Properties

Label 2-8040-1.1-c1-0-52
Degree $2$
Conductor $8040$
Sign $1$
Analytic cond. $64.1997$
Root an. cond. $8.01247$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2.42·7-s + 9-s + 2.63·11-s + 3.28·13-s + 15-s + 8.05·17-s − 1.54·19-s − 2.42·21-s + 1.83·23-s + 25-s + 27-s − 6.09·29-s + 5.70·31-s + 2.63·33-s − 2.42·35-s − 5.18·37-s + 3.28·39-s + 0.845·41-s − 1.75·43-s + 45-s + 9.75·47-s − 1.11·49-s + 8.05·51-s + 1.12·53-s + 2.63·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.917·7-s + 0.333·9-s + 0.792·11-s + 0.911·13-s + 0.258·15-s + 1.95·17-s − 0.354·19-s − 0.529·21-s + 0.382·23-s + 0.200·25-s + 0.192·27-s − 1.13·29-s + 1.02·31-s + 0.457·33-s − 0.410·35-s − 0.851·37-s + 0.526·39-s + 0.131·41-s − 0.267·43-s + 0.149·45-s + 1.42·47-s − 0.158·49-s + 1.12·51-s + 0.154·53-s + 0.354·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8040\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 67\)
Sign: $1$
Analytic conductor: \(64.1997\)
Root analytic conductor: \(8.01247\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.105656209\)
\(L(\frac12)\) \(\approx\) \(3.105656209\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
67 \( 1 + T \)
good7 \( 1 + 2.42T + 7T^{2} \)
11 \( 1 - 2.63T + 11T^{2} \)
13 \( 1 - 3.28T + 13T^{2} \)
17 \( 1 - 8.05T + 17T^{2} \)
19 \( 1 + 1.54T + 19T^{2} \)
23 \( 1 - 1.83T + 23T^{2} \)
29 \( 1 + 6.09T + 29T^{2} \)
31 \( 1 - 5.70T + 31T^{2} \)
37 \( 1 + 5.18T + 37T^{2} \)
41 \( 1 - 0.845T + 41T^{2} \)
43 \( 1 + 1.75T + 43T^{2} \)
47 \( 1 - 9.75T + 47T^{2} \)
53 \( 1 - 1.12T + 53T^{2} \)
59 \( 1 - 0.551T + 59T^{2} \)
61 \( 1 + 5.56T + 61T^{2} \)
71 \( 1 - 13.9T + 71T^{2} \)
73 \( 1 + 14.9T + 73T^{2} \)
79 \( 1 - 16.7T + 79T^{2} \)
83 \( 1 - 4.42T + 83T^{2} \)
89 \( 1 + 10.1T + 89T^{2} \)
97 \( 1 - 1.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84578409928363676599700467678, −7.13549228978471244231328140357, −6.40093373675074628398865373198, −5.89737029943140366717175136348, −5.12748668556653681262021443162, −3.98051456506430132190873111193, −3.49590961569892297952179998514, −2.83613994195869599740054970425, −1.72261113257134168632192950094, −0.899649525343639138748590313804, 0.899649525343639138748590313804, 1.72261113257134168632192950094, 2.83613994195869599740054970425, 3.49590961569892297952179998514, 3.98051456506430132190873111193, 5.12748668556653681262021443162, 5.89737029943140366717175136348, 6.40093373675074628398865373198, 7.13549228978471244231328140357, 7.84578409928363676599700467678

Graph of the $Z$-function along the critical line