 1.57029i −0.619312 0.785145i \(-0.712588\pi\)
0.619312 0.785145i \(-0.287412\pi\)
\(140\) 0 0
\(141\) 10486.9i 0.0444222i
\(142\) 162981. + 64700.5i 0.678291 + 0.269269i
\(143\) 35030.2 0.143253
\(144\) 8123.16 + 137079.i 0.0326452 + 0.550891i
\(145\) 0 0
\(146\) 418374. + 166087.i 1.62436 + 0.644842i
\(147\) 129909.i 0.495846i
\(148\) 306319. 325008.i 1.14953 1.21966i
\(149\) 361479.i 1.33388i −0.745111 0.666940i \(-0.767604\pi\)
0.745111 0.666940i \(-0.232396\pi\)
\(150\) 0 0
\(151\) −337938. −1.20613 −0.603067 0.797691i \(-0.706055\pi\)
−0.603067 + 0.797691i \(0.706055\pi\)
\(152\) −28633.5 + 13378.5i −0.100523 + 0.0469675i
\(153\) −39882.7 −0.137739
\(154\) −19558.2 + 49267.2i −0.0664548 + 0.167400i
\(155\) 0 0
\(156\) −59973.4 56524.7i −0.197309 0.185963i
\(157\) 155005.i 0.501876i 0.968003 + 0.250938i \(0.0807391\pi\)
−0.968003 + 0.250938i \(0.919261\pi\)
\(158\) −122515. 48636.1i −0.390432 0.154994i
\(159\) 239915. 0.752602
\(160\) 0 0
\(161\) 104100. 0.316510
\(162\) 44581.0 + 17697.9i 0.133464 + 0.0529826i
\(163\) 126397.i 0.372621i −0.982491 0.186311i \(-0.940347\pi\)
0.982491 0.186311i \(-0.0596531\pi\)
\(164\) −70057.7 66029.0i −0.203398 0.191701i
\(165\) 0 0
\(166\) 139229. 350719.i 0.392157 0.987846i
\(167\) −709796. −1.96944 −0.984719 0.174152i \(-0.944282\pi\)
−0.984719 + 0.174152i \(0.944282\pi\)
\(168\) 112982. 52788.8i 0.308842 0.144301i
\(169\) 310386. 0.835960
\(170\) 0 0
\(171\) 23413.2i 0.0612308i
\(172\) −357093. + 378881.i −0.920366 + 0.976520i
\(173\) 395365.i 1.00435i 0.864767 + 0.502173i \(0.167466\pi\)
−0.864767 + 0.502173i \(0.832534\pi\)
\(174\) 50595.9 + 20085.6i 0.126690 + 0.0502936i
\(175\) 0 0
\(176\) −145094. + 8598.08i −0.353075 + 0.0209228i
\(177\) 332826. 0.798517
\(178\) −348002. 138150.i −0.823250 0.326815i
\(179\) 265918.i 0.620318i −0.950685 0.310159i \(-0.899618\pi\)
0.950685 0.310159i \(-0.100382\pi\)
\(180\) 0 0
\(181\) 836091.i 1.89696i −0.316843 0.948478i \(-0.602623\pi\)
0.316843 0.948478i \(-0.397377\pi\)
\(182\) 34005.7 85660.6i 0.0760980 0.191692i
\(183\) 223006. 0.492254
\(184\) 120832. + 258612.i 0.263109 + 0.563123i
\(185\) 0 0
\(186\) 134932. 339894.i 0.285977 0.720378i
\(187\) 42214.4i 0.0882788i
\(188\) 23401.9 + 22056.2i 0.0482899 + 0.0455130i
\(189\) 259789.i 0.529013i
\(190\) 0 0
\(191\) −770184. −1.52761 −0.763803 0.645450i \(-0.776670\pi\)
−0.763803 + 0.645450i \(0.776670\pi\)
\(192\) 262281. + 219403.i 0.513469 + 0.429525i
\(193\) −694883. −1.34282 −0.671411 0.741085i \(-0.734312\pi\)
−0.671411 + 0.741085i \(0.734312\pi\)
\(194\) 65988.7 + 26196.3i 0.125882 + 0.0499730i
\(195\) 0 0
\(196\) −289897. 273227.i −0.539018 0.508022i
\(197\) 304179.i 0.558424i 0.960229 + 0.279212i \(0.0900733\pi\)
−0.960229 + 0.279212i \(0.909927\pi\)
\(198\) 39729.2 100078.i 0.0720190 0.181416i
\(199\) −575412. −1.03002 −0.515011 0.857184i \(-0.672212\pi\)
−0.515011 + 0.857184i \(0.672212\pi\)
\(200\) 0 0
\(201\) 403315. 0.704133
\(202\) 197508. 497523.i 0.340569 0.857896i
\(203\) 60877.8i 0.103686i
\(204\) −68117.1 + 72273.1i −0.114599 + 0.121591i
\(205\) 0 0
\(206\) 392774. + 155924.i 0.644874 + 0.256003i
\(207\) −211463. −0.343011
\(208\) 252274. 14949.4i 0.404309 0.0239589i
\(209\) 24782.0 0.0392438
\(210\) 0 0
\(211\) 154406.i 0.238758i 0.992849 + 0.119379i \(0.0380903\pi\)
−0.992849 + 0.119379i \(0.961910\pi\)
\(212\) −504593. + 535379.i −0.771083 + 0.818129i
\(213\) 323483.i 0.488543i
\(214\) 199099. 501533.i 0.297191 0.748626i
\(215\) 0 0
\(216\) −645381. + 301543.i −0.941200 + 0.439759i
\(217\) 408966. 0.589573
\(218\) −346667. + 873258.i −0.494051 + 1.24452i
\(219\) 830385.i 1.16995i
\(220\) 0 0
\(221\) 73398.0i 0.101089i
\(222\) 765751. + 303989.i 1.04281 + 0.413977i
\(223\) 817613. 1.10100 0.550498 0.834836i \(-0.314438\pi\)
0.550498 + 0.834836i \(0.314438\pi\)
\(224\) −119825. + 363149.i −0.159561 + 0.483577i
\(225\) 0 0
\(226\) 919128. + 364877.i 1.19703 + 0.475199i
\(227\) 45598.7i 0.0587338i −0.999569 0.0293669i \(-0.990651\pi\)
0.999569 0.0293669i \(-0.00934912\pi\)
\(228\) −42428.0 39988.2i −0.0540525 0.0509442i
\(229\) 633888.i 0.798774i 0.916783 + 0.399387i \(0.130777\pi\)
−0.916783 + 0.399387i \(0.869223\pi\)
\(230\) 0 0
\(231\) −97785.0 −0.120571
\(232\) −151236. + 70662.1i −0.184474 + 0.0861920i
\(233\) −245572. −0.296339 −0.148169 0.988962i \(-0.547338\pi\)
−0.148169 + 0.988962i \(0.547338\pi\)
\(234\) −69077.0 + 174006.i −0.0824696 + 0.207742i
\(235\) 0 0
\(236\) −700004. + 742713.i −0.818126 + 0.868043i
\(237\) 243166.i 0.281211i
\(238\) −103228. 40979.8i −0.118129 0.0468951i
\(239\) −1.13159e6 −1.28142 −0.640711 0.767782i \(-0.721361\pi\)
−0.640711 + 0.767782i \(0.721361\pi\)
\(240\) 0 0
\(241\) 1.56424e6 1.73484 0.867421 0.497575i \(-0.165776\pi\)
0.867421 + 0.497575i \(0.165776\pi\)
\(242\) −740831. 294096.i −0.813168 0.322813i
\(243\) 867775.i 0.942739i
\(244\) −469029. + 497646.i −0.504342 + 0.535114i
\(245\) 0 0
\(246\) 65526.8 165063.i 0.0690369 0.173905i
\(247\) −43088.4 −0.0449384
\(248\) 474695. + 1.01597e6i 0.490101 + 1.04895i
\(249\) 696104. 0.711501
\(250\) 0 0
\(251\) 1.45223e6i 1.45496i 0.686130 + 0.727479i \(0.259308\pi\)
−0.686130 + 0.727479i \(0.740692\pi\)
\(252\) −206158. 194303.i −0.204502 0.192743i
\(253\) 223826.i 0.219841i
\(254\) 498921. + 198063.i 0.485230 + 0.192627i
\(255\) 0 0
\(256\) −1.04124e6 + 123840.i −0.993001 + 0.118103i
\(257\) 1.67551e6 1.58240 0.791198 0.611560i \(-0.209458\pi\)
0.791198 + 0.611560i \(0.209458\pi\)
\(258\) −892680. 354377.i −0.834923 0.331449i
\(259\) 921364.i 0.853458i
\(260\) 0 0
\(261\) 123663.i 0.112367i
\(262\) 549308. 1.38371e6i 0.494382 1.24535i
\(263\) 977406. 0.871336 0.435668 0.900107i \(-0.356512\pi\)
0.435668 + 0.900107i \(0.356512\pi\)
\(264\) −113501. 242922.i −0.100228 0.214515i
\(265\) 0 0
\(266\) 24057.2 60600.4i 0.0208469 0.0525135i
\(267\) 690711.i 0.592950i
\(268\) −848257. + 900012.i −0.721424 + 0.765440i
\(269\) 15731.4i 0.0132552i −0.999978 0.00662760i \(-0.997890\pi\)
0.999978 0.00662760i \(-0.00210964\pi\)
\(270\) 0 0
\(271\) −861364. −0.712465 −0.356233 0.934397i \(-0.615939\pi\)
−0.356233 + 0.934397i \(0.615939\pi\)
\(272\) −18015.4 304011.i −0.0147646 0.249154i
\(273\) 170018. 0.138067
\(274\) −63305.6 25131.2i −0.0509408 0.0202226i
\(275\) 0 0
\(276\) −361165. + 383201.i −0.285387 + 0.302799i
\(277\) 2.16950e6i 1.69887i −0.527693 0.849435i \(-0.676943\pi\)
0.527693 0.849435i \(-0.323057\pi\)
\(278\) −746593. + 1.88067e6i −0.579391 + 1.45949i
\(279\) −830746. −0.638937
\(280\) 0 0
\(281\) 1.81796e6 1.37347 0.686736 0.726907i \(-0.259043\pi\)
0.686736 + 0.726907i \(0.259043\pi\)
\(282\) −21888.4 + 55137.2i −0.0163905 + 0.0412878i
\(283\) 998020.i 0.740753i −0.928882 0.370376i \(-0.879229\pi\)
0.928882 0.370376i \(-0.120771\pi\)
\(284\) −721864. 680353.i −0.531079 0.500540i
\(285\) 0 0
\(286\) −184179. 73115.6i −0.133145 0.0528560i
\(287\) 198606. 0.142327
\(288\) 243405. 737679.i 0.172921 0.524066i
\(289\) −1.33141e6 −0.937704
\(290\) 0 0
\(291\) 130974.i 0.0906674i
\(292\) −1.85303e6 1.74647e6i −1.27182 1.19869i
\(293\) 399603.i 0.271932i −0.990714 0.135966i \(-0.956586\pi\)
0.990714 0.135966i \(-0.0434138\pi\)
\(294\) 271149. 683025.i 0.182953 0.460859i
\(295\) 0 0
\(296\) −2.28890e6 + 1.06945e6i −1.51844 + 0.709463i
\(297\) 558571. 0.367441
\(298\) −754484. + 1.90055e6i −0.492163 + 1.23976i
\(299\) 389165.i 0.251742i
\(300\) 0 0
\(301\) 1.07409e6i 0.683318i
\(302\) 1.77678e6 + 705350.i 1.12103 + 0.445028i
\(303\) 987479. 0.617904
\(304\) 178470. 10575.9i 0.110760 0.00656349i
\(305\) 0 0
\(306\) 209692. + 83243.7i 0.128020 + 0.0508216i
\(307\) 368112.i 0.222912i −0.993769 0.111456i \(-0.964449\pi\)
0.993769 0.111456i \(-0.0355515\pi\)
\(308\) 205662. 218211.i 0.123532 0.131069i
\(309\) 779573.i 0.464473i
\(310\) 0 0
\(311\) −1.13519e6 −0.665530 −0.332765 0.943010i \(-0.607982\pi\)
−0.332765 + 0.943010i \(0.607982\pi\)
\(312\) 197344. + 422368.i 0.114772 + 0.245643i
\(313\) −334474. −0.192975 −0.0964877 0.995334i \(-0.530761\pi\)
−0.0964877 + 0.995334i \(0.530761\pi\)
\(314\) 323529. 814972.i 0.185178 0.466464i
\(315\) 0 0
\(316\) 542633. + 511429.i 0.305695 + 0.288116i
\(317\) 837898.i 0.468321i −0.972198 0.234160i \(-0.924766\pi\)
0.972198 0.234160i \(-0.0752341\pi\)
\(318\) −1.26141e6 500755.i −0.699499 0.277688i
\(319\) 130893. 0.0720179
\(320\) 0 0
\(321\) 995437. 0.539202
\(322\) −547330. 217280.i −0.294178 0.116783i
\(323\) 51925.2i 0.0276931i
\(324\) −197455. 186100.i −0.104497 0.0984884i
\(325\) 0 0
\(326\) −263818. + 664559.i −0.137486 + 0.346330i
\(327\) −1.73323e6 −0.896370
\(328\) 230526. + 493387.i 0.118314 + 0.253223i
\(329\) −66341.9 −0.0337908
\(330\) 0 0
\(331\) 2.30318e6i 1.15547i −0.816225 0.577734i \(-0.803937\pi\)
0.816225 0.577734i \(-0.196063\pi\)
\(332\) −1.46405e6 + 1.55338e6i −0.728973 + 0.773450i
\(333\) 1.87160e6i 0.924917i
\(334\) 3.73190e6 + 1.48150e6i 1.83048 + 0.726665i
\(335\) 0 0
\(336\) −704209. + 41730.6i −0.340293 + 0.0201654i
\(337\) 698751. 0.335156 0.167578 0.985859i \(-0.446405\pi\)
0.167578 + 0.985859i \(0.446405\pi\)
\(338\) −1.63192e6 647843.i −0.776976 0.308445i
\(339\) 1.82427e6i 0.862166i
\(340\) 0 0
\(341\) 879315.i 0.409505i
\(342\) −48868.3 + 123100.i −0.0225924 + 0.0569104i
\(343\) 1.93136e6 0.886398
\(344\) 2.66830e6 1.24671e6i 1.21573 0.568030i
\(345\) 0 0
\(346\) 825212. 2.07872e6i 0.370574 0.933480i
\(347\) 3.30033e6i 1.47141i 0.677301 + 0.735706i \(0.263149\pi\)
−0.677301 + 0.735706i \(0.736851\pi\)
\(348\) −224096. 211209.i −0.0991940 0.0934898i
\(349\) 121442.i 0.0533711i −0.999644 0.0266855i \(-0.991505\pi\)
0.999644 0.0266855i \(-0.00849528\pi\)
\(350\) 0 0
\(351\) −971186. −0.420760
\(352\) 780806. + 257635.i 0.335882 + 0.110828i
\(353\) 56609.0 0.0241796 0.0120898 0.999927i \(-0.496152\pi\)
0.0120898 + 0.999927i \(0.496152\pi\)
\(354\) −1.74990e6 694680.i −0.742175 0.294630i
\(355\) 0 0
\(356\) 1.54135e6 + 1.45271e6i 0.644577 + 0.607511i
\(357\) 204887.i 0.0850831i
\(358\) −555027. + 1.39812e6i −0.228879 + 0.576549i
\(359\) −446755. −0.182950 −0.0914751 0.995807i \(-0.529158\pi\)
−0.0914751 + 0.995807i \(0.529158\pi\)
\(360\) 0 0
\(361\) 2.44562e6 0.987689
\(362\) −1.74510e6 + 4.39593e6i −0.699922 + 1.76311i
\(363\) 1.47039e6i 0.585688i
\(364\) −357584. + 379402.i −0.141457 + 0.150088i
\(365\) 0 0
\(366\) −1.17250e6 465462.i −0.457521 0.181627i
\(367\) 304081. 0.117849 0.0589243 0.998262i \(-0.481233\pi\)
0.0589243 + 0.998262i \(0.481233\pi\)
\(368\) −95519.7 1.61191e6i −0.0367683 0.620469i
\(369\) −403436. −0.154244
\(370\) 0 0
\(371\) 1.51774e6i 0.572484i
\(372\) −1.41886e6 + 1.50543e6i −0.531598 + 0.564032i
\(373\) 932701.i 0.347112i 0.984824 + 0.173556i \(0.0555258\pi\)
−0.984824 + 0.173556i \(0.944474\pi\)
\(374\) −88110.5 + 221951.i −0.0325723 + 0.0820499i
\(375\) 0 0
\(376\) −77004.5 164810.i −0.0280896 0.0601193i
\(377\) −227583. −0.0824683
\(378\) 542236. 1.36590e6i 0.195190 0.491686i
\(379\) 760659.i 0.272014i −0.990708 0.136007i \(-0.956573\pi\)
0.990708 0.136007i \(-0.0434270\pi\)
\(380\) 0 0
\(381\) 990254.i 0.349489i
\(382\) 4.04941e6 + 1.60754e6i 1.41982 + 0.563642i
\(383\) 1.80993e6 0.630470 0.315235 0.949014i \(-0.397917\pi\)
0.315235 + 0.949014i \(0.397917\pi\)
\(384\) −921059. 1.70099e6i −0.318757 0.588673i
\(385\) 0 0
\(386\) 3.65350e6 + 1.45037e6i 1.24807 + 0.495463i
\(387\) 2.18183e6i 0.740532i
\(388\) −292272. 275465.i −0.0985617 0.0928939i
\(389\) 4.14597e6i 1.38916i −0.719416 0.694579i \(-0.755591\pi\)
0.719416 0.694579i \(-0.244409\pi\)
\(390\) 0 0
\(391\) 468977. 0.155135
\(392\) 953912. + 2.04162e6i 0.313540 + 0.671059i
\(393\) 2.74637e6 0.896971
\(394\) 634888. 1.59929e6i 0.206042 0.519022i
\(395\) 0 0
\(396\) −417770. + 443259.i −0.133875 + 0.142043i
\(397\) 1.67426e6i 0.533145i 0.963815 + 0.266573i \(0.0858912\pi\)
−0.963815 + 0.266573i \(0.914109\pi\)
\(398\) 3.02535e6 + 1.20101e6i 0.957344 + 0.380048i
\(399\) 120279. 0.0378231
\(400\) 0 0
\(401\) −2.20886e6 −0.685975 −0.342987 0.939340i \(-0.611439\pi\)
−0.342987 + 0.939340i \(0.611439\pi\)
\(402\) −2.12051e6 841806.i −0.654450 0.259805i
\(403\) 1.52886e6i 0.468927i
\(404\) −2.07688e6 + 2.20359e6i −0.633078 + 0.671704i
\(405\) 0 0
\(406\) 127065. 320078.i 0.0382570 0.0963697i
\(407\) 1.98102e6 0.592793
\(408\) 508990. 237816.i 0.151377 0.0707280i
\(409\) 1.59010e6 0.470019 0.235010 0.971993i \(-0.424488\pi\)
0.235010 + 0.971993i \(0.424488\pi\)
\(410\) 0 0
\(411\) 125648.i 0.0366904i
\(412\) −1.73965e6 1.63961e6i −0.504914 0.475879i
\(413\) 2.10551e6i 0.607411i
\(414\) 1.11181e6 + 441369.i 0.318809 + 0.126561i
\(415\) 0 0
\(416\) −1.35758e6 447949.i −0.384622 0.126910i
\(417\) −3.73274e6 −1.05121
\(418\) −130297. 51725.4i −0.0364748 0.0144798i
\(419\) 4.24535e6i 1.18135i −0.806909 0.590675i \(-0.798861\pi\)
0.806909 0.590675i \(-0.201139\pi\)
\(420\) 0 0
\(421\) 5.17330e6i 1.42253i −0.702922 0.711267i \(-0.748122\pi\)
0.702922 0.711267i \(-0.251878\pi\)
\(422\) 322278. 811822.i 0.0880947 0.221911i
\(423\) 134763. 0.0366200
\(424\) 3.77046e6 1.76168e6i 1.01854 0.475896i
\(425\) 0 0
\(426\) 675179. 1.70078e6i 0.180258 0.454072i
\(427\) 1.41077e6i 0.374445i
\(428\) −2.09362e6 + 2.22135e6i −0.552443 + 0.586149i
\(429\) 365556.i 0.0958982i
\(430\) 0 0
\(431\) 1.02248e6 0.265132 0.132566 0.991174i \(-0.457678\pi\)
0.132566 + 0.991174i \(0.457678\pi\)
\(432\) 4.02261e6 238375.i 1.03705 0.0614542i
\(433\) −2.18503e6 −0.560063 −0.280031 0.959991i \(-0.590345\pi\)
−0.280031 + 0.959991i \(0.590345\pi\)
\(434\) −2.15022e6 853599.i −0.547973 0.217535i
\(435\) 0 0
\(436\) 3.64535e6 3.86777e6i 0.918382 0.974416i
\(437\) 275314.i 0.0689643i
\(438\) 1.73319e6 4.36592e6i 0.431679 1.08740i
\(439\) 1.22033e6 0.302216 0.151108 0.988517i \(-0.451716\pi\)
0.151108 + 0.988517i \(0.451716\pi\)
\(440\) 0 0
\(441\) −1.66941e6 −0.408758
\(442\) 153197. 385905.i 0.0372989 0.0939561i
\(443\) 509711.i 0.123400i −0.998095 0.0617000i \(-0.980348\pi\)
0.998095 0.0617000i \(-0.0196522\pi\)
\(444\) −3.39161e6 3.19658e6i −0.816485 0.769533i
\(445\) 0 0
\(446\) −4.29878e6 1.70654e6i −1.02331 0.406236i
\(447\) −3.77219e6 −0.892945
\(448\) 1.38798e6 1.65923e6i 0.326729 0.390582i
\(449\) 3.54089e6 0.828890 0.414445 0.910074i \(-0.363976\pi\)
0.414445 + 0.910074i \(0.363976\pi\)
\(450\) 0 0
\(451\) 427022.i 0.0988573i
\(452\) −4.07093e6 3.83683e6i −0.937233 0.883338i
\(453\) 3.52654e6i 0.807427i
\(454\) −95174.4 + 239745.i −0.0216711 + 0.0545896i
\(455\) 0 0
\(456\) 139610. + 298803.i 0.0314417 + 0.0672935i
\(457\) −1.06559e6 −0.238671 −0.119335 0.992854i \(-0.538076\pi\)
−0.119335 + 0.992854i \(0.538076\pi\)
\(458\) 1.32306e6 3.33280e6i 0.294724 0.742413i
\(459\) 1.17036e6i 0.259292i
\(460\) 0 0
\(461\) 6.92975e6i 1.51868i 0.650696 + 0.759339i \(0.274477\pi\)
−0.650696 + 0.759339i \(0.725523\pi\)
\(462\) 514125. + 204098.i 0.112063 + 0.0444871i
\(463\) −7.21004e6 −1.56310 −0.781548 0.623845i \(-0.785569\pi\)
−0.781548 + 0.623845i \(0.785569\pi\)
\(464\) 942641. 55859.8i 0.203260 0.0120449i
\(465\) 0 0
\(466\) 1.29114e6 + 512561.i 0.275429 + 0.109340i
\(467\) 3.00541e6i 0.637693i −0.947806 0.318846i \(-0.896705\pi\)
0.947806 0.318846i \(-0.103295\pi\)
\(468\) 726374. 770692.i 0.153301 0.162655i
\(469\) 2.55144e6i 0.535615i
\(470\) 0 0
\(471\) 1.61755e6 0.335973
\(472\) 5.23062e6 2.44391e6i 1.08068 0.504930i
\(473\) −2.30939e6 −0.474618
\(474\) −507540. + 1.27850e6i −0.103759 + 0.261369i
\(475\) 0 0
\(476\) 457212. + 430920.i 0.0924911 + 0.0871724i
\(477\) 3.08305e6i 0.620418i
\(478\) 5.94955e6 + 2.36186e6i 1.19101 + 0.472808i
\(479\) 2.47740e6 0.493353 0.246676 0.969098i \(-0.420662\pi\)
0.246676 + 0.969098i \(0.420662\pi\)
\(480\) 0 0
\(481\) −3.44439e6 −0.678813
\(482\) −8.22431e6 3.26490e6i −1.61243 0.640107i
\(483\) 1.08633e6i 0.211883i
\(484\) 3.28123e6 + 3.09255e6i 0.636683 + 0.600071i
\(485\) 0 0
\(486\) −1.81123e6 + 4.56251e6i −0.347843 + 0.876220i
\(487\) 4.58130e6 0.875320 0.437660 0.899141i \(-0.355807\pi\)
0.437660 + 0.899141i \(0.355807\pi\)
\(488\) 3.50471e6 1.63751e6i 0.666198 0.311269i
\(489\) −1.31901e6 −0.249446
\(490\) 0 0
\(491\) 8.23983e6i 1.54246i 0.636555 + 0.771231i \(0.280359\pi\)
−0.636555 + 0.771231i \(0.719641\pi\)
\(492\) −689042. + 731083.i −0.128331 + 0.136161i
\(493\) 274257.i 0.0508207i
\(494\) 226546. + 89934.7i 0.0417676 + 0.0165810i
\(495\) 0 0
\(496\) −375255. 6.33248e6i −0.0684893 1.15577i
\(497\) 2.04641e6 0.371622
\(498\) −3.65991e6 1.45292e6i −0.661298 0.262523i
\(499\) 4.49557e6i 0.808228i −0.914709 0.404114i \(-0.867580\pi\)
0.914709 0.404114i \(-0.132420\pi\)
\(500\) 0 0
\(501\) 7.40704e6i 1.31841i
\(502\) 3.03111e6 7.63539e6i 0.536837 1.35230i
\(503\) −6.28876e6 −1.10827 −0.554134 0.832427i \(-0.686951\pi\)
−0.554134 + 0.832427i \(0.686951\pi\)
\(504\) 678366. + 1.45188e6i 0.118956 + 0.254598i
\(505\) 0 0
\(506\) −467173. + 1.17681e6i −0.0811151 + 0.204329i
\(507\) 3.23902e6i 0.559620i
\(508\) −2.20979e6 2.08271e6i −0.379919 0.358072i
\(509\) 8.26032e6i 1.41320i 0.707615 + 0.706598i \(0.249771\pi\)
−0.707615 + 0.706598i \(0.750229\pi\)
\(510\) 0 0
\(511\) 5.25315e6 0.889954
\(512\) 5.73301e6 + 1.52217e6i 0.966513 + 0.256619i
\(513\) −687063. −0.115266
\(514\) −8.80937e6 3.49716e6i −1.47074 0.583859i
\(515\) 0 0
\(516\) 3.95379e6 + 3.72643e6i 0.653716 + 0.616125i
\(517\) 142642.i 0.0234704i
\(518\) 1.92309e6 4.84427e6i 0.314901 0.793238i
\(519\) 4.12581e6 0.672344
\(520\) 0 0
\(521\) −1.09563e7 −1.76835 −0.884176 0.467154i \(-0.845279\pi\)
−0.884176 + 0.467154i \(0.845279\pi\)
\(522\) −258112. + 650186.i −0.0414602 + 0.104439i
\(523\) 9.74999e6i 1.55865i 0.626617 + 0.779327i \(0.284439\pi\)
−0.626617 + 0.779327i \(0.715561\pi\)
\(524\) −5.77620e6 + 6.12863e6i −0.918997 + 0.975068i
\(525\) 0 0
\(526\) −5.13892e6 2.04006e6i −0.809855 0.321498i
\(527\) 1.84241e6 0.288975
\(528\) 89724.8 + 1.51412e6i 0.0140064 + 0.236360i
\(529\) −3.94977e6 −0.613666
\(530\) 0 0
\(531\) 4.27701e6i 0.658269i
\(532\) −252972. + 268407.i −0.0387520 + 0.0411163i
\(533\) 742461.i 0.113202i
\(534\) −1.44166e6 + 3.63156e6i −0.218781 + 0.551112i
\(535\) 0 0
\(536\) 6.33841e6 2.96151e6i 0.952946 0.445247i
\(537\) −2.77497e6 −0.415262
\(538\) −32834.8 + 82711.0i −0.00489078 + 0.0123199i
\(539\) 1.76701e6i 0.261979i
\(540\) 0 0
\(541\) 1.86030e6i 0.273268i 0.990622 + 0.136634i \(0.0436285\pi\)
−0.990622 + 0.136634i \(0.956372\pi\)
\(542\) 4.52880e6 + 1.79785e6i 0.662194 + 0.262879i
\(543\) −8.72499e6 −1.26989
\(544\) −539817. + 1.63601e6i −0.0782077 + 0.237021i
\(545\) 0 0
\(546\) −893907. 354865.i −0.128325 0.0509426i
\(547\) 725841.i 0.103723i −0.998654 0.0518613i \(-0.983485\pi\)
0.998654 0.0518613i \(-0.0165154\pi\)
\(548\) 280389. + 264265.i 0.0398849 + 0.0375914i
\(549\) 2.86576e6i 0.405796i
\(550\) 0 0
\(551\) −161003. −0.0225920
\(552\) 2.69873e6 1.26093e6i 0.376974 0.176134i
\(553\) −1.53831e6 −0.213910
\(554\) −4.52821e6 + 1.14066e7i −0.626834 + 1.57900i
\(555\) 0 0
\(556\) 7.85074e6 8.32974e6i 1.07702 1.14273i
\(557\) 4.72234e6i 0.644939i 0.946580 + 0.322470i \(0.104513\pi\)
−0.946580 + 0.322470i \(0.895487\pi\)
\(558\) 4.36783e6 + 1.73395e6i 0.593854 + 0.235749i
\(559\) 4.01533e6 0.543490
\(560\) 0 0
\(561\) −440526. −0.0590969
\(562\) −9.55833e6 3.79448e6i −1.27656 0.506771i
\(563\) 4.74239e6i 0.630560i 0.948999 + 0.315280i \(0.102098\pi\)
−0.948999 + 0.315280i \(0.897902\pi\)
\(564\) 230166. 244209.i 0.0304680 0.0323269i
\(565\) 0 0
\(566\) −2.08308e6 + 5.24730e6i −0.273316 + 0.688486i
\(567\) 559764. 0.0731219
\(568\) 2.37531e6 + 5.08379e6i 0.308922 + 0.661175i
\(569\) −2.99470e6 −0.387768 −0.193884 0.981024i \(-0.562109\pi\)
−0.193884 + 0.981024i \(0.562109\pi\)
\(570\) 0 0
\(571\) 1.01416e7i 1.30172i −0.759198 0.650860i \(-0.774409\pi\)
0.759198 0.650860i \(-0.225591\pi\)
\(572\) 815750. + 768841.i 0.104248 + 0.0982531i
\(573\) 8.03722e6i 1.02263i
\(574\) −1.04421e6 414533.i −0.132285 0.0525146i
\(575\) 0 0
\(576\) −2.81945e6 + 3.37046e6i −0.354085 + 0.423285i
\(577\) −3.80870e6 −0.476253 −0.238126 0.971234i \(-0.576533\pi\)
−0.238126 + 0.971234i \(0.576533\pi\)
\(578\) 7.00015e6 + 2.77893e6i 0.871541 + 0.345986i
\(579\) 7.25142e6i 0.898931i
\(580\) 0 0
\(581\) 4.40367e6i 0.541220i
\(582\) 273370. 688621.i 0.0334536 0.0842700i
\(583\) −3.26330e6 −0.397635
\(584\) 6.09744e6 + 1.30501e7i 0.739802 + 1.58337i
\(585\) 0 0
\(586\) −834058. + 2.10100e6i −0.100335 + 0.252745i
\(587\) 3.40054e6i 0.407335i −0.979040 0.203668i \(-0.934714\pi\)
0.979040 0.203668i \(-0.0652862\pi\)
\(588\) −2.85124e6 + 3.02520e6i −0.340088 + 0.360837i
\(589\) 1.08159e6i 0.128462i
\(590\) 0 0
\(591\) 3.17425e6 0.373828
\(592\) 1.42665e7 845418.i 1.67307 0.0991442i
\(593\) 1.27800e7 1.49243 0.746216 0.665704i \(-0.231868\pi\)
0.746216 + 0.665704i \(0.231868\pi\)
\(594\) −2.93681e6 1.16586e6i −0.341515 0.135575i
\(595\) 0 0
\(596\) 7.93372e6 8.41778e6i 0.914873 0.970693i
\(597\) 6.00468e6i 0.689532i
\(598\) 812272. 2.04612e6i 0.0928856 0.233980i
\(599\) −614365. −0.0699616 −0.0349808 0.999388i \(-0.511137\pi\)
−0.0349808 + 0.999388i \(0.511137\pi\)
\(600\) 0 0
\(601\) −1.12864e7 −1.27459 −0.637294 0.770621i \(-0.719946\pi\)
−0.637294 + 0.770621i \(0.719946\pi\)
\(602\) −2.24185e6 + 5.64724e6i −0.252125 + 0.635104i
\(603\) 5.18283e6i 0.580462i
\(604\) −7.86959e6 7.41706e6i −0.877728 0.827255i
\(605\) 0 0
\(606\) −5.19188e6 2.06108e6i −0.574305 0.227989i
\(607\) −1.81019e6 −0.199413 −0.0997065 0.995017i \(-0.531790\pi\)
−0.0997065 + 0.995017i \(0.531790\pi\)
\(608\) −960419. 316901.i −0.105366 0.0347668i
\(609\) 635287. 0.0694108
\(610\) 0 0
\(611\) 248010.i 0.0268761i
\(612\) −928750. 875343.i −0.100235 0.0944713i
\(613\) 1.08728e7i 1.16867i 0.811513 + 0.584335i \(0.198645\pi\)
−0.811513 + 0.584335i \(0.801355\pi\)
\(614\) −768329. + 1.93543e6i −0.0822482 + 0.207184i
\(615\) 0 0
\(616\) −1.53677e6 + 718026.i −0.163176 + 0.0762410i
\(617\) −6.60152e6 −0.698122 −0.349061 0.937100i \(-0.613499\pi\)
−0.349061 + 0.937100i \(0.613499\pi\)
\(618\) 1.62714e6 4.09877e6i 0.171377 0.431701i
\(619\) 8.83255e6i 0.926530i −0.886220 0.463265i \(-0.846678\pi\)
0.886220 0.463265i \(-0.153322\pi\)
\(620\) 0 0
\(621\) 6.20541e6i 0.645716i
\(622\) 5.96850e6 + 2.36938e6i 0.618570 + 0.245561i
\(623\) −4.36955e6 −0.451042
\(624\) −156004. 2.63259e6i −0.0160389 0.270658i
\(625\) 0 0
\(626\) 1.75857e6 + 698120.i 0.179359 + 0.0712023i
\(627\) 258611.i 0.0262711i
\(628\) −3.40204e6 + 3.60961e6i −0.344224 + 0.365226i
\(629\) 4.15079e6i 0.418316i
\(630\) 0 0
\(631\) 1.48464e7 1.48439 0.742194 0.670185i \(-0.233785\pi\)
0.742194 + 0.670185i \(0.233785\pi\)
\(632\) −1.78555e6 3.82154e6i −0.177819 0.380580i
\(633\) 1.61129e6 0.159833
\(634\) −1.74887e6 + 4.40543e6i −0.172797 + 0.435276i
\(635\) 0 0
\(636\) 5.58692e6 + 5.26565e6i 0.547684 + 0.516190i
\(637\) 3.07229e6i 0.299995i
\(638\) −688198. 273202.i −0.0669363 0.0265725i
\(639\) −4.15694e6 −0.402737
\(640\) 0 0
\(641\) −1.42105e7 −1.36604 −0.683022 0.730398i \(-0.739335\pi\)
−0.683022 + 0.730398i \(0.739335\pi\)
\(642\) −5.23372e6 2.07769e6i −0.501156 0.198950i
\(643\) 7.89022e6i 0.752595i 0.926499 + 0.376298i \(0.122803\pi\)
−0.926499 + 0.376298i \(0.877197\pi\)
\(644\) 2.42419e6 + 2.28479e6i 0.230331 + 0.217086i
\(645\) 0 0
\(646\) 108379. 273008.i 0.0102180 0.0257391i
\(647\) 1.41387e7 1.32785 0.663924 0.747800i \(-0.268890\pi\)
0.663924 + 0.747800i \(0.268890\pi\)
\(648\) 649730. + 1.39059e6i 0.0607848 + 0.130096i
\(649\) −4.52706e6 −0.421895
\(650\) 0 0
\(651\) 4.26774e6i 0.394680i
\(652\) 2.77416e6 2.94342e6i 0.255571 0.271164i
\(653\) 2.09667e7i 1.92419i −0.272720 0.962094i \(-0.587923\pi\)
0.272720 0.962094i \(-0.412077\pi\)
\(654\) 9.11284e6 + 3.61763e6i 0.833123 + 0.330735i
\(655\) 0 0
\(656\) −182235. 3.07524e6i −0.0165338 0.279010i
\(657\) −1.06709e7 −0.964469
\(658\) 348807. + 138470.i 0.0314065 + 0.0124678i
\(659\) 5.17814e6i 0.464473i 0.972659 + 0.232236i \(0.0746043\pi\)
−0.972659 + 0.232236i \(0.925396\pi\)
\(660\) 0 0
\(661\) 1.15802e7i 1.03089i −0.856923 0.515444i \(-0.827627\pi\)
0.856923 0.515444i \(-0.172373\pi\)
\(662\) −4.80723e6 + 1.21095e7i −0.426334 + 1.07394i
\(663\) 765941. 0.0676724
\(664\) 1.09398e7 5.11143e6i 0.962918 0.449906i
\(665\) 0 0
\(666\) −3.90643e6 + 9.84034e6i −0.341267 + 0.859655i
\(667\) 1.45415e6i 0.126559i
\(668\) −1.65291e7 1.55786e7i −1.43320 1.35079i
\(669\) 8.53216e6i 0.737045i
\(670\) 0 0
\(671\) −3.03330e6 −0.260081
\(672\) 3.78963e6 + 1.25043e6i 0.323723 + 0.106816i
\(673\) −3.44202e6 −0.292938 −0.146469 0.989215i \(-0.546791\pi\)
−0.146469 + 0.989215i \(0.546791\pi\)
\(674\) −3.67383e6 1.45844e6i −0.311508 0.123663i
\(675\) 0 0
\(676\) 7.22798e6 + 6.81234e6i 0.608346 + 0.573363i
\(677\) 1.81661e7i 1.52332i −0.647980 0.761658i \(-0.724386\pi\)
0.647980 0.761658i \(-0.275614\pi\)
\(678\) 3.80765e6 9.59151e6i 0.318114 0.801332i
\(679\) 828560. 0.0689683
\(680\) 0 0
\(681\) −475843. −0.0393184
\(682\) −1.83532e6 + 4.62319e6i −0.151095 + 0.380610i
\(683\) 1.58711e7i 1.30184i −0.759148 0.650918i \(-0.774384\pi\)
0.759148 0.650918i \(-0.225616\pi\)
\(684\) 513871. 545224.i 0.0419966 0.0445589i
\(685\) 0 0
\(686\) −1.01546e7 4.03117e6i −0.823855 0.327055i
\(687\) 6.61490e6 0.534726
\(688\) −1.66313e7 + 985552.i −1.33954 + 0.0793795i
\(689\) 5.67388e6 0.455336
\(690\) 0 0
\(691\) 7.37470e6i 0.587556i −0.955874 0.293778i \(-0.905087\pi\)
0.955874 0.293778i \(-0.0949127\pi\)
\(692\) −8.67746e6 + 9.20690e6i −0.688854 + 0.730883i
\(693\) 1.25659e6i 0.0993943i
\(694\) 6.88851e6 1.73522e7i 0.542908 1.36759i
\(695\) 0 0
\(696\) 737391. + 1.57821e6i 0.0576999 + 0.123493i
\(697\) 894730. 0.0697605
\(698\) −253476. + 638508.i −0.0196924 + 0.0496052i
\(699\) 2.56265e6i 0.198379i
\(700\) 0 0
\(701\) 2.16654e7i 1.66522i 0.553857 + 0.832612i \(0.313155\pi\)
−0.553857 + 0.832612i \(0.686845\pi\)
\(702\) 5.10622e6 + 2.02707e6i 0.391072 + 0.155248i
\(703\) −2.43673e6 −0.185960
\(704\) −3.56751e6 2.98428e6i −0.271290 0.226939i
\(705\) 0 0
\(706\) −297634. 118155.i −0.0224735 0.00892157i
\(707\) 6.24695e6i 0.470023i
\(708\) 7.75055e6 + 7.30486e6i 0.581098 + 0.547682i
\(709\) 5.46373e6i 0.408201i −0.978950 0.204100i \(-0.934573\pi\)
0.978950 0.204100i \(-0.0654269\pi\)
\(710\) 0 0
\(711\) 3.12482e6 0.231820
\(712\) −5.07183e6 1.08551e7i −0.374942 0.802476i
\(713\) 9.76869e6 0.719635
\(714\) −427643. + 1.07723e6i −0.0313932 + 0.0790797i
\(715\) 0 0
\(716\) 5.83635e6 6.19244e6i 0.425460 0.451418i
\(717\) 1.18086e7i 0.857829i
\(718\) 2.34891e6 + 932473.i 0.170041 + 0.0675034i
\(719\) 1.42857e7 1.03058 0.515288 0.857017i \(-0.327685\pi\)
0.515288 + 0.857017i \(0.327685\pi\)
\(720\) 0 0
\(721\) 4.93171e6 0.353313
\(722\) −1.28583e7 5.10453e6i −0.917999 0.364429i
\(723\) 1.63235e7i 1.16136i
\(724\) 1.83505e7 1.94701e7i 1.30107 1.38045i
\(725\) 0 0
\(726\) −3.06903e6 + 7.73090e6i −0.216102 + 0.544363i
\(727\) −3.55756e6 −0.249641 −0.124821 0.992179i \(-0.539836\pi\)
−0.124821 + 0.992179i \(0.539836\pi\)
\(728\) 2.67197e6 1.24843e6i 0.186854 0.0873043i
\(729\) −1.11161e7 −0.774697
\(730\) 0 0
\(731\) 4.83881e6i 0.334923i
\(732\) 5.19316e6 + 4.89453e6i 0.358223 + 0.337624i
\(733\) 1.61816e7i 1.11240i −0.831048 0.556201i \(-0.812258\pi\)
0.831048 0.556201i \(-0.187742\pi\)
\(734\) −1.59877e6 634683.i −0.109533 0.0434827i
\(735\) 0 0
\(736\) −2.86218e6 + 8.67431e6i −0.194761 + 0.590256i
\(737\) −5.48584e6 −0.372027
\(738\) 2.12115e6 + 842057.i 0.143361 + 0.0569116i
\(739\) 1.16551e7i 0.785063i −0.919739 0.392531i \(-0.871599\pi\)
0.919739 0.392531i \(-0.128401\pi\)
\(740\) 0 0
\(741\) 449647.i 0.0300833i
\(742\) −3.16786e6 + 7.97986e6i −0.211230 + 0.532090i
\(743\) 2.41917e7 1.60766 0.803829 0.594860i \(-0.202792\pi\)
0.803829 + 0.594860i \(0.202792\pi\)
\(744\) 1.06021e7 4.95365e6i 0.702200 0.328090i
\(745\) 0 0
\(746\) 1.94675e6 4.90387e6i 0.128074 0.322620i
\(747\) 8.94532e6i 0.586536i
\(748\) 926519. 983049.i 0.0605481 0.0642423i
\(749\) 6.29730e6i 0.410157i
\(750\) 0 0
\(751\) 2.13480e7 1.38120 0.690601 0.723236i \(-0.257346\pi\)
0.690601 + 0.723236i \(0.257346\pi\)
\(752\) 60873.5 + 1.02725e6i 0.00392540 + 0.0662416i
\(753\) 1.51546e7 0.973998
\(754\) 1.19657e6 + 475015.i 0.0766494 + 0.0304284i
\(755\) 0 0
\(756\) −5.70184e6 + 6.04972e6i −0.362836 + 0.384974i
\(757\) 1.68129e7i 1.06636i −0.846002 0.533179i \(-0.820997\pi\)
0.846002 0.533179i \(-0.179003\pi\)
\(758\) −1.58766e6 + 3.99933e6i −0.100365 + 0.252821i
\(759\) −2.33572e6 −0.147169
\(760\) 0 0
\(761\) 1.07818e7 0.674888 0.337444 0.941346i \(-0.390438\pi\)
0.337444 + 0.941346i \(0.390438\pi\)
\(762\) 2.06687e6 5.20647e6i 0.128951 0.324830i
\(763\) 1.09647e7i 0.681845i
\(764\) −1.79353e7 1.69040e7i −1.11167 1.04774i
\(765\) 0 0
\(766\) −9.51608e6 3.77771e6i −0.585985 0.232625i
\(767\) 7.87117e6 0.483116
\(768\) 1.29233e6 + 1.08658e7i 0.0790622 + 0.664749i
\(769\) −3.03763e6 −0.185233 −0.0926166 0.995702i \(-0.529523\pi\)
−0.0926166 + 0.995702i \(0.529523\pi\)
\(770\) 0 0
\(771\) 1.74847e7i 1.05931i
\(772\) −1.61818e7 1.52513e7i −0.977200 0.921006i
\(773\) 2.73040e7i 1.64353i −0.569828 0.821764i \(-0.692990\pi\)
0.569828 0.821764i \(-0.307010\pi\)
\(774\) 4.55395e6 1.14714e7i 0.273235 0.688280i
\(775\) 0 0
\(776\) 961727. + 2.05835e6i 0.0573321 + 0.122706i
\(777\) 9.61485e6 0.571334
\(778\) −8.65353e6 + 2.17983e7i −0.512559 + 1.29114i
\(779\) 525252.i 0.0310116i
\(780\) 0 0
\(781\) 4.39997e6i 0.258120i
\(782\) −2.46575e6 978857.i −0.144189 0.0572404i
\(783\) −3.62891e6 −0.211530
\(784\) −754086. 1.27253e7i −0.0438158 0.739397i
\(785\) 0 0
\(786\) −1.44396e7 5.73227e6i −0.833681 0.330956i
\(787\) 1.58229e7i 0.910644i 0.890327 + 0.455322i \(0.150476\pi\)
−0.890327 + 0.455322i \(0.849524\pi\)
\(788\) −6.67611e6 + 7.08345e6i −0.383008 + 0.406377i
\(789\) 1.01997e7i 0.583302i
\(790\) 0 0
\(791\) 1.15407e7 0.655827
\(792\) 3.12169e6 1.45855e6i 0.176838 0.0826246i
\(793\) 5.27398e6 0.297821
\(794\) 3.49453e6 8.80276e6i 0.196715 0.495527i
\(795\) 0 0
\(796\) −1.33997e7 1.26291e7i −0.749568 0.706464i
\(797\) 5.53728e6i 0.308781i −0.988010 0.154390i \(-0.950659\pi\)
0.988010 0.154390i \(-0.0493414\pi\)
\(798\) −632392. 251048.i −0.0351544 0.0139556i
\(799\) −298874. −0.0165623
\(800\) 0 0
\(801\) 8.87602e6 0.488807
\(802\) 1.16136e7 + 4.61037e6i 0.637573 + 0.253105i
\(803\) 1.12948e7i 0.618143i
\(804\) 9.39203e6 + 8.85194e6i 0.512412 + 0.482946i
\(805\) 0 0
\(806\) 3.19106e6 8.03831e6i 0.173021 0.435840i
\(807\) −164164. −0.00887348
\(808\) 1.55190e7 7.25097e6i 0.836248 0.390722i
\(809\) −4.59562e6 −0.246873 −0.123436 0.992352i \(-0.539391\pi\)
−0.123436 + 0.992352i \(0.539391\pi\)
\(810\) 0 0
\(811\) 3.14901e6i 0.168121i −0.996461 0.0840604i \(-0.973211\pi\)
0.996461 0.0840604i \(-0.0267889\pi\)
\(812\) −1.33614e6 + 1.41767e6i −0.0711153 + 0.0754542i
\(813\) 8.98872e6i 0.476949i
\(814\) −1.04156e7 4.13482e6i −0.550966 0.218724i
\(815\) 0 0
\(816\) −3.17249e6 + 187998.i −0.166792 + 0.00988391i
\(817\) 2.84063e6 0.148888
\(818\) −8.36027e6 3.31888e6i −0.436855 0.173423i
\(819\) 2.18483e6i 0.113817i
\(820\) 0 0
\(821\) 1.98853e7i 1.02961i −0.857306 0.514807i \(-0.827864\pi\)
0.857306 0.514807i \(-0.172136\pi\)
\(822\) −262255. + 660623.i −0.0135377 + 0.0341015i
\(823\) 1.53764e7 0.791328 0.395664 0.918395i \(-0.370515\pi\)
0.395664 + 0.918395i \(0.370515\pi\)
\(824\) 5.72434e6 + 1.22516e7i 0.293702 + 0.628600i
\(825\) 0 0
\(826\) −4.39466e6 + 1.10702e7i −0.224117 + 0.564553i
\(827\) 8.95740e6i 0.455426i −0.973728 0.227713i \(-0.926875\pi\)
0.973728 0.227713i \(-0.0731248\pi\)
\(828\) −4.92435e6 4.64118e6i −0.249616 0.235262i
\(829\) 2.95693e7i 1.49436i 0.664623 + 0.747179i \(0.268592\pi\)
−0.664623 + 0.747179i \(0.731408\pi\)
\(830\) 0 0
\(831\) −2.26397e7 −1.13728
\(832\) 6.20282e6 + 5.18876e6i 0.310657 + 0.259869i
\(833\) 3.70237e6 0.184870
\(834\) 1.96257e7 + 7.79104e6i 0.977034 + 0.387865i
\(835\) 0 0
\(836\) 577100. + 543914.i 0.0285585 + 0.0269163i
\(837\) 2.43784e7i 1.20279i
\(838\) −8.86097e6 + 2.23208e7i −0.435884 + 1.09800i
\(839\) −1.26360e7 −0.619732 −0.309866 0.950780i \(-0.600284\pi\)
−0.309866 + 0.950780i \(0.600284\pi\)
\(840\) 0 0
\(841\) 1.96608e7 0.958540
\(842\) −1.07978e7 + 2.71997e7i −0.524874 + 1.32216i
\(843\) 1.89713e7i 0.919449i
\(844\) −3.38889e6 + 3.59566e6i −0.163758 + 0.173749i
\(845\) 0 0
\(846\) −708544. 281279.i −0.0340362 0.0135117i
\(847\) −9.30194e6 −0.445518
\(848\) −2.35010e7 + 1.39264e6i −1.12227 + 0.0665042i
\(849\) −1.04148e7 −0.495885
\(850\) 0 0
\(851\) 2.20080e7i 1.04173i
\(852\) −7.09979e6 + 7.53297e6i −0.335078 + 0.355523i
\(853\) 6.41059e6i 0.301665i 0.988559 + 0.150833i \(0.0481954\pi\)
−0.988559 + 0.150833i \(0.951805\pi\)
\(854\) −2.94459e6 + 7.41744e6i −0.138159 + 0.348024i
\(855\) 0 0
\(856\) 1.56441e7 7.30941e6i 0.729735 0.340956i
\(857\) 1.57309e7 0.731646 0.365823 0.930684i \(-0.380788\pi\)
0.365823 + 0.930684i \(0.380788\pi\)
\(858\) −762994. + 1.92199e6i −0.0353837 + 0.0891317i
\(859\) 3.33475e7i 1.54199i 0.636844 + 0.770993i \(0.280240\pi\)
−0.636844 + 0.770993i \(0.719760\pi\)
\(860\) 0 0
\(861\) 2.07254e6i 0.0952787i
\(862\) −5.37591e6 2.13414e6i −0.246425 0.0978261i
\(863\) 1.62060e6 0.0740709 0.0370355 0.999314i \(-0.488209\pi\)
0.0370355 + 0.999314i \(0.488209\pi\)
\(864\) −2.16473e7 7.14275e6i −0.986549 0.325522i
\(865\) 0 0
\(866\) 1.14882e7 + 4.56062e6i 0.520545 + 0.206647i
\(867\) 1.38938e7i 0.627732i
\(868\) 9.52361e6 + 8.97596e6i 0.429044 + 0.404372i
\(869\) 3.30751e6i 0.148577i
\(870\) 0 0
\(871\) 9.53820e6 0.426011
\(872\) −2.72391e7 + 1.27270e7i −1.21311 + 0.566805i
\(873\) −1.68308e6 −0.0747430
\(874\) 574639. 1.44752e6i 0.0254458 0.0640983i
\(875\) 0 0
\(876\) −1.82252e7 + 1.93372e7i −0.802441 + 0.851400i
\(877\) 5.93461e6i 0.260551i −0.991478 0.130276i \(-0.958414\pi\)
0.991478 0.130276i \(-0.0415863\pi\)
\(878\) −6.41617e6 2.54710e6i −0.280892 0.111509i
\(879\) −4.17004e6 −0.182041
\(880\) 0 0
\(881\) 7.17940e6 0.311637 0.155818 0.987786i \(-0.450199\pi\)
0.155818 + 0.987786i \(0.450199\pi\)
\(882\) 8.77726e6 + 3.48441e6i 0.379916 + 0.150820i
\(883\) 5.72329e6i 0.247027i 0.992343 + 0.123513i \(0.0394162\pi\)
−0.992343 + 0.123513i \(0.960584\pi\)
\(884\) −1.61093e6 + 1.70922e6i −0.0693342 + 0.0735645i
\(885\) 0 0
\(886\) −1.06388e6 + 2.67992e6i −0.0455310 + 0.114693i
\(887\) 1.46048e7 0.623285 0.311643 0.950199i \(-0.399121\pi\)
0.311643 + 0.950199i \(0.399121\pi\)
\(888\) 1.11602e7 + 2.38857e7i 0.474939 + 1.01650i
\(889\) 6.26451e6 0.265847
\(890\) 0 0
\(891\) 1.20355e6i 0.0507889i
\(892\) 1.90398e7 + 1.79449e7i 0.801218 + 0.755144i
\(893\) 175454.i 0.00736266i
\(894\) 1.98331e7 + 7.87338e6i 0.829940 + 0.329471i
\(895\) 0 0
\(896\) −1.07608e7 + 5.82677e6i −0.447788 + 0.242470i
\(897\) 4.06111e6 0.168525
\(898\) −1.86170e7 7.39060e6i −0.770404 0.305836i
\(899\) 5.71272e6i 0.235745i
\(900\) 0 0
\(901\) 6.83751e6i 0.280599i
\(902\) −891287. + 2.24516e6i −0.0364755 + 0.0918821i
\(903\) −1.12086e7 −0.457437
\(904\) 1.33955e7 + 2.86699e7i 0.545177 + 1.16682i
\(905\) 0 0
\(906\) 7.36065e6 1.85415e7i 0.297917 0.750456i
\(907\) 5.43818e6i 0.219501i −0.993959 0.109750i \(-0.964995\pi\)
0.993959 0.109750i \(-0.0350051\pi\)
\(908\) 1.00080e6 1.06186e6i 0.0402840 0.0427418i
\(909\) 1.26897e7i 0.509378i
\(910\) 0 0
\(911\) −3.71033e7 −1.48121 −0.740605 0.671941i \(-0.765461\pi\)
−0.740605 + 0.671941i \(0.765461\pi\)
\(912\) −110365. 1.86242e6i −0.00439383 0.0741464i
\(913\) −9.46831e6 −0.375920
\(914\) 5.60256e6 + 2.22411e6i 0.221830 + 0.0880626i
\(915\) 0 0
\(916\) −1.39125e7 + 1.47614e7i −0.547858 + 0.581284i
\(917\) 1.73740e7i 0.682302i
\(918\) 2.44280e6 6.15343e6i 0.0956711 0.240996i
\(919\) −2.24895e7 −0.878398 −0.439199 0.898390i \(-0.644738\pi\)
−0.439199 + 0.898390i \(0.644738\pi\)
\(920\) 0 0
\(921\) −3.84142e6 −0.149225
\(922\) 1.44639e7 3.64346e7i 0.560348 1.41152i
\(923\) 7.65021e6i 0.295576i
\(924\) −2.27713e6 2.14618e6i −0.0877419 0.0826963i
\(925\) 0 0
\(926\) 3.79083e7 + 1.50489e7i 1.45280 + 0.576737i
\(927\) −1.00180e7 −0.382895
\(928\) −5.07272e6 1.67380e6i −0.193362 0.0638019i
\(929\) 2.80271e7 1.06547 0.532733 0.846283i \(-0.321165\pi\)
0.532733 + 0.846283i \(0.321165\pi\)
\(930\) 0 0
\(931\) 2.17348e6i 0.0821830i
\(932\) −5.71864e6 5.38979e6i −0.215652 0.203251i
\(933\) 1.18462e7i 0.445528i
\(934\) −6.27294e6 + 1.58016e7i −0.235290 + 0.592698i
\(935\) 0 0
\(936\) −5.42767e6 + 2.53598e6i −0.202499 + 0.0946142i
\(937\) 62078.6 0.00230990 0.00115495 0.999999i \(-0.499632\pi\)
0.00115495 + 0.999999i \(0.499632\pi\)
\(938\) −5.32540e6 + 1.34147e7i −0.197626 + 0.497823i
\(939\) 3.49039e6i 0.129184i
\(940\) 0 0
\(941\) 4.45412e6i 0.163979i −0.996633 0.0819894i \(-0.973873\pi\)
0.996633 0.0819894i \(-0.0261274\pi\)
\(942\) −8.50460e6 3.37617e6i −0.312267 0.123964i
\(943\) 4.74397e6 0.173725
\(944\) −3.26021e7 + 1.93196e6i −1.19074 + 0.0705616i
\(945\) 0 0
\(946\) 1.21421e7 + 4.82019e6i 0.441130 + 0.175120i
\(947\) 4.59793e7i 1.66605i −0.553237 0.833024i \(-0.686608\pi\)
0.553237 0.833024i \(-0.313392\pi\)
\(948\) 5.33699e6 5.66262e6i 0.192875 0.204643i
\(949\) 1.96382e7i 0.707841i
\(950\) 0 0
\(951\) −8.74385e6 −0.313510
\(952\) −1.50446e6 3.21995e6i −0.0538009 0.115148i
\(953\) −2.32064e7 −0.827706 −0.413853 0.910344i \(-0.635817\pi\)
−0.413853 + 0.910344i \(0.635817\pi\)
\(954\) 6.43498e6 1.62098e7i 0.228916 0.576642i
\(955\) 0 0
\(956\) −2.63513e7 2.48360e7i −0.932518 0.878894i
\(957\) 1.36593e6i 0.0482112i
\(958\) −1.30255e7 5.17087e6i −0.458542 0.182033i
\(959\) −794872. −0.0279094
\(960\) 0 0
\(961\) 9.74779e6 0.340485
\(962\) 1.81096e7 + 7.18919e6i 0.630917 + 0.250462i
\(963\) 1.27919e7i 0.444499i
\(964\) 3.64265e7 + 3.43318e7i 1.26248 + 1.18988i
\(965\) 0 0
\(966\) −2.26741e6 + 5.71164e6i −0.0781786 + 0.196933i
\(967\) −5.33110e7 −1.83337 −0.916686 0.399607i \(-0.869147\pi\)
−0.916686 + 0.399607i \(0.869147\pi\)
\(968\) −1.07970e7 2.31083e7i −0.370351 0.792648i
\(969\) 541863. 0.0185387
\(970\) 0 0
\(971\) 2.49744e7i 0.850056i 0.905180 + 0.425028i \(0.139736\pi\)
−0.905180 + 0.425028i \(0.860264\pi\)
\(972\) 1.90459e7 2.02079e7i 0.646600 0.686051i
\(973\) 2.36139e7i 0.799625i
\(974\) −2.40872e7 9.56217e6i −0.813558 0.322968i
\(975\) 0 0
\(976\) −2.18446e7 + 1.29449e6i −0.734041 + 0.0434984i
\(977\) 3.97806e7 1.33332 0.666661 0.745361i \(-0.267723\pi\)
0.666661 + 0.745361i \(0.267723\pi\)
\(978\) 6.93497e6 + 2.75306e6i 0.231845 + 0.0920382i
\(979\) 9.39495e6i 0.313284i
\(980\) 0 0
\(981\) 2.22730e7i 0.738936i
\(982\) 1.71983e7 4.33227e7i 0.569124 1.43363i
\(983\) 3.80176e7 1.25488 0.627439 0.778666i \(-0.284103\pi\)
0.627439 + 0.778666i \(0.284103\pi\)
\(984\) 5.14871e6 2.40564e6i 0.169516 0.0792034i
\(985\) 0 0
\(986\) 572434. 1.44197e6i 0.0187514 0.0472349i
\(987\) 692308.i 0.0226207i
\(988\) −1.00340e6 945702.i −0.0327026 0.0308221i
\(989\) 2.56560e7i 0.834061i
\(990\) 0 0
\(991\) −4.34863e7 −1.40659 −0.703296 0.710897i \(-0.748289\pi\)
−0.703296 + 0.710897i \(0.748289\pi\)
\(992\) −1.12443e7 + 3.40776e7i −0.362787 + 1.09949i
\(993\) −2.40347e7 −0.773510
\(994\) −1.07594e7 4.27129e6i −0.345400 0.137118i
\(995\) 0 0
\(996\) 1.62102e7 + 1.52780e7i 0.517774 + 0.488000i
\(997\) 9.27058e6i 0.295372i −0.989034 0.147686i \(-0.952818\pi\)
0.989034 0.147686i \(-0.0471825\pi\)
\(998\) −9.38323e6 + 2.36364e7i −0.298213 + 0.751200i
\(999\) −5.49223e7 −1.74115
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.6.d.d.101.3 yes 20
4.3 odd 2 800.6.d.b.401.14 20
5.2 odd 4 200.6.f.d.149.25 40
5.3 odd 4 200.6.f.d.149.16 40
5.4 even 2 200.6.d.c.101.18 yes 20
8.3 odd 2 800.6.d.b.401.7 20
8.5 even 2 inner 200.6.d.d.101.4 yes 20
20.3 even 4 800.6.f.d.49.14 40
20.7 even 4 800.6.f.d.49.27 40
20.19 odd 2 800.6.d.d.401.7 20
40.3 even 4 800.6.f.d.49.28 40
40.13 odd 4 200.6.f.d.149.26 40
40.19 odd 2 800.6.d.d.401.14 20
40.27 even 4 800.6.f.d.49.13 40
40.29 even 2 200.6.d.c.101.17 20
40.37 odd 4 200.6.f.d.149.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.17 20 40.29 even 2
200.6.d.c.101.18 yes 20 5.4 even 2
200.6.d.d.101.3 yes 20 1.1 even 1 trivial
200.6.d.d.101.4 yes 20 8.5 even 2 inner
200.6.f.d.149.15 40 40.37 odd 4
200.6.f.d.149.16 40 5.3 odd 4
200.6.f.d.149.25 40 5.2 odd 4
200.6.f.d.149.26 40 40.13 odd 4
800.6.d.b.401.7 20 8.3 odd 2
800.6.d.b.401.14 20 4.3 odd 2
800.6.d.d.401.7 20 20.19 odd 2
800.6.d.d.401.14 20 40.19 odd 2
800.6.f.d.49.13 40 40.27 even 4
800.6.f.d.49.14 40 20.3 even 4
800.6.f.d.49.27 40 20.7 even 4
800.6.f.d.49.28 40 40.3 even 4