Properties

Label 8040.2.a.bb
Level 80408040
Weight 22
Character orbit 8040.a
Self dual yes
Analytic conductor 64.20064.200
Analytic rank 00
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8040,2,Mod(1,8040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8040=233567 8040 = 2^{3} \cdot 3 \cdot 5 \cdot 67
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 64.199723225164.1997232251
Analytic rank: 00
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x94x834x7+123x6+375x51146x41662x3+3086x2+3372x64 x^{9} - 4x^{8} - 34x^{7} + 123x^{6} + 375x^{5} - 1146x^{4} - 1662x^{3} + 3086x^{2} + 3372x - 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β81,\beta_1,\ldots,\beta_{8} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q3+q5+(β1+1)q7+q9+(β5β2+β11)q11β2q13+q15+(β8β6+1)q17+(β3+1)q19+(β1+1)q21++(β5β2+β11)q99+O(q100) q + q^{3} + q^{5} + ( - \beta_1 + 1) q^{7} + q^{9} + (\beta_{5} - \beta_{2} + \beta_1 - 1) q^{11} - \beta_{2} q^{13} + q^{15} + ( - \beta_{8} - \beta_{6} + 1) q^{17} + ( - \beta_{3} + 1) q^{19} + ( - \beta_1 + 1) q^{21}+ \cdots + (\beta_{5} - \beta_{2} + \beta_1 - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+9q3+9q5+5q7+9q97q113q13+9q15+7q17+8q19+5q21+19q23+9q25+9q27+14q29+27q317q33+5q35+15q37+7q99+O(q100) 9 q + 9 q^{3} + 9 q^{5} + 5 q^{7} + 9 q^{9} - 7 q^{11} - 3 q^{13} + 9 q^{15} + 7 q^{17} + 8 q^{19} + 5 q^{21} + 19 q^{23} + 9 q^{25} + 9 q^{27} + 14 q^{29} + 27 q^{31} - 7 q^{33} + 5 q^{35} + 15 q^{37}+ \cdots - 7 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x94x834x7+123x6+375x51146x41662x3+3086x2+3372x64 x^{9} - 4x^{8} - 34x^{7} + 123x^{6} + 375x^{5} - 1146x^{4} - 1662x^{3} + 3086x^{2} + 3372x - 64 : Copy content Toggle raw display

β1\beta_{1}== (60429ν8+54882ν7+2230564ν6586265ν524550545ν4+3019562)/1184894 ( - 60429 \nu^{8} + 54882 \nu^{7} + 2230564 \nu^{6} - 586265 \nu^{5} - 24550545 \nu^{4} + \cdots - 3019562 ) / 1184894 Copy content Toggle raw display
β2\beta_{2}== (48698ν855375ν71801381ν6+782418ν5+20127849ν4+1839938)/592447 ( 48698 \nu^{8} - 55375 \nu^{7} - 1801381 \nu^{6} + 782418 \nu^{5} + 20127849 \nu^{4} + \cdots - 1839938 ) / 592447 Copy content Toggle raw display
β3\beta_{3}== (261557ν8+206018ν7+9819906ν61328383ν5110744457ν4++868204)/2369788 ( - 261557 \nu^{8} + 206018 \nu^{7} + 9819906 \nu^{6} - 1328383 \nu^{5} - 110744457 \nu^{4} + \cdots + 868204 ) / 2369788 Copy content Toggle raw display
β4\beta_{4}== (157825ν8165632ν75833326ν6+2151101ν5+64806243ν4+1845208)/1184894 ( 157825 \nu^{8} - 165632 \nu^{7} - 5833326 \nu^{6} + 2151101 \nu^{5} + 64806243 \nu^{4} + \cdots - 1845208 ) / 1184894 Copy content Toggle raw display
β5\beta_{5}== (193129ν8195460ν77087766ν6+2388727ν5+77645393ν4+708176)/1184894 ( 193129 \nu^{8} - 195460 \nu^{7} - 7087766 \nu^{6} + 2388727 \nu^{5} + 77645393 \nu^{4} + \cdots - 708176 ) / 1184894 Copy content Toggle raw display
β6\beta_{6}== (529981ν8+507450ν7+19528990ν65598063ν5215175981ν4+12210920)/2369788 ( - 529981 \nu^{8} + 507450 \nu^{7} + 19528990 \nu^{6} - 5598063 \nu^{5} - 215175981 \nu^{4} + \cdots - 12210920 ) / 2369788 Copy content Toggle raw display
β7\beta_{7}== (589495ν8544442ν721728250ν6+5811565ν5+238666899ν4++15388292)/2369788 ( 589495 \nu^{8} - 544442 \nu^{7} - 21728250 \nu^{6} + 5811565 \nu^{5} + 238666899 \nu^{4} + \cdots + 15388292 ) / 2369788 Copy content Toggle raw display
β8\beta_{8}== (157825ν8165632ν75833326ν6+2151101ν5+64806243ν4++4671709)/592447 ( 157825 \nu^{8} - 165632 \nu^{7} - 5833326 \nu^{6} + 2151101 \nu^{5} + 64806243 \nu^{4} + \cdots + 4671709 ) / 592447 Copy content Toggle raw display
ν\nu== (β4β2+β1+1)/2 ( \beta_{4} - \beta_{2} + \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β8+β4+β2β1+10 -\beta_{8} + \beta_{4} + \beta_{2} - \beta _1 + 10 Copy content Toggle raw display
ν3\nu^{3}== 2β7+β6+3β5+8β4β39β2+4β1+15 -2\beta_{7} + \beta_{6} + 3\beta_{5} + 8\beta_{4} - \beta_{3} - 9\beta_{2} + 4\beta _1 + 15 Copy content Toggle raw display
ν4\nu^{4}== 19β89β75β6+β5+26β4+10β234β1+168 -19\beta_{8} - 9\beta_{7} - 5\beta_{6} + \beta_{5} + 26\beta_{4} + 10\beta_{2} - 34\beta _1 + 168 Copy content Toggle raw display
ν5\nu^{5}== 13β859β7+26β6+75β5+168β423β3166β29β1+396 -13\beta_{8} - 59\beta_{7} + 26\beta_{6} + 75\beta_{5} + 168\beta_{4} - 23\beta_{3} - 166\beta_{2} - 9\beta _1 + 396 Copy content Toggle raw display
ν6\nu^{6}== 384β8311β7132β6+105β5+661β415β3++3365 - 384 \beta_{8} - 311 \beta_{7} - 132 \beta_{6} + 105 \beta_{5} + 661 \beta_{4} - 15 \beta_{3} + \cdots + 3365 Copy content Toggle raw display
ν7\nu^{7}== 618β81558β7+488β6+1701β5+3882β4508β3++10628 - 618 \beta_{8} - 1558 \beta_{7} + 488 \beta_{6} + 1701 \beta_{5} + 3882 \beta_{4} - 508 \beta_{3} + \cdots + 10628 Copy content Toggle raw display
ν8\nu^{8}== 8260β88484β72741β6+4014β5+16901β4701β3++74577 - 8260 \beta_{8} - 8484 \beta_{7} - 2741 \beta_{6} + 4014 \beta_{5} + 16901 \beta_{4} - 701 \beta_{3} + \cdots + 74577 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.11607
2.94981
3.03344
−1.81912
−1.02526
−4.02322
0.0186643
5.01663
−3.26701
0 1.00000 0 1.00000 0 −5.24081 0 1.00000 0
1.2 0 1.00000 0 1.00000 0 −2.42687 0 1.00000 0
1.3 0 1.00000 0 1.00000 0 −1.95262 0 1.00000 0
1.4 0 1.00000 0 1.00000 0 0.227701 0 1.00000 0
1.5 0 1.00000 0 1.00000 0 0.487682 0 1.00000 0
1.6 0 1.00000 0 1.00000 0 1.81240 0 1.00000 0
1.7 0 1.00000 0 1.00000 0 2.52099 0 1.00000 0
1.8 0 1.00000 0 1.00000 0 4.56825 0 1.00000 0
1.9 0 1.00000 0 1.00000 0 5.00327 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 1 -1
6767 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8040.2.a.bb 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8040.2.a.bb 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8040))S_{2}^{\mathrm{new}}(\Gamma_0(8040)):

T795T7834T77+186T76+175T751430T74+264T73+2924T721928T7+288 T_{7}^{9} - 5T_{7}^{8} - 34T_{7}^{7} + 186T_{7}^{6} + 175T_{7}^{5} - 1430T_{7}^{4} + 264T_{7}^{3} + 2924T_{7}^{2} - 1928T_{7} + 288 Copy content Toggle raw display
T119+7T11848T117352T116+553T115+3848T114++2752 T_{11}^{9} + 7 T_{11}^{8} - 48 T_{11}^{7} - 352 T_{11}^{6} + 553 T_{11}^{5} + 3848 T_{11}^{4} + \cdots + 2752 Copy content Toggle raw display
T139+3T13865T137107T136+1471T135+560T134+1296 T_{13}^{9} + 3 T_{13}^{8} - 65 T_{13}^{7} - 107 T_{13}^{6} + 1471 T_{13}^{5} + 560 T_{13}^{4} + \cdots - 1296 Copy content Toggle raw display
T1797T17882T177+519T176+1990T17510273T174++18240 T_{17}^{9} - 7 T_{17}^{8} - 82 T_{17}^{7} + 519 T_{17}^{6} + 1990 T_{17}^{5} - 10273 T_{17}^{4} + \cdots + 18240 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T9 T^{9} Copy content Toggle raw display
33 (T1)9 (T - 1)^{9} Copy content Toggle raw display
55 (T1)9 (T - 1)^{9} Copy content Toggle raw display
77 T95T8++288 T^{9} - 5 T^{8} + \cdots + 288 Copy content Toggle raw display
1111 T9+7T8++2752 T^{9} + 7 T^{8} + \cdots + 2752 Copy content Toggle raw display
1313 T9+3T8+1296 T^{9} + 3 T^{8} + \cdots - 1296 Copy content Toggle raw display
1717 T97T8++18240 T^{9} - 7 T^{8} + \cdots + 18240 Copy content Toggle raw display
1919 T98T8+163136 T^{9} - 8 T^{8} + \cdots - 163136 Copy content Toggle raw display
2323 T919T8+8640 T^{9} - 19 T^{8} + \cdots - 8640 Copy content Toggle raw display
2929 T914T8+4648552 T^{9} - 14 T^{8} + \cdots - 4648552 Copy content Toggle raw display
3131 T927T8+2255200 T^{9} - 27 T^{8} + \cdots - 2255200 Copy content Toggle raw display
3737 T915T8+1611936 T^{9} - 15 T^{8} + \cdots - 1611936 Copy content Toggle raw display
4141 T9+5T8+40896 T^{9} + 5 T^{8} + \cdots - 40896 Copy content Toggle raw display
4343 T911T8+1108992 T^{9} - 11 T^{8} + \cdots - 1108992 Copy content Toggle raw display
4747 T96T8+2160432 T^{9} - 6 T^{8} + \cdots - 2160432 Copy content Toggle raw display
5353 T9+11T8+1057920 T^{9} + 11 T^{8} + \cdots - 1057920 Copy content Toggle raw display
5959 T914T8++742272 T^{9} - 14 T^{8} + \cdots + 742272 Copy content Toggle raw display
6161 T9+7T8++314122240 T^{9} + 7 T^{8} + \cdots + 314122240 Copy content Toggle raw display
6767 (T+1)9 (T + 1)^{9} Copy content Toggle raw display
7171 T9+2T8+1509888 T^{9} + 2 T^{8} + \cdots - 1509888 Copy content Toggle raw display
7373 T9+23T8++94324848 T^{9} + 23 T^{8} + \cdots + 94324848 Copy content Toggle raw display
7979 T9++2154480320 T^{9} + \cdots + 2154480320 Copy content Toggle raw display
8383 T948T8+1350144 T^{9} - 48 T^{8} + \cdots - 1350144 Copy content Toggle raw display
8989 T95T8+51857200 T^{9} - 5 T^{8} + \cdots - 51857200 Copy content Toggle raw display
9797 T919T8+886976 T^{9} - 19 T^{8} + \cdots - 886976 Copy content Toggle raw display
show more
show less