Properties

Label 2-3e4-27.13-c7-0-14
Degree $2$
Conductor $81$
Sign $0.845 + 0.534i$
Analytic cond. $25.3031$
Root an. cond. $5.03022$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.26 + 12.8i)2-s + (−39.1 + 14.2i)4-s + (4.19 + 3.51i)5-s + (−1.35e3 − 491. i)7-s + (562. + 973. i)8-s + (−35.6 + 61.7i)10-s + (916. − 768. i)11-s + (294. − 1.66e3i)13-s + (3.25e3 − 1.84e4i)14-s + (−1.53e4 + 1.28e4i)16-s + (1.09e4 − 1.90e4i)17-s + (−1.67e4 − 2.90e4i)19-s + (−214. − 77.9i)20-s + (1.19e4 + 1.00e4i)22-s + (1.76e4 − 6.41e3i)23-s + ⋯
L(s)  = 1  + (0.199 + 1.13i)2-s + (−0.305 + 0.111i)4-s + (0.0149 + 0.0125i)5-s + (−1.48 − 0.541i)7-s + (0.388 + 0.672i)8-s + (−0.0112 + 0.0195i)10-s + (0.207 − 0.174i)11-s + (0.0371 − 0.210i)13-s + (0.316 − 1.79i)14-s + (−0.934 + 0.783i)16-s + (0.542 − 0.940i)17-s + (−0.560 − 0.969i)19-s + (−0.00598 − 0.00217i)20-s + (0.238 + 0.200i)22-s + (0.302 − 0.110i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.845 + 0.534i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.845 + 0.534i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.845 + 0.534i$
Analytic conductor: \(25.3031\)
Root analytic conductor: \(5.03022\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :7/2),\ 0.845 + 0.534i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.23968 - 0.358737i\)
\(L(\frac12)\) \(\approx\) \(1.23968 - 0.358737i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-2.26 - 12.8i)T + (-120. + 43.7i)T^{2} \)
5 \( 1 + (-4.19 - 3.51i)T + (1.35e4 + 7.69e4i)T^{2} \)
7 \( 1 + (1.35e3 + 491. i)T + (6.30e5 + 5.29e5i)T^{2} \)
11 \( 1 + (-916. + 768. i)T + (3.38e6 - 1.91e7i)T^{2} \)
13 \( 1 + (-294. + 1.66e3i)T + (-5.89e7 - 2.14e7i)T^{2} \)
17 \( 1 + (-1.09e4 + 1.90e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (1.67e4 + 2.90e4i)T + (-4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (-1.76e4 + 6.41e3i)T + (2.60e9 - 2.18e9i)T^{2} \)
29 \( 1 + (3.07e4 + 1.74e5i)T + (-1.62e10 + 5.89e9i)T^{2} \)
31 \( 1 + (-1.99e5 + 7.26e4i)T + (2.10e10 - 1.76e10i)T^{2} \)
37 \( 1 + (1.17e5 - 2.02e5i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + (9.52e4 - 5.40e5i)T + (-1.83e11 - 6.66e10i)T^{2} \)
43 \( 1 + (-3.79e5 + 3.18e5i)T + (4.72e10 - 2.67e11i)T^{2} \)
47 \( 1 + (-3.02e4 - 1.09e4i)T + (3.88e11 + 3.25e11i)T^{2} \)
53 \( 1 - 1.06e6T + 1.17e12T^{2} \)
59 \( 1 + (2.28e6 + 1.91e6i)T + (4.32e11 + 2.45e12i)T^{2} \)
61 \( 1 + (2.42e6 + 8.81e5i)T + (2.40e12 + 2.02e12i)T^{2} \)
67 \( 1 + (1.72e5 - 9.76e5i)T + (-5.69e12 - 2.07e12i)T^{2} \)
71 \( 1 + (3.73e5 - 6.46e5i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 + (2.19e6 + 3.80e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (6.31e5 + 3.57e6i)T + (-1.80e13 + 6.56e12i)T^{2} \)
83 \( 1 + (8.94e5 + 5.07e6i)T + (-2.54e13 + 9.28e12i)T^{2} \)
89 \( 1 + (-2.30e6 - 3.98e6i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 + (1.24e7 - 1.04e7i)T + (1.40e13 - 7.95e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28877386999614055654936549900, −11.85444404490738442868788204130, −10.46630910163077185094542347421, −9.355453029311494523870075818994, −7.920165861846945934893770404557, −6.77531242884191918648469308317, −6.09058844448221409216218263542, −4.52303636905848477416373074508, −2.82514617066214485206488448540, −0.39732928360355974352283734731, 1.48185122156918558297552974392, 2.94853500961300248866200184789, 3.91011094081189206686727767534, 5.88303064324948873085885501273, 7.10099205603331881597708068486, 8.931994323661069159713121891800, 9.956272480427031614397194638810, 10.80360618738131676202277664876, 12.31006576804789940118886049830, 12.51899146041632390655644733968

Graph of the $Z$-function along the critical line