Properties

Label 800.6.f.d.49.13
Level $800$
Weight $6$
Character 800.49
Analytic conductor $128.307$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.13
Character \(\chi\) \(=\) 800.49
Dual form 800.6.f.d.49.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.4354 q^{3} +66.0164i q^{7} -134.101 q^{9} +141.942i q^{11} +246.793 q^{13} -297.407i q^{17} +174.593i q^{19} -688.910i q^{21} -1576.89i q^{23} +3935.22 q^{27} -922.162i q^{29} +6194.91 q^{31} -1481.22i q^{33} -13956.6 q^{37} -2575.40 q^{39} -3008.44 q^{41} +16270.0 q^{43} -1004.93i q^{47} +12448.8 q^{49} +3103.57i q^{51} -22990.4 q^{53} -1821.96i q^{57} -31893.8i q^{59} -21370.1i q^{61} -8852.89i q^{63} -38648.6 q^{67} +16455.5i q^{69} +30998.5 q^{71} +79573.5i q^{73} -9370.46 q^{77} +23301.9 q^{79} -8479.17 q^{81} +66705.7 q^{83} +9623.18i q^{87} -66188.9 q^{89} +16292.4i q^{91} -64646.7 q^{93} -12550.8i q^{97} -19034.6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 3240 q^{9} - 14320 q^{31} + 44904 q^{39} - 11608 q^{41} - 125304 q^{49} + 15448 q^{71} - 15560 q^{79} + 193968 q^{81} + 6320 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −10.4354 −0.669434 −0.334717 0.942319i \(-0.608641\pi\)
−0.334717 + 0.942319i \(0.608641\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 66.0164i 0.509221i 0.967044 + 0.254611i \(0.0819473\pi\)
−0.967044 + 0.254611i \(0.918053\pi\)
\(8\) 0 0
\(9\) −134.101 −0.551858
\(10\) 0 0
\(11\) 141.942i 0.353694i 0.984238 + 0.176847i \(0.0565898\pi\)
−0.984238 + 0.176847i \(0.943410\pi\)
\(12\) 0 0
\(13\) 246.793 0.405018 0.202509 0.979280i \(-0.435090\pi\)
0.202509 + 0.979280i \(0.435090\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 297.407i − 0.249591i −0.992182 0.124795i \(-0.960173\pi\)
0.992182 0.124795i \(-0.0398275\pi\)
\(18\) 0 0
\(19\) 174.593i 0.110954i 0.998460 + 0.0554770i \(0.0176680\pi\)
−0.998460 + 0.0554770i \(0.982332\pi\)
\(20\) 0 0
\(21\) − 688.910i − 0.340890i
\(22\) 0 0
\(23\) − 1576.89i − 0.621558i −0.950482 0.310779i \(-0.899410\pi\)
0.950482 0.310779i \(-0.100590\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3935.22 1.03887
\(28\) 0 0
\(29\) − 922.162i − 0.203616i −0.994804 0.101808i \(-0.967537\pi\)
0.994804 0.101808i \(-0.0324628\pi\)
\(30\) 0 0
\(31\) 6194.91 1.15779 0.578897 0.815401i \(-0.303484\pi\)
0.578897 + 0.815401i \(0.303484\pi\)
\(32\) 0 0
\(33\) − 1481.22i − 0.236775i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −13956.6 −1.67601 −0.838003 0.545666i \(-0.816277\pi\)
−0.838003 + 0.545666i \(0.816277\pi\)
\(38\) 0 0
\(39\) −2575.40 −0.271133
\(40\) 0 0
\(41\) −3008.44 −0.279500 −0.139750 0.990187i \(-0.544630\pi\)
−0.139750 + 0.990187i \(0.544630\pi\)
\(42\) 0 0
\(43\) 16270.0 1.34189 0.670944 0.741508i \(-0.265889\pi\)
0.670944 + 0.741508i \(0.265889\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1004.93i − 0.0663578i −0.999449 0.0331789i \(-0.989437\pi\)
0.999449 0.0331789i \(-0.0105631\pi\)
\(48\) 0 0
\(49\) 12448.8 0.740694
\(50\) 0 0
\(51\) 3103.57i 0.167085i
\(52\) 0 0
\(53\) −22990.4 −1.12424 −0.562118 0.827057i \(-0.690013\pi\)
−0.562118 + 0.827057i \(0.690013\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1821.96i − 0.0742764i
\(58\) 0 0
\(59\) − 31893.8i − 1.19282i −0.802678 0.596412i \(-0.796592\pi\)
0.802678 0.596412i \(-0.203408\pi\)
\(60\) 0 0
\(61\) − 21370.1i − 0.735328i −0.929959 0.367664i \(-0.880158\pi\)
0.929959 0.367664i \(-0.119842\pi\)
\(62\) 0 0
\(63\) − 8852.89i − 0.281018i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −38648.6 −1.05183 −0.525916 0.850536i \(-0.676277\pi\)
−0.525916 + 0.850536i \(0.676277\pi\)
\(68\) 0 0
\(69\) 16455.5i 0.416092i
\(70\) 0 0
\(71\) 30998.5 0.729784 0.364892 0.931050i \(-0.381106\pi\)
0.364892 + 0.931050i \(0.381106\pi\)
\(72\) 0 0
\(73\) 79573.5i 1.74768i 0.486217 + 0.873838i \(0.338377\pi\)
−0.486217 + 0.873838i \(0.661623\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9370.46 −0.180109
\(78\) 0 0
\(79\) 23301.9 0.420072 0.210036 0.977694i \(-0.432642\pi\)
0.210036 + 0.977694i \(0.432642\pi\)
\(80\) 0 0
\(81\) −8479.17 −0.143596
\(82\) 0 0
\(83\) 66705.7 1.06284 0.531420 0.847109i \(-0.321659\pi\)
0.531420 + 0.847109i \(0.321659\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9623.18i 0.136308i
\(88\) 0 0
\(89\) −66188.9 −0.885748 −0.442874 0.896584i \(-0.646041\pi\)
−0.442874 + 0.896584i \(0.646041\pi\)
\(90\) 0 0
\(91\) 16292.4i 0.206244i
\(92\) 0 0
\(93\) −64646.7 −0.775066
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 12550.8i − 0.135439i −0.997704 0.0677194i \(-0.978428\pi\)
0.997704 0.0677194i \(-0.0215723\pi\)
\(98\) 0 0
\(99\) − 19034.6i − 0.195189i
\(100\) 0 0
\(101\) − 94627.3i − 0.923024i −0.887134 0.461512i \(-0.847307\pi\)
0.887134 0.461512i \(-0.152693\pi\)
\(102\) 0 0
\(103\) − 74704.4i − 0.693830i −0.937897 0.346915i \(-0.887229\pi\)
0.937897 0.346915i \(-0.112771\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −95390.0 −0.805459 −0.402729 0.915319i \(-0.631938\pi\)
−0.402729 + 0.915319i \(0.631938\pi\)
\(108\) 0 0
\(109\) − 166091.i − 1.33900i −0.742814 0.669498i \(-0.766509\pi\)
0.742814 0.669498i \(-0.233491\pi\)
\(110\) 0 0
\(111\) 145643. 1.12198
\(112\) 0 0
\(113\) 174815.i 1.28790i 0.765067 + 0.643951i \(0.222706\pi\)
−0.765067 + 0.643951i \(0.777294\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −33095.3 −0.223512
\(118\) 0 0
\(119\) 19633.7 0.127097
\(120\) 0 0
\(121\) 140904. 0.874901
\(122\) 0 0
\(123\) 31394.4 0.187107
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 94893.2i 0.522067i 0.965330 + 0.261033i \(0.0840633\pi\)
−0.965330 + 0.261033i \(0.915937\pi\)
\(128\) 0 0
\(129\) −169785. −0.898307
\(130\) 0 0
\(131\) 263177.i 1.33989i 0.742409 + 0.669947i \(0.233683\pi\)
−0.742409 + 0.669947i \(0.766317\pi\)
\(132\) 0 0
\(133\) −11526.0 −0.0565001
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12040.5i 0.0548080i 0.999624 + 0.0274040i \(0.00872406\pi\)
−0.999624 + 0.0274040i \(0.991276\pi\)
\(138\) 0 0
\(139\) 357698.i 1.57029i 0.619312 + 0.785145i \(0.287412\pi\)
−0.619312 + 0.785145i \(0.712588\pi\)
\(140\) 0 0
\(141\) 10486.9i 0.0444222i
\(142\) 0 0
\(143\) 35030.2i 0.143253i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −129909. −0.495846
\(148\) 0 0
\(149\) − 361479.i − 1.33388i −0.745111 0.666940i \(-0.767604\pi\)
0.745111 0.666940i \(-0.232396\pi\)
\(150\) 0 0
\(151\) 337938. 1.20613 0.603067 0.797691i \(-0.293945\pi\)
0.603067 + 0.797691i \(0.293945\pi\)
\(152\) 0 0
\(153\) 39882.7i 0.137739i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 155005. 0.501876 0.250938 0.968003i \(-0.419261\pi\)
0.250938 + 0.968003i \(0.419261\pi\)
\(158\) 0 0
\(159\) 239915. 0.752602
\(160\) 0 0
\(161\) 104100. 0.316510
\(162\) 0 0
\(163\) −126397. −0.372621 −0.186311 0.982491i \(-0.559653\pi\)
−0.186311 + 0.982491i \(0.559653\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 709796.i 1.96944i 0.174152 + 0.984719i \(0.444282\pi\)
−0.174152 + 0.984719i \(0.555718\pi\)
\(168\) 0 0
\(169\) −310386. −0.835960
\(170\) 0 0
\(171\) − 23413.2i − 0.0612308i
\(172\) 0 0
\(173\) −395365. −1.00435 −0.502173 0.864767i \(-0.667466\pi\)
−0.502173 + 0.864767i \(0.667466\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 332826.i 0.798517i
\(178\) 0 0
\(179\) 265918.i 0.620318i 0.950685 + 0.310159i \(0.100382\pi\)
−0.950685 + 0.310159i \(0.899618\pi\)
\(180\) 0 0
\(181\) 836091.i 1.89696i 0.316843 + 0.948478i \(0.397377\pi\)
−0.316843 + 0.948478i \(0.602623\pi\)
\(182\) 0 0
\(183\) 223006.i 0.492254i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 42214.4 0.0882788
\(188\) 0 0
\(189\) 259789.i 0.529013i
\(190\) 0 0
\(191\) 770184. 1.52761 0.763803 0.645450i \(-0.223330\pi\)
0.763803 + 0.645450i \(0.223330\pi\)
\(192\) 0 0
\(193\) 694883.i 1.34282i 0.741085 + 0.671411i \(0.234312\pi\)
−0.741085 + 0.671411i \(0.765688\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 304179. 0.558424 0.279212 0.960229i \(-0.409927\pi\)
0.279212 + 0.960229i \(0.409927\pi\)
\(198\) 0 0
\(199\) −575412. −1.03002 −0.515011 0.857184i \(-0.672212\pi\)
−0.515011 + 0.857184i \(0.672212\pi\)
\(200\) 0 0
\(201\) 403315. 0.704133
\(202\) 0 0
\(203\) 60877.8 0.103686
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 211463.i 0.343011i
\(208\) 0 0
\(209\) −24782.0 −0.0392438
\(210\) 0 0
\(211\) 154406.i 0.238758i 0.992849 + 0.119379i \(0.0380903\pi\)
−0.992849 + 0.119379i \(0.961910\pi\)
\(212\) 0 0
\(213\) −323483. −0.488543
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 408966.i 0.589573i
\(218\) 0 0
\(219\) − 830385.i − 1.16995i
\(220\) 0 0
\(221\) − 73398.0i − 0.101089i
\(222\) 0 0
\(223\) 817613.i 1.10100i 0.834836 + 0.550498i \(0.185562\pi\)
−0.834836 + 0.550498i \(0.814438\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 45598.7 0.0587338 0.0293669 0.999569i \(-0.490651\pi\)
0.0293669 + 0.999569i \(0.490651\pi\)
\(228\) 0 0
\(229\) 633888.i 0.798774i 0.916783 + 0.399387i \(0.130777\pi\)
−0.916783 + 0.399387i \(0.869223\pi\)
\(230\) 0 0
\(231\) 97785.0 0.120571
\(232\) 0 0
\(233\) 245572.i 0.296339i 0.988962 + 0.148169i \(0.0473381\pi\)
−0.988962 + 0.148169i \(0.952662\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −243166. −0.281211
\(238\) 0 0
\(239\) −1.13159e6 −1.28142 −0.640711 0.767782i \(-0.721361\pi\)
−0.640711 + 0.767782i \(0.721361\pi\)
\(240\) 0 0
\(241\) 1.56424e6 1.73484 0.867421 0.497575i \(-0.165776\pi\)
0.867421 + 0.497575i \(0.165776\pi\)
\(242\) 0 0
\(243\) −867775. −0.942739
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 43088.4i 0.0449384i
\(248\) 0 0
\(249\) −696104. −0.711501
\(250\) 0 0
\(251\) 1.45223e6i 1.45496i 0.686130 + 0.727479i \(0.259308\pi\)
−0.686130 + 0.727479i \(0.740692\pi\)
\(252\) 0 0
\(253\) 223826. 0.219841
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.67551e6i 1.58240i 0.611560 + 0.791198i \(0.290542\pi\)
−0.611560 + 0.791198i \(0.709458\pi\)
\(258\) 0 0
\(259\) − 921364.i − 0.853458i
\(260\) 0 0
\(261\) 123663.i 0.112367i
\(262\) 0 0
\(263\) 977406.i 0.871336i 0.900107 + 0.435668i \(0.143488\pi\)
−0.900107 + 0.435668i \(0.856512\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 690711. 0.592950
\(268\) 0 0
\(269\) − 15731.4i − 0.0132552i −0.999978 0.00662760i \(-0.997890\pi\)
0.999978 0.00662760i \(-0.00210964\pi\)
\(270\) 0 0
\(271\) 861364. 0.712465 0.356233 0.934397i \(-0.384061\pi\)
0.356233 + 0.934397i \(0.384061\pi\)
\(272\) 0 0
\(273\) − 170018.i − 0.138067i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.16950e6 −1.69887 −0.849435 0.527693i \(-0.823057\pi\)
−0.849435 + 0.527693i \(0.823057\pi\)
\(278\) 0 0
\(279\) −830746. −0.638937
\(280\) 0 0
\(281\) 1.81796e6 1.37347 0.686736 0.726907i \(-0.259043\pi\)
0.686736 + 0.726907i \(0.259043\pi\)
\(282\) 0 0
\(283\) −998020. −0.740753 −0.370376 0.928882i \(-0.620771\pi\)
−0.370376 + 0.928882i \(0.620771\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 198606.i − 0.142327i
\(288\) 0 0
\(289\) 1.33141e6 0.937704
\(290\) 0 0
\(291\) 130974.i 0.0906674i
\(292\) 0 0
\(293\) 399603. 0.271932 0.135966 0.990714i \(-0.456586\pi\)
0.135966 + 0.990714i \(0.456586\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 558571.i 0.367441i
\(298\) 0 0
\(299\) − 389165.i − 0.251742i
\(300\) 0 0
\(301\) 1.07409e6i 0.683318i
\(302\) 0 0
\(303\) 987479.i 0.617904i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 368112. 0.222912 0.111456 0.993769i \(-0.464449\pi\)
0.111456 + 0.993769i \(0.464449\pi\)
\(308\) 0 0
\(309\) 779573.i 0.464473i
\(310\) 0 0
\(311\) 1.13519e6 0.665530 0.332765 0.943010i \(-0.392018\pi\)
0.332765 + 0.943010i \(0.392018\pi\)
\(312\) 0 0
\(313\) 334474.i 0.192975i 0.995334 + 0.0964877i \(0.0307608\pi\)
−0.995334 + 0.0964877i \(0.969239\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −837898. −0.468321 −0.234160 0.972198i \(-0.575234\pi\)
−0.234160 + 0.972198i \(0.575234\pi\)
\(318\) 0 0
\(319\) 130893. 0.0720179
\(320\) 0 0
\(321\) 995437. 0.539202
\(322\) 0 0
\(323\) 51925.2 0.0276931
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.73323e6i 0.896370i
\(328\) 0 0
\(329\) 66341.9 0.0337908
\(330\) 0 0
\(331\) − 2.30318e6i − 1.15547i −0.816225 0.577734i \(-0.803937\pi\)
0.816225 0.577734i \(-0.196063\pi\)
\(332\) 0 0
\(333\) 1.87160e6 0.924917
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 698751.i 0.335156i 0.985859 + 0.167578i \(0.0535947\pi\)
−0.985859 + 0.167578i \(0.946405\pi\)
\(338\) 0 0
\(339\) − 1.82427e6i − 0.862166i
\(340\) 0 0
\(341\) 879315.i 0.409505i
\(342\) 0 0
\(343\) 1.93136e6i 0.886398i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.30033e6 −1.47141 −0.735706 0.677301i \(-0.763149\pi\)
−0.735706 + 0.677301i \(0.763149\pi\)
\(348\) 0 0
\(349\) − 121442.i − 0.0533711i −0.999644 0.0266855i \(-0.991505\pi\)
0.999644 0.0266855i \(-0.00849528\pi\)
\(350\) 0 0
\(351\) 971186. 0.420760
\(352\) 0 0
\(353\) − 56609.0i − 0.0241796i −0.999927 0.0120898i \(-0.996152\pi\)
0.999927 0.0120898i \(-0.00384839\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −204887. −0.0850831
\(358\) 0 0
\(359\) −446755. −0.182950 −0.0914751 0.995807i \(-0.529158\pi\)
−0.0914751 + 0.995807i \(0.529158\pi\)
\(360\) 0 0
\(361\) 2.44562e6 0.987689
\(362\) 0 0
\(363\) −1.47039e6 −0.585688
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 304081.i − 0.117849i −0.998262 0.0589243i \(-0.981233\pi\)
0.998262 0.0589243i \(-0.0187671\pi\)
\(368\) 0 0
\(369\) 403436. 0.154244
\(370\) 0 0
\(371\) − 1.51774e6i − 0.572484i
\(372\) 0 0
\(373\) −932701. −0.347112 −0.173556 0.984824i \(-0.555526\pi\)
−0.173556 + 0.984824i \(0.555526\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 227583.i − 0.0824683i
\(378\) 0 0
\(379\) 760659.i 0.272014i 0.990708 + 0.136007i \(0.0434270\pi\)
−0.990708 + 0.136007i \(0.956573\pi\)
\(380\) 0 0
\(381\) − 990254.i − 0.349489i
\(382\) 0 0
\(383\) 1.80993e6i 0.630470i 0.949014 + 0.315235i \(0.102083\pi\)
−0.949014 + 0.315235i \(0.897917\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.18183e6 −0.740532
\(388\) 0 0
\(389\) − 4.14597e6i − 1.38916i −0.719416 0.694579i \(-0.755591\pi\)
0.719416 0.694579i \(-0.244409\pi\)
\(390\) 0 0
\(391\) −468977. −0.155135
\(392\) 0 0
\(393\) − 2.74637e6i − 0.896971i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.67426e6 0.533145 0.266573 0.963815i \(-0.414109\pi\)
0.266573 + 0.963815i \(0.414109\pi\)
\(398\) 0 0
\(399\) 120279. 0.0378231
\(400\) 0 0
\(401\) −2.20886e6 −0.685975 −0.342987 0.939340i \(-0.611439\pi\)
−0.342987 + 0.939340i \(0.611439\pi\)
\(402\) 0 0
\(403\) 1.52886e6 0.468927
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1.98102e6i − 0.592793i
\(408\) 0 0
\(409\) −1.59010e6 −0.470019 −0.235010 0.971993i \(-0.575512\pi\)
−0.235010 + 0.971993i \(0.575512\pi\)
\(410\) 0 0
\(411\) − 125648.i − 0.0366904i
\(412\) 0 0
\(413\) 2.10551e6 0.607411
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 3.73274e6i − 1.05121i
\(418\) 0 0
\(419\) 4.24535e6i 1.18135i 0.806909 + 0.590675i \(0.201139\pi\)
−0.806909 + 0.590675i \(0.798861\pi\)
\(420\) 0 0
\(421\) 5.17330e6i 1.42253i 0.702922 + 0.711267i \(0.251878\pi\)
−0.702922 + 0.711267i \(0.748122\pi\)
\(422\) 0 0
\(423\) 134763.i 0.0366200i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.41077e6 0.374445
\(428\) 0 0
\(429\) − 365556.i − 0.0958982i
\(430\) 0 0
\(431\) −1.02248e6 −0.265132 −0.132566 0.991174i \(-0.542322\pi\)
−0.132566 + 0.991174i \(0.542322\pi\)
\(432\) 0 0
\(433\) 2.18503e6i 0.560063i 0.959991 + 0.280031i \(0.0903449\pi\)
−0.959991 + 0.280031i \(0.909655\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 275314. 0.0689643
\(438\) 0 0
\(439\) 1.22033e6 0.302216 0.151108 0.988517i \(-0.451716\pi\)
0.151108 + 0.988517i \(0.451716\pi\)
\(440\) 0 0
\(441\) −1.66941e6 −0.408758
\(442\) 0 0
\(443\) −509711. −0.123400 −0.0617000 0.998095i \(-0.519652\pi\)
−0.0617000 + 0.998095i \(0.519652\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.77219e6i 0.892945i
\(448\) 0 0
\(449\) −3.54089e6 −0.828890 −0.414445 0.910074i \(-0.636024\pi\)
−0.414445 + 0.910074i \(0.636024\pi\)
\(450\) 0 0
\(451\) − 427022.i − 0.0988573i
\(452\) 0 0
\(453\) −3.52654e6 −0.807427
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 1.06559e6i − 0.238671i −0.992854 0.119335i \(-0.961924\pi\)
0.992854 0.119335i \(-0.0380764\pi\)
\(458\) 0 0
\(459\) − 1.17036e6i − 0.259292i
\(460\) 0 0
\(461\) − 6.92975e6i − 1.51868i −0.650696 0.759339i \(-0.725523\pi\)
0.650696 0.759339i \(-0.274477\pi\)
\(462\) 0 0
\(463\) − 7.21004e6i − 1.56310i −0.623845 0.781548i \(-0.714431\pi\)
0.623845 0.781548i \(-0.285569\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.00541e6 0.637693 0.318846 0.947806i \(-0.396705\pi\)
0.318846 + 0.947806i \(0.396705\pi\)
\(468\) 0 0
\(469\) − 2.55144e6i − 0.535615i
\(470\) 0 0
\(471\) −1.61755e6 −0.335973
\(472\) 0 0
\(473\) 2.30939e6i 0.474618i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.08305e6 0.620418
\(478\) 0 0
\(479\) 2.47740e6 0.493353 0.246676 0.969098i \(-0.420662\pi\)
0.246676 + 0.969098i \(0.420662\pi\)
\(480\) 0 0
\(481\) −3.44439e6 −0.678813
\(482\) 0 0
\(483\) −1.08633e6 −0.211883
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 4.58130e6i − 0.875320i −0.899141 0.437660i \(-0.855807\pi\)
0.899141 0.437660i \(-0.144193\pi\)
\(488\) 0 0
\(489\) 1.31901e6 0.249446
\(490\) 0 0
\(491\) 8.23983e6i 1.54246i 0.636555 + 0.771231i \(0.280359\pi\)
−0.636555 + 0.771231i \(0.719641\pi\)
\(492\) 0 0
\(493\) −274257. −0.0508207
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.04641e6i 0.371622i
\(498\) 0 0
\(499\) 4.49557e6i 0.808228i 0.914709 + 0.404114i \(0.132420\pi\)
−0.914709 + 0.404114i \(0.867580\pi\)
\(500\) 0 0
\(501\) − 7.40704e6i − 1.31841i
\(502\) 0 0
\(503\) − 6.28876e6i − 1.10827i −0.832427 0.554134i \(-0.813049\pi\)
0.832427 0.554134i \(-0.186951\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.23902e6 0.559620
\(508\) 0 0
\(509\) 8.26032e6i 1.41320i 0.707615 + 0.706598i \(0.249771\pi\)
−0.707615 + 0.706598i \(0.750229\pi\)
\(510\) 0 0
\(511\) −5.25315e6 −0.889954
\(512\) 0 0
\(513\) 687063.i 0.115266i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 142642. 0.0234704
\(518\) 0 0
\(519\) 4.12581e6 0.672344
\(520\) 0 0
\(521\) −1.09563e7 −1.76835 −0.884176 0.467154i \(-0.845279\pi\)
−0.884176 + 0.467154i \(0.845279\pi\)
\(522\) 0 0
\(523\) 9.74999e6 1.55865 0.779327 0.626617i \(-0.215561\pi\)
0.779327 + 0.626617i \(0.215561\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.84241e6i − 0.288975i
\(528\) 0 0
\(529\) 3.94977e6 0.613666
\(530\) 0 0
\(531\) 4.27701e6i 0.658269i
\(532\) 0 0
\(533\) −742461. −0.113202
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 2.77497e6i − 0.415262i
\(538\) 0 0
\(539\) 1.76701e6i 0.261979i
\(540\) 0 0
\(541\) − 1.86030e6i − 0.273268i −0.990622 0.136634i \(-0.956372\pi\)
0.990622 0.136634i \(-0.0436285\pi\)
\(542\) 0 0
\(543\) − 8.72499e6i − 1.26989i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 725841. 0.103723 0.0518613 0.998654i \(-0.483485\pi\)
0.0518613 + 0.998654i \(0.483485\pi\)
\(548\) 0 0
\(549\) 2.86576e6i 0.405796i
\(550\) 0 0
\(551\) 161003. 0.0225920
\(552\) 0 0
\(553\) 1.53831e6i 0.213910i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.72234e6 0.644939 0.322470 0.946580i \(-0.395487\pi\)
0.322470 + 0.946580i \(0.395487\pi\)
\(558\) 0 0
\(559\) 4.01533e6 0.543490
\(560\) 0 0
\(561\) −440526. −0.0590969
\(562\) 0 0
\(563\) 4.74239e6 0.630560 0.315280 0.948999i \(-0.397902\pi\)
0.315280 + 0.948999i \(0.397902\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 559764.i − 0.0731219i
\(568\) 0 0
\(569\) 2.99470e6 0.387768 0.193884 0.981024i \(-0.437891\pi\)
0.193884 + 0.981024i \(0.437891\pi\)
\(570\) 0 0
\(571\) − 1.01416e7i − 1.30172i −0.759198 0.650860i \(-0.774409\pi\)
0.759198 0.650860i \(-0.225591\pi\)
\(572\) 0 0
\(573\) −8.03722e6 −1.02263
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 3.80870e6i − 0.476253i −0.971234 0.238126i \(-0.923467\pi\)
0.971234 0.238126i \(-0.0765333\pi\)
\(578\) 0 0
\(579\) − 7.25142e6i − 0.898931i
\(580\) 0 0
\(581\) 4.40367e6i 0.541220i
\(582\) 0 0
\(583\) − 3.26330e6i − 0.397635i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.40054e6 0.407335 0.203668 0.979040i \(-0.434714\pi\)
0.203668 + 0.979040i \(0.434714\pi\)
\(588\) 0 0
\(589\) 1.08159e6i 0.128462i
\(590\) 0 0
\(591\) −3.17425e6 −0.373828
\(592\) 0 0
\(593\) − 1.27800e7i − 1.49243i −0.665704 0.746216i \(-0.731868\pi\)
0.665704 0.746216i \(-0.268132\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00468e6 0.689532
\(598\) 0 0
\(599\) −614365. −0.0699616 −0.0349808 0.999388i \(-0.511137\pi\)
−0.0349808 + 0.999388i \(0.511137\pi\)
\(600\) 0 0
\(601\) −1.12864e7 −1.27459 −0.637294 0.770621i \(-0.719946\pi\)
−0.637294 + 0.770621i \(0.719946\pi\)
\(602\) 0 0
\(603\) 5.18283e6 0.580462
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.81019e6i 0.199413i 0.995017 + 0.0997065i \(0.0317904\pi\)
−0.995017 + 0.0997065i \(0.968210\pi\)
\(608\) 0 0
\(609\) −635287. −0.0694108
\(610\) 0 0
\(611\) − 248010.i − 0.0268761i
\(612\) 0 0
\(613\) −1.08728e7 −1.16867 −0.584335 0.811513i \(-0.698645\pi\)
−0.584335 + 0.811513i \(0.698645\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 6.60152e6i − 0.698122i −0.937100 0.349061i \(-0.886501\pi\)
0.937100 0.349061i \(-0.113499\pi\)
\(618\) 0 0
\(619\) 8.83255e6i 0.926530i 0.886220 + 0.463265i \(0.153322\pi\)
−0.886220 + 0.463265i \(0.846678\pi\)
\(620\) 0 0
\(621\) − 6.20541e6i − 0.645716i
\(622\) 0 0
\(623\) − 4.36955e6i − 0.451042i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 258611. 0.0262711
\(628\) 0 0
\(629\) 4.15079e6i 0.418316i
\(630\) 0 0
\(631\) −1.48464e7 −1.48439 −0.742194 0.670185i \(-0.766215\pi\)
−0.742194 + 0.670185i \(0.766215\pi\)
\(632\) 0 0
\(633\) − 1.61129e6i − 0.159833i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.07229e6 0.299995
\(638\) 0 0
\(639\) −4.15694e6 −0.402737
\(640\) 0 0
\(641\) −1.42105e7 −1.36604 −0.683022 0.730398i \(-0.739335\pi\)
−0.683022 + 0.730398i \(0.739335\pi\)
\(642\) 0 0
\(643\) 7.89022e6 0.752595 0.376298 0.926499i \(-0.377197\pi\)
0.376298 + 0.926499i \(0.377197\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 1.41387e7i − 1.32785i −0.747800 0.663924i \(-0.768890\pi\)
0.747800 0.663924i \(-0.231110\pi\)
\(648\) 0 0
\(649\) 4.52706e6 0.421895
\(650\) 0 0
\(651\) − 4.26774e6i − 0.394680i
\(652\) 0 0
\(653\) 2.09667e7 1.92419 0.962094 0.272720i \(-0.0879232\pi\)
0.962094 + 0.272720i \(0.0879232\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 1.06709e7i − 0.964469i
\(658\) 0 0
\(659\) − 5.17814e6i − 0.464473i −0.972659 0.232236i \(-0.925396\pi\)
0.972659 0.232236i \(-0.0746043\pi\)
\(660\) 0 0
\(661\) 1.15802e7i 1.03089i 0.856923 + 0.515444i \(0.172373\pi\)
−0.856923 + 0.515444i \(0.827627\pi\)
\(662\) 0 0
\(663\) 765941.i 0.0676724i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.45415e6 −0.126559
\(668\) 0 0
\(669\) − 8.53216e6i − 0.737045i
\(670\) 0 0
\(671\) 3.03330e6 0.260081
\(672\) 0 0
\(673\) 3.44202e6i 0.292938i 0.989215 + 0.146469i \(0.0467909\pi\)
−0.989215 + 0.146469i \(0.953209\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.81661e7 −1.52332 −0.761658 0.647980i \(-0.775614\pi\)
−0.761658 + 0.647980i \(0.775614\pi\)
\(678\) 0 0
\(679\) 828560. 0.0689683
\(680\) 0 0
\(681\) −475843. −0.0393184
\(682\) 0 0
\(683\) −1.58711e7 −1.30184 −0.650918 0.759148i \(-0.725616\pi\)
−0.650918 + 0.759148i \(0.725616\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 6.61490e6i − 0.534726i
\(688\) 0 0
\(689\) −5.67388e6 −0.455336
\(690\) 0 0
\(691\) − 7.37470e6i − 0.587556i −0.955874 0.293778i \(-0.905087\pi\)
0.955874 0.293778i \(-0.0949127\pi\)
\(692\) 0 0
\(693\) 1.25659e6 0.0993943
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 894730.i 0.0697605i
\(698\) 0 0
\(699\) − 2.56265e6i − 0.198379i
\(700\) 0 0
\(701\) − 2.16654e7i − 1.66522i −0.553857 0.832612i \(-0.686845\pi\)
0.553857 0.832612i \(-0.313155\pi\)
\(702\) 0 0
\(703\) − 2.43673e6i − 0.185960i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.24695e6 0.470023
\(708\) 0 0
\(709\) − 5.46373e6i − 0.408201i −0.978950 0.204100i \(-0.934573\pi\)
0.978950 0.204100i \(-0.0654269\pi\)
\(710\) 0 0
\(711\) −3.12482e6 −0.231820
\(712\) 0 0
\(713\) − 9.76869e6i − 0.719635i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.18086e7 0.857829
\(718\) 0 0
\(719\) 1.42857e7 1.03058 0.515288 0.857017i \(-0.327685\pi\)
0.515288 + 0.857017i \(0.327685\pi\)
\(720\) 0 0
\(721\) 4.93171e6 0.353313
\(722\) 0 0
\(723\) −1.63235e7 −1.16136
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.55756e6i 0.249641i 0.992179 + 0.124821i \(0.0398355\pi\)
−0.992179 + 0.124821i \(0.960164\pi\)
\(728\) 0 0
\(729\) 1.11161e7 0.774697
\(730\) 0 0
\(731\) − 4.83881e6i − 0.334923i
\(732\) 0 0
\(733\) 1.61816e7 1.11240 0.556201 0.831048i \(-0.312258\pi\)
0.556201 + 0.831048i \(0.312258\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 5.48584e6i − 0.372027i
\(738\) 0 0
\(739\) 1.16551e7i 0.785063i 0.919739 + 0.392531i \(0.128401\pi\)
−0.919739 + 0.392531i \(0.871599\pi\)
\(740\) 0 0
\(741\) − 449647.i − 0.0300833i
\(742\) 0 0
\(743\) 2.41917e7i 1.60766i 0.594860 + 0.803829i \(0.297208\pi\)
−0.594860 + 0.803829i \(0.702792\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.94532e6 −0.586536
\(748\) 0 0
\(749\) − 6.29730e6i − 0.410157i
\(750\) 0 0
\(751\) −2.13480e7 −1.38120 −0.690601 0.723236i \(-0.742654\pi\)
−0.690601 + 0.723236i \(0.742654\pi\)
\(752\) 0 0
\(753\) − 1.51546e7i − 0.973998i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.68129e7 −1.06636 −0.533179 0.846002i \(-0.679003\pi\)
−0.533179 + 0.846002i \(0.679003\pi\)
\(758\) 0 0
\(759\) −2.33572e6 −0.147169
\(760\) 0 0
\(761\) 1.07818e7 0.674888 0.337444 0.941346i \(-0.390438\pi\)
0.337444 + 0.941346i \(0.390438\pi\)
\(762\) 0 0
\(763\) 1.09647e7 0.681845
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 7.87117e6i − 0.483116i
\(768\) 0 0
\(769\) 3.03763e6 0.185233 0.0926166 0.995702i \(-0.470477\pi\)
0.0926166 + 0.995702i \(0.470477\pi\)
\(770\) 0 0
\(771\) − 1.74847e7i − 1.05931i
\(772\) 0 0
\(773\) 2.73040e7 1.64353 0.821764 0.569828i \(-0.192990\pi\)
0.821764 + 0.569828i \(0.192990\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 9.61485e6i 0.571334i
\(778\) 0 0
\(779\) − 525252.i − 0.0310116i
\(780\) 0 0
\(781\) 4.39997e6i 0.258120i
\(782\) 0 0
\(783\) − 3.62891e6i − 0.211530i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.58229e7 −0.910644 −0.455322 0.890327i \(-0.650476\pi\)
−0.455322 + 0.890327i \(0.650476\pi\)
\(788\) 0 0
\(789\) − 1.01997e7i − 0.583302i
\(790\) 0 0
\(791\) −1.15407e7 −0.655827
\(792\) 0 0
\(793\) − 5.27398e6i − 0.297821i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.53728e6 −0.308781 −0.154390 0.988010i \(-0.549341\pi\)
−0.154390 + 0.988010i \(0.549341\pi\)
\(798\) 0 0
\(799\) −298874. −0.0165623
\(800\) 0 0
\(801\) 8.87602e6 0.488807
\(802\) 0 0
\(803\) −1.12948e7 −0.618143
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 164164.i 0.00887348i
\(808\) 0 0
\(809\) 4.59562e6 0.246873 0.123436 0.992352i \(-0.460609\pi\)
0.123436 + 0.992352i \(0.460609\pi\)
\(810\) 0 0
\(811\) − 3.14901e6i − 0.168121i −0.996461 0.0840604i \(-0.973211\pi\)
0.996461 0.0840604i \(-0.0267889\pi\)
\(812\) 0 0
\(813\) −8.98872e6 −0.476949
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.84063e6i 0.148888i
\(818\) 0 0
\(819\) − 2.18483e6i − 0.113817i
\(820\) 0 0
\(821\) 1.98853e7i 1.02961i 0.857306 + 0.514807i \(0.172136\pi\)
−0.857306 + 0.514807i \(0.827864\pi\)
\(822\) 0 0
\(823\) 1.53764e7i 0.791328i 0.918395 + 0.395664i \(0.129485\pi\)
−0.918395 + 0.395664i \(0.870515\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.95740e6 0.455426 0.227713 0.973728i \(-0.426875\pi\)
0.227713 + 0.973728i \(0.426875\pi\)
\(828\) 0 0
\(829\) 2.95693e7i 1.49436i 0.664623 + 0.747179i \(0.268592\pi\)
−0.664623 + 0.747179i \(0.731408\pi\)
\(830\) 0 0
\(831\) 2.26397e7 1.13728
\(832\) 0 0
\(833\) − 3.70237e6i − 0.184870i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.43784e7 1.20279
\(838\) 0 0
\(839\) −1.26360e7 −0.619732 −0.309866 0.950780i \(-0.600284\pi\)
−0.309866 + 0.950780i \(0.600284\pi\)
\(840\) 0 0
\(841\) 1.96608e7 0.958540
\(842\) 0 0
\(843\) −1.89713e7 −0.919449
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9.30194e6i 0.445518i
\(848\) 0 0
\(849\) 1.04148e7 0.495885
\(850\) 0 0
\(851\) 2.20080e7i 1.04173i
\(852\) 0 0
\(853\) −6.41059e6 −0.301665 −0.150833 0.988559i \(-0.548195\pi\)
−0.150833 + 0.988559i \(0.548195\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.57309e7i 0.731646i 0.930684 + 0.365823i \(0.119212\pi\)
−0.930684 + 0.365823i \(0.880788\pi\)
\(858\) 0 0
\(859\) − 3.33475e7i − 1.54199i −0.636844 0.770993i \(-0.719760\pi\)
0.636844 0.770993i \(-0.280240\pi\)
\(860\) 0 0
\(861\) 2.07254e6i 0.0952787i
\(862\) 0 0
\(863\) 1.62060e6i 0.0740709i 0.999314 + 0.0370355i \(0.0117915\pi\)
−0.999314 + 0.0370355i \(0.988209\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.38938e7 −0.627732
\(868\) 0 0
\(869\) 3.30751e6i 0.148577i
\(870\) 0 0
\(871\) −9.53820e6 −0.426011
\(872\) 0 0
\(873\) 1.68308e6i 0.0747430i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.93461e6 −0.260551 −0.130276 0.991478i \(-0.541586\pi\)
−0.130276 + 0.991478i \(0.541586\pi\)
\(878\) 0 0
\(879\) −4.17004e6 −0.182041
\(880\) 0 0
\(881\) 7.17940e6 0.311637 0.155818 0.987786i \(-0.450199\pi\)
0.155818 + 0.987786i \(0.450199\pi\)
\(882\) 0 0
\(883\) 5.72329e6 0.247027 0.123513 0.992343i \(-0.460584\pi\)
0.123513 + 0.992343i \(0.460584\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.46048e7i − 0.623285i −0.950199 0.311643i \(-0.899121\pi\)
0.950199 0.311643i \(-0.100879\pi\)
\(888\) 0 0
\(889\) −6.26451e6 −0.265847
\(890\) 0 0
\(891\) − 1.20355e6i − 0.0507889i
\(892\) 0 0
\(893\) 175454. 0.00736266
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.06111e6i 0.168525i
\(898\) 0 0
\(899\) − 5.71272e6i − 0.235745i
\(900\) 0 0
\(901\) 6.83751e6i 0.280599i
\(902\) 0 0
\(903\) − 1.12086e7i − 0.457437i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 5.43818e6 0.219501 0.109750 0.993959i \(-0.464995\pi\)
0.109750 + 0.993959i \(0.464995\pi\)
\(908\) 0 0
\(909\) 1.26897e7i 0.509378i
\(910\) 0 0
\(911\) 3.71033e7 1.48121 0.740605 0.671941i \(-0.234539\pi\)
0.740605 + 0.671941i \(0.234539\pi\)
\(912\) 0 0
\(913\) 9.46831e6i 0.375920i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.73740e7 −0.682302
\(918\) 0 0
\(919\) −2.24895e7 −0.878398 −0.439199 0.898390i \(-0.644738\pi\)
−0.439199 + 0.898390i \(0.644738\pi\)
\(920\) 0 0
\(921\) −3.84142e6 −0.149225
\(922\) 0 0
\(923\) 7.65021e6 0.295576
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.00180e7i 0.382895i
\(928\) 0 0
\(929\) −2.80271e7 −1.06547 −0.532733 0.846283i \(-0.678835\pi\)
−0.532733 + 0.846283i \(0.678835\pi\)
\(930\) 0 0
\(931\) 2.17348e6i 0.0821830i
\(932\) 0 0
\(933\) −1.18462e7 −0.445528
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 62078.6i 0.00230990i 0.999999 + 0.00115495i \(0.000367632\pi\)
−0.999999 + 0.00115495i \(0.999632\pi\)
\(938\) 0 0
\(939\) − 3.49039e6i − 0.129184i
\(940\) 0 0
\(941\) 4.45412e6i 0.163979i 0.996633 + 0.0819894i \(0.0261274\pi\)
−0.996633 + 0.0819894i \(0.973873\pi\)
\(942\) 0 0
\(943\) 4.74397e6i 0.173725i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.59793e7 1.66605 0.833024 0.553237i \(-0.186608\pi\)
0.833024 + 0.553237i \(0.186608\pi\)
\(948\) 0 0
\(949\) 1.96382e7i 0.707841i
\(950\) 0 0
\(951\) 8.74385e6 0.313510
\(952\) 0 0
\(953\) 2.32064e7i 0.827706i 0.910344 + 0.413853i \(0.135817\pi\)
−0.910344 + 0.413853i \(0.864183\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.36593e6 −0.0482112
\(958\) 0 0
\(959\) −794872. −0.0279094
\(960\) 0 0
\(961\) 9.74779e6 0.340485
\(962\) 0 0
\(963\) 1.27919e7 0.444499
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 5.33110e7i 1.83337i 0.399607 + 0.916686i \(0.369147\pi\)
−0.399607 + 0.916686i \(0.630853\pi\)
\(968\) 0 0
\(969\) −541863. −0.0185387
\(970\) 0 0
\(971\) 2.49744e7i 0.850056i 0.905180 + 0.425028i \(0.139736\pi\)
−0.905180 + 0.425028i \(0.860264\pi\)
\(972\) 0 0
\(973\) −2.36139e7 −0.799625
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.97806e7i 1.33332i 0.745361 + 0.666661i \(0.232277\pi\)
−0.745361 + 0.666661i \(0.767723\pi\)
\(978\) 0 0
\(979\) − 9.39495e6i − 0.313284i
\(980\) 0 0
\(981\) 2.22730e7i 0.738936i
\(982\) 0 0
\(983\) 3.80176e7i 1.25488i 0.778666 + 0.627439i \(0.215897\pi\)
−0.778666 + 0.627439i \(0.784103\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −692308. −0.0226207
\(988\) 0 0
\(989\) − 2.56560e7i − 0.834061i
\(990\) 0 0
\(991\) 4.34863e7 1.40659 0.703296 0.710897i \(-0.251711\pi\)
0.703296 + 0.710897i \(0.251711\pi\)
\(992\) 0 0
\(993\) 2.40347e7i 0.773510i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −9.27058e6 −0.295372 −0.147686 0.989034i \(-0.547182\pi\)
−0.147686 + 0.989034i \(0.547182\pi\)
\(998\) 0 0
\(999\) −5.49223e7 −1.74115
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.f.d.49.13 40
4.3 odd 2 200.6.f.d.149.15 40
5.2 odd 4 800.6.d.d.401.14 20
5.3 odd 4 800.6.d.b.401.7 20
5.4 even 2 inner 800.6.f.d.49.28 40
8.3 odd 2 200.6.f.d.149.25 40
8.5 even 2 inner 800.6.f.d.49.27 40
20.3 even 4 200.6.d.d.101.4 yes 20
20.7 even 4 200.6.d.c.101.17 20
20.19 odd 2 200.6.f.d.149.26 40
40.3 even 4 200.6.d.d.101.3 yes 20
40.13 odd 4 800.6.d.b.401.14 20
40.19 odd 2 200.6.f.d.149.16 40
40.27 even 4 200.6.d.c.101.18 yes 20
40.29 even 2 inner 800.6.f.d.49.14 40
40.37 odd 4 800.6.d.d.401.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.17 20 20.7 even 4
200.6.d.c.101.18 yes 20 40.27 even 4
200.6.d.d.101.3 yes 20 40.3 even 4
200.6.d.d.101.4 yes 20 20.3 even 4
200.6.f.d.149.15 40 4.3 odd 2
200.6.f.d.149.16 40 40.19 odd 2
200.6.f.d.149.25 40 8.3 odd 2
200.6.f.d.149.26 40 20.19 odd 2
800.6.d.b.401.7 20 5.3 odd 4
800.6.d.b.401.14 20 40.13 odd 4
800.6.d.d.401.7 20 40.37 odd 4
800.6.d.d.401.14 20 5.2 odd 4
800.6.f.d.49.13 40 1.1 even 1 trivial
800.6.f.d.49.14 40 40.29 even 2 inner
800.6.f.d.49.27 40 8.5 even 2 inner
800.6.f.d.49.28 40 5.4 even 2 inner