[N,k,chi] = [8040,2,Mod(1,8040)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8040, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8040.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
− 1 -1 − 1
5 5 5
− 1 -1 − 1
67 67 6 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 8040 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(8040)) S 2 n e w ( Γ 0 ( 8 0 4 0 ) ) :
T 7 9 − 5 T 7 8 − 34 T 7 7 + 186 T 7 6 + 175 T 7 5 − 1430 T 7 4 + 264 T 7 3 + 2924 T 7 2 − 1928 T 7 + 288 T_{7}^{9} - 5T_{7}^{8} - 34T_{7}^{7} + 186T_{7}^{6} + 175T_{7}^{5} - 1430T_{7}^{4} + 264T_{7}^{3} + 2924T_{7}^{2} - 1928T_{7} + 288 T 7 9 − 5 T 7 8 − 3 4 T 7 7 + 1 8 6 T 7 6 + 1 7 5 T 7 5 − 1 4 3 0 T 7 4 + 2 6 4 T 7 3 + 2 9 2 4 T 7 2 − 1 9 2 8 T 7 + 2 8 8
T7^9 - 5*T7^8 - 34*T7^7 + 186*T7^6 + 175*T7^5 - 1430*T7^4 + 264*T7^3 + 2924*T7^2 - 1928*T7 + 288
T 11 9 + 7 T 11 8 − 48 T 11 7 − 352 T 11 6 + 553 T 11 5 + 3848 T 11 4 + ⋯ + 2752 T_{11}^{9} + 7 T_{11}^{8} - 48 T_{11}^{7} - 352 T_{11}^{6} + 553 T_{11}^{5} + 3848 T_{11}^{4} + \cdots + 2752 T 1 1 9 + 7 T 1 1 8 − 4 8 T 1 1 7 − 3 5 2 T 1 1 6 + 5 5 3 T 1 1 5 + 3 8 4 8 T 1 1 4 + ⋯ + 2 7 5 2
T11^9 + 7*T11^8 - 48*T11^7 - 352*T11^6 + 553*T11^5 + 3848*T11^4 - 4508*T11^3 - 8736*T11^2 + 8448*T11 + 2752
T 13 9 + 3 T 13 8 − 65 T 13 7 − 107 T 13 6 + 1471 T 13 5 + 560 T 13 4 + ⋯ − 1296 T_{13}^{9} + 3 T_{13}^{8} - 65 T_{13}^{7} - 107 T_{13}^{6} + 1471 T_{13}^{5} + 560 T_{13}^{4} + \cdots - 1296 T 1 3 9 + 3 T 1 3 8 − 6 5 T 1 3 7 − 1 0 7 T 1 3 6 + 1 4 7 1 T 1 3 5 + 5 6 0 T 1 3 4 + ⋯ − 1 2 9 6
T13^9 + 3*T13^8 - 65*T13^7 - 107*T13^6 + 1471*T13^5 + 560*T13^4 - 12164*T13^3 + 5268*T13^2 + 19872*T13 - 1296
T 17 9 − 7 T 17 8 − 82 T 17 7 + 519 T 17 6 + 1990 T 17 5 − 10273 T 17 4 + ⋯ + 18240 T_{17}^{9} - 7 T_{17}^{8} - 82 T_{17}^{7} + 519 T_{17}^{6} + 1990 T_{17}^{5} - 10273 T_{17}^{4} + \cdots + 18240 T 1 7 9 − 7 T 1 7 8 − 8 2 T 1 7 7 + 5 1 9 T 1 7 6 + 1 9 9 0 T 1 7 5 − 1 0 2 7 3 T 1 7 4 + ⋯ + 1 8 2 4 0
T17^9 - 7*T17^8 - 82*T17^7 + 519*T17^6 + 1990*T17^5 - 10273*T17^4 - 14700*T17^3 + 44128*T17^2 + 62992*T17 + 18240
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 9 T^{9} T 9
T^9
3 3 3
( T − 1 ) 9 (T - 1)^{9} ( T − 1 ) 9
(T - 1)^9
5 5 5
( T − 1 ) 9 (T - 1)^{9} ( T − 1 ) 9
(T - 1)^9
7 7 7
T 9 − 5 T 8 + ⋯ + 288 T^{9} - 5 T^{8} + \cdots + 288 T 9 − 5 T 8 + ⋯ + 2 8 8
T^9 - 5*T^8 - 34*T^7 + 186*T^6 + 175*T^5 - 1430*T^4 + 264*T^3 + 2924*T^2 - 1928*T + 288
11 11 1 1
T 9 + 7 T 8 + ⋯ + 2752 T^{9} + 7 T^{8} + \cdots + 2752 T 9 + 7 T 8 + ⋯ + 2 7 5 2
T^9 + 7*T^8 - 48*T^7 - 352*T^6 + 553*T^5 + 3848*T^4 - 4508*T^3 - 8736*T^2 + 8448*T + 2752
13 13 1 3
T 9 + 3 T 8 + ⋯ − 1296 T^{9} + 3 T^{8} + \cdots - 1296 T 9 + 3 T 8 + ⋯ − 1 2 9 6
T^9 + 3*T^8 - 65*T^7 - 107*T^6 + 1471*T^5 + 560*T^4 - 12164*T^3 + 5268*T^2 + 19872*T - 1296
17 17 1 7
T 9 − 7 T 8 + ⋯ + 18240 T^{9} - 7 T^{8} + \cdots + 18240 T 9 − 7 T 8 + ⋯ + 1 8 2 4 0
T^9 - 7*T^8 - 82*T^7 + 519*T^6 + 1990*T^5 - 10273*T^4 - 14700*T^3 + 44128*T^2 + 62992*T + 18240
19 19 1 9
T 9 − 8 T 8 + ⋯ − 163136 T^{9} - 8 T^{8} + \cdots - 163136 T 9 − 8 T 8 + ⋯ − 1 6 3 1 3 6
T^9 - 8*T^8 - 74*T^7 + 678*T^6 + 908*T^5 - 14045*T^4 + 4332*T^3 + 85408*T^2 - 34224*T - 163136
23 23 2 3
T 9 − 19 T 8 + ⋯ − 8640 T^{9} - 19 T^{8} + \cdots - 8640 T 9 − 1 9 T 8 + ⋯ − 8 6 4 0
T^9 - 19*T^8 + 98*T^7 + 126*T^6 - 2367*T^5 + 6073*T^4 - 1160*T^3 - 16020*T^2 + 22164*T - 8640
29 29 2 9
T 9 − 14 T 8 + ⋯ − 4648552 T^{9} - 14 T^{8} + \cdots - 4648552 T 9 − 1 4 T 8 + ⋯ − 4 6 4 8 5 5 2
T^9 - 14*T^8 - 96*T^7 + 1724*T^6 + 2728*T^5 - 72745*T^4 - 12656*T^3 + 1139152*T^2 - 441380*T - 4648552
31 31 3 1
T 9 − 27 T 8 + ⋯ − 2255200 T^{9} - 27 T^{8} + \cdots - 2255200 T 9 − 2 7 T 8 + ⋯ − 2 2 5 5 2 0 0
T^9 - 27*T^8 + 220*T^7 + 256*T^6 - 13313*T^5 + 64080*T^4 + 5420*T^3 - 890572*T^2 + 2560232*T - 2255200
37 37 3 7
T 9 − 15 T 8 + ⋯ − 1611936 T^{9} - 15 T^{8} + \cdots - 1611936 T 9 − 1 5 T 8 + ⋯ − 1 6 1 1 9 3 6
T^9 - 15*T^8 - 36*T^7 + 1318*T^6 - 1615*T^5 - 39931*T^4 + 82570*T^3 + 472580*T^2 - 874392*T - 1611936
41 41 4 1
T 9 + 5 T 8 + ⋯ − 40896 T^{9} + 5 T^{8} + \cdots - 40896 T 9 + 5 T 8 + ⋯ − 4 0 8 9 6
T^9 + 5*T^8 - 212*T^7 - 740*T^6 + 13645*T^5 + 15708*T^4 - 299768*T^3 + 448080*T^2 - 132240*T - 40896
43 43 4 3
T 9 − 11 T 8 + ⋯ − 1108992 T^{9} - 11 T^{8} + \cdots - 1108992 T 9 − 1 1 T 8 + ⋯ − 1 1 0 8 9 9 2
T^9 - 11*T^8 - 68*T^7 + 1050*T^6 + 215*T^5 - 29534*T^4 + 32088*T^3 + 311040*T^2 - 328448*T - 1108992
47 47 4 7
T 9 − 6 T 8 + ⋯ − 2160432 T^{9} - 6 T^{8} + \cdots - 2160432 T 9 − 6 T 8 + ⋯ − 2 1 6 0 4 3 2
T^9 - 6*T^8 - 196*T^7 + 1344*T^6 + 9704*T^5 - 80181*T^4 - 47980*T^3 + 1137040*T^2 - 1133172*T - 2160432
53 53 5 3
T 9 + 11 T 8 + ⋯ − 1057920 T^{9} + 11 T^{8} + \cdots - 1057920 T 9 + 1 1 T 8 + ⋯ − 1 0 5 7 9 2 0
T^9 + 11*T^8 - 175*T^7 - 1763*T^6 + 8571*T^5 + 66440*T^4 - 202856*T^3 - 643056*T^2 + 1815664*T - 1057920
59 59 5 9
T 9 − 14 T 8 + ⋯ + 742272 T^{9} - 14 T^{8} + \cdots + 742272 T 9 − 1 4 T 8 + ⋯ + 7 4 2 2 7 2
T^9 - 14*T^8 - 250*T^7 + 3332*T^6 + 19442*T^5 - 218623*T^4 - 449902*T^3 + 2636652*T^2 - 2628248*T + 742272
61 61 6 1
T 9 + 7 T 8 + ⋯ + 314122240 T^{9} + 7 T^{8} + \cdots + 314122240 T 9 + 7 T 8 + ⋯ + 3 1 4 1 2 2 2 4 0
T^9 + 7*T^8 - 453*T^7 - 2743*T^6 + 69955*T^5 + 335858*T^4 - 4452008*T^3 - 16206516*T^2 + 93998352*T + 314122240
67 67 6 7
( T + 1 ) 9 (T + 1)^{9} ( T + 1 ) 9
(T + 1)^9
71 71 7 1
T 9 + 2 T 8 + ⋯ − 1509888 T^{9} + 2 T^{8} + \cdots - 1509888 T 9 + 2 T 8 + ⋯ − 1 5 0 9 8 8 8
T^9 + 2*T^8 - 386*T^7 - 1749*T^6 + 37883*T^5 + 265954*T^4 + 45420*T^3 - 2491172*T^2 - 3891888*T - 1509888
73 73 7 3
T 9 + 23 T 8 + ⋯ + 94324848 T^{9} + 23 T^{8} + \cdots + 94324848 T 9 + 2 3 T 8 + ⋯ + 9 4 3 2 4 8 4 8
T^9 + 23*T^8 - 236*T^7 - 7167*T^6 + 12032*T^5 + 694985*T^4 + 79260*T^3 - 22940112*T^2 - 6740720*T + 94324848
79 79 7 9
T 9 + ⋯ + 2154480320 T^{9} + \cdots + 2154480320 T 9 + ⋯ + 2 1 5 4 4 8 0 3 2 0
T^9 - 13*T^8 - 570*T^7 + 5254*T^6 + 132889*T^5 - 588716*T^4 - 14995172*T^3 - 97068*T^2 + 660029352*T + 2154480320
83 83 8 3
T 9 − 48 T 8 + ⋯ − 1350144 T^{9} - 48 T^{8} + \cdots - 1350144 T 9 − 4 8 T 8 + ⋯ − 1 3 5 0 1 4 4
T^9 - 48*T^8 + 844*T^7 - 6011*T^6 + 3313*T^5 + 176822*T^4 - 861152*T^3 + 1260480*T^2 + 307968*T - 1350144
89 89 8 9
T 9 − 5 T 8 + ⋯ − 51857200 T^{9} - 5 T^{8} + \cdots - 51857200 T 9 − 5 T 8 + ⋯ − 5 1 8 5 7 2 0 0
T^9 - 5*T^8 - 460*T^7 + 2811*T^6 + 47842*T^5 - 293023*T^4 - 1149744*T^3 + 7244728*T^2 + 7918688*T - 51857200
97 97 9 7
T 9 − 19 T 8 + ⋯ − 886976 T^{9} - 19 T^{8} + \cdots - 886976 T 9 − 1 9 T 8 + ⋯ − 8 8 6 9 7 6
T^9 - 19*T^8 - 101*T^7 + 2039*T^6 + 4899*T^5 - 61292*T^4 - 88492*T^3 + 582352*T^2 + 402816*T - 886976
show more
show less