Properties

Label 81.8.e.a.10.16
Level $81$
Weight $8$
Character 81.10
Analytic conductor $25.303$
Analytic rank $0$
Dimension $120$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.16
Character \(\chi\) \(=\) 81.10
Dual form 81.8.e.a.73.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.26179 + 12.8272i) q^{2} +(-39.1414 + 14.2463i) q^{4} +(4.19097 + 3.51664i) q^{5} +(-1350.63 - 491.588i) q^{7} +(562.337 + 973.996i) q^{8} +(-35.6297 + 61.7124i) q^{10} +(916.360 - 768.917i) q^{11} +(294.159 - 1668.26i) q^{13} +(3250.88 - 18436.6i) q^{14} +(-15306.0 + 12843.3i) q^{16} +(10997.3 - 19047.8i) q^{17} +(-16743.5 - 29000.6i) q^{19} +(-214.139 - 77.9404i) q^{20} +(11935.7 + 10015.2i) q^{22} +(17635.4 - 6418.77i) q^{23} +(-13561.1 - 76908.6i) q^{25} +22064.4 q^{26} +59868.6 q^{28} +(-30705.1 - 174137. i) q^{29} +(199467. - 72600.2i) q^{31} +(-89084.5 - 74750.7i) q^{32} +(269204. + 97982.3i) q^{34} +(-3931.70 - 6809.90i) q^{35} +(-117016. + 202677. i) q^{37} +(334127. - 280366. i) q^{38} +(-1068.46 + 6059.53i) q^{40} +(-95223.1 + 540037. i) q^{41} +(379740. - 318640. i) q^{43} +(-24913.3 + 43151.2i) q^{44} +(122223. + 211696. i) q^{46} +(30204.4 + 10993.5i) q^{47} +(951661. + 798539. i) q^{49} +(955852. - 347902. i) q^{50} +(12252.7 + 69488.5i) q^{52} +1.06896e6 q^{53} +6544.45 q^{55} +(-280702. - 1.59194e6i) q^{56} +(2.16425e6 - 787722. i) q^{58} +(-2.28094e6 - 1.91394e6i) q^{59} +(-2.42205e6 - 881553. i) q^{61} +(1.38241e6 + 2.39441e6i) q^{62} +(-521406. + 903101. i) q^{64} +(7099.47 - 5957.16i) q^{65} +(-172140. + 976252. i) q^{67} +(-159087. + 902228. i) q^{68} +(78459.5 - 65835.3i) q^{70} +(-373502. + 646925. i) q^{71} +(-2.19519e6 - 3.80218e6i) q^{73} +(-2.86445e6 - 1.04258e6i) q^{74} +(1.06851e6 + 896589. i) q^{76} +(-1.61565e6 + 588048. i) q^{77} +(-631110. - 3.57920e6i) q^{79} -109313. q^{80} -7.14255e6 q^{82} +(-894305. - 5.07185e6i) q^{83} +(113074. - 41155.5i) q^{85} +(4.94615e6 + 4.15032e6i) q^{86} +(1.26423e6 + 460140. i) q^{88} +(2.30314e6 + 3.98916e6i) q^{89} +(-1.21739e6 + 2.10859e6i) q^{91} +(-598831. + 502479. i) q^{92} +(-72700.3 + 412304. i) q^{94} +(31813.2 - 180422. i) q^{95} +(-1.24500e7 + 1.04468e7i) q^{97} +(-8.09058e6 + 1.40133e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 6 q^{2} - 6 q^{4} + 219 q^{5} - 6 q^{7} + 4611 q^{8} - 3 q^{10} - 9399 q^{11} - 6 q^{13} - 16647 q^{14} + 378 q^{16} + 58959 q^{17} - 3 q^{19} - 240243 q^{20} + 105762 q^{22} + 144084 q^{23} - 107997 q^{25}+ \cdots + 88493274 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.26179 + 12.8272i 0.199916 + 1.13378i 0.905243 + 0.424895i \(0.139689\pi\)
−0.705327 + 0.708882i \(0.749200\pi\)
\(3\) 0 0
\(4\) −39.1414 + 14.2463i −0.305792 + 0.111299i
\(5\) 4.19097 + 3.51664i 0.0149941 + 0.0125815i 0.650254 0.759717i \(-0.274663\pi\)
−0.635260 + 0.772299i \(0.719107\pi\)
\(6\) 0 0
\(7\) −1350.63 491.588i −1.48830 0.541699i −0.535302 0.844661i \(-0.679802\pi\)
−0.953003 + 0.302962i \(0.902025\pi\)
\(8\) 562.337 + 973.996i 0.388313 + 0.672578i
\(9\) 0 0
\(10\) −35.6297 + 61.7124i −0.0112671 + 0.0195152i
\(11\) 916.360 768.917i 0.207583 0.174183i −0.533069 0.846072i \(-0.678961\pi\)
0.740652 + 0.671889i \(0.234517\pi\)
\(12\) 0 0
\(13\) 294.159 1668.26i 0.0371347 0.210601i −0.960595 0.277953i \(-0.910344\pi\)
0.997729 + 0.0673520i \(0.0214551\pi\)
\(14\) 3250.88 18436.6i 0.316630 1.79570i
\(15\) 0 0
\(16\) −15306.0 + 12843.3i −0.934207 + 0.783893i
\(17\) 10997.3 19047.8i 0.542892 0.940317i −0.455844 0.890060i \(-0.650663\pi\)
0.998736 0.0502573i \(-0.0160041\pi\)
\(18\) 0 0
\(19\) −16743.5 29000.6i −0.560026 0.969994i −0.997493 0.0707596i \(-0.977458\pi\)
0.437467 0.899234i \(-0.355876\pi\)
\(20\) −214.139 77.9404i −0.00598538 0.00217850i
\(21\) 0 0
\(22\) 11935.7 + 10015.2i 0.238983 + 0.200531i
\(23\) 17635.4 6418.77i 0.302231 0.110003i −0.186453 0.982464i \(-0.559699\pi\)
0.488684 + 0.872461i \(0.337477\pi\)
\(24\) 0 0
\(25\) −13561.1 76908.6i −0.173582 0.984430i
\(26\) 22064.4 0.246199
\(27\) 0 0
\(28\) 59868.6 0.515402
\(29\) −30705.1 174137.i −0.233785 1.32586i −0.845157 0.534519i \(-0.820493\pi\)
0.611371 0.791344i \(-0.290618\pi\)
\(30\) 0 0
\(31\) 199467. 72600.2i 1.20256 0.437695i 0.338442 0.940987i \(-0.390100\pi\)
0.864116 + 0.503292i \(0.167878\pi\)
\(32\) −89084.5 74750.7i −0.480593 0.403265i
\(33\) 0 0
\(34\) 269204. + 97982.3i 1.17464 + 0.427535i
\(35\) −3931.70 6809.90i −0.0155004 0.0268474i
\(36\) 0 0
\(37\) −117016. + 202677.i −0.379786 + 0.657808i −0.991031 0.133633i \(-0.957336\pi\)
0.611245 + 0.791441i \(0.290669\pi\)
\(38\) 334127. 280366.i 0.987799 0.828862i
\(39\) 0 0
\(40\) −1068.46 + 6059.53i −0.00263966 + 0.0149702i
\(41\) −95223.1 + 540037.i −0.215774 + 1.22371i 0.663785 + 0.747924i \(0.268949\pi\)
−0.879559 + 0.475791i \(0.842162\pi\)
\(42\) 0 0
\(43\) 379740. 318640.i 0.728361 0.611168i −0.201323 0.979525i \(-0.564524\pi\)
0.929684 + 0.368357i \(0.120080\pi\)
\(44\) −24913.3 + 43151.2i −0.0440908 + 0.0763675i
\(45\) 0 0
\(46\) 122223. + 211696.i 0.185139 + 0.320671i
\(47\) 30204.4 + 10993.5i 0.0424354 + 0.0154452i 0.363151 0.931730i \(-0.381701\pi\)
−0.320715 + 0.947176i \(0.603923\pi\)
\(48\) 0 0
\(49\) 951661. + 798539.i 1.15557 + 0.969638i
\(50\) 955852. 347902.i 1.08142 0.393606i
\(51\) 0 0
\(52\) 12252.7 + 69488.5i 0.0120843 + 0.0685332i
\(53\) 1.06896e6 0.986267 0.493134 0.869954i \(-0.335851\pi\)
0.493134 + 0.869954i \(0.335851\pi\)
\(54\) 0 0
\(55\) 6544.45 0.00530400
\(56\) −280702. 1.59194e6i −0.213594 1.21135i
\(57\) 0 0
\(58\) 2.16425e6 787722.i 1.45650 0.530121i
\(59\) −2.28094e6 1.91394e6i −1.44588 1.21324i −0.935520 0.353274i \(-0.885068\pi\)
−0.510359 0.859962i \(-0.670487\pi\)
\(60\) 0 0
\(61\) −2.42205e6 881553.i −1.36624 0.497272i −0.448264 0.893901i \(-0.647958\pi\)
−0.917979 + 0.396629i \(0.870180\pi\)
\(62\) 1.38241e6 + 2.39441e6i 0.736659 + 1.27593i
\(63\) 0 0
\(64\) −521406. + 903101.i −0.248626 + 0.430632i
\(65\) 7099.47 5957.16i 0.00320649 0.00269056i
\(66\) 0 0
\(67\) −172140. + 976252.i −0.0699228 + 0.396552i 0.929680 + 0.368368i \(0.120083\pi\)
−0.999603 + 0.0281836i \(0.991028\pi\)
\(68\) −159087. + 902228.i −0.0613556 + 0.347965i
\(69\) 0 0
\(70\) 78459.5 65835.3i 0.0273402 0.0229412i
\(71\) −373502. + 646925.i −0.123848 + 0.214511i −0.921282 0.388895i \(-0.872857\pi\)
0.797434 + 0.603406i \(0.206190\pi\)
\(72\) 0 0
\(73\) −2.19519e6 3.80218e6i −0.660454 1.14394i −0.980497 0.196536i \(-0.937031\pi\)
0.320043 0.947403i \(-0.396303\pi\)
\(74\) −2.86445e6 1.04258e6i −0.821733 0.299086i
\(75\) 0 0
\(76\) 1.06851e6 + 896589.i 0.279211 + 0.234286i
\(77\) −1.61565e6 + 588048.i −0.403301 + 0.146790i
\(78\) 0 0
\(79\) −631110. 3.57920e6i −0.144016 0.816755i −0.968152 0.250363i \(-0.919450\pi\)
0.824136 0.566392i \(-0.191661\pi\)
\(80\) −109313. −0.0238701
\(81\) 0 0
\(82\) −7.14255e6 −1.43056
\(83\) −894305. 5.07185e6i −0.171677 0.973629i −0.941910 0.335866i \(-0.890971\pi\)
0.770233 0.637763i \(-0.220140\pi\)
\(84\) 0 0
\(85\) 113074. 41155.5i 0.0199708 0.00726877i
\(86\) 4.94615e6 + 4.15032e6i 0.838539 + 0.703617i
\(87\) 0 0
\(88\) 1.26423e6 + 460140.i 0.197759 + 0.0719782i
\(89\) 2.30314e6 + 3.98916e6i 0.346303 + 0.599814i 0.985590 0.169155i \(-0.0541037\pi\)
−0.639287 + 0.768968i \(0.720770\pi\)
\(90\) 0 0
\(91\) −1.21739e6 + 2.10859e6i −0.169350 + 0.293323i
\(92\) −598831. + 502479.i −0.0801764 + 0.0672760i
\(93\) 0 0
\(94\) −72700.3 + 412304.i −0.00902794 + 0.0512000i
\(95\) 31813.2 180422.i 0.00380693 0.0215902i
\(96\) 0 0
\(97\) −1.24500e7 + 1.04468e7i −1.38506 + 1.16221i −0.417769 + 0.908553i \(0.637188\pi\)
−0.967295 + 0.253654i \(0.918368\pi\)
\(98\) −8.09058e6 + 1.40133e7i −0.868337 + 1.50400i
\(99\) 0 0
\(100\) 1.62646e6 + 2.81711e6i 0.162646 + 0.281711i
\(101\) 1.08384e6 + 394485.i 0.104674 + 0.0380983i 0.393826 0.919185i \(-0.371151\pi\)
−0.289152 + 0.957283i \(0.593373\pi\)
\(102\) 0 0
\(103\) −3.37394e6 2.83107e6i −0.304234 0.255282i 0.477870 0.878430i \(-0.341409\pi\)
−0.782104 + 0.623148i \(0.785853\pi\)
\(104\) 1.79029e6 651613.i 0.156066 0.0568032i
\(105\) 0 0
\(106\) 2.41775e6 + 1.37117e7i 0.197170 + 1.11821i
\(107\) −9.03128e6 −0.712699 −0.356349 0.934353i \(-0.615979\pi\)
−0.356349 + 0.934353i \(0.615979\pi\)
\(108\) 0 0
\(109\) −8.38933e6 −0.620489 −0.310245 0.950657i \(-0.600411\pi\)
−0.310245 + 0.950657i \(0.600411\pi\)
\(110\) 14802.1 + 83947.1i 0.00106035 + 0.00601355i
\(111\) 0 0
\(112\) 2.69864e7 9.82223e6i 1.81502 0.660613i
\(113\) 1.57643e7 + 1.32278e7i 1.02778 + 0.862407i 0.990585 0.136901i \(-0.0437141\pi\)
0.0371923 + 0.999308i \(0.488159\pi\)
\(114\) 0 0
\(115\) 96482.1 + 35116.6i 0.00591567 + 0.00215313i
\(116\) 3.68265e6 + 6.37853e6i 0.219057 + 0.379418i
\(117\) 0 0
\(118\) 1.93915e7 3.35870e7i 1.08649 1.88185i
\(119\) −2.42169e7 + 2.03204e7i −1.31736 + 1.10539i
\(120\) 0 0
\(121\) −3.13543e6 + 1.77819e7i −0.160897 + 0.912493i
\(122\) 5.82973e6 3.30620e7i 0.290662 1.64843i
\(123\) 0 0
\(124\) −6.77314e6 + 5.68334e6i −0.319017 + 0.267687i
\(125\) 427334. 740165.i 0.0195696 0.0338956i
\(126\) 0 0
\(127\) −1.76865e7 3.06340e7i −0.766178 1.32706i −0.939621 0.342216i \(-0.888823\pi\)
0.173443 0.984844i \(-0.444511\pi\)
\(128\) −2.67512e7 9.73664e6i −1.12748 0.410369i
\(129\) 0 0
\(130\) 92471.4 + 77592.7i 0.00369152 + 0.00309756i
\(131\) 3.98270e7 1.44959e7i 1.54785 0.563371i 0.579937 0.814662i \(-0.303077\pi\)
0.967912 + 0.251291i \(0.0808551\pi\)
\(132\) 0 0
\(133\) 8.35787e6 + 4.73998e7i 0.308045 + 1.74701i
\(134\) −1.29119e7 −0.463580
\(135\) 0 0
\(136\) 2.47367e7 0.843248
\(137\) −3.03025e6 1.71854e7i −0.100683 0.571001i −0.992857 0.119310i \(-0.961932\pi\)
0.892174 0.451692i \(-0.149179\pi\)
\(138\) 0 0
\(139\) 1.91345e7 6.96439e6i 0.604318 0.219954i −0.0216975 0.999765i \(-0.506907\pi\)
0.626015 + 0.779811i \(0.284685\pi\)
\(140\) 250908. + 210537.i 0.00772798 + 0.00648455i
\(141\) 0 0
\(142\) −9.14303e6 3.32779e6i −0.267967 0.0975319i
\(143\) −1.01320e6 1.75491e6i −0.0289746 0.0501854i
\(144\) 0 0
\(145\) 483694. 837783.i 0.0131760 0.0228215i
\(146\) 4.38064e7 3.67579e7i 1.16494 0.977499i
\(147\) 0 0
\(148\) 1.69276e6 9.60011e6i 0.0429219 0.243422i
\(149\) 6.39632e6 3.62753e7i 0.158408 0.898379i −0.797195 0.603722i \(-0.793684\pi\)
0.955603 0.294657i \(-0.0952053\pi\)
\(150\) 0 0
\(151\) −361682. + 303487.i −0.00854885 + 0.00717333i −0.647052 0.762446i \(-0.723998\pi\)
0.638503 + 0.769619i \(0.279554\pi\)
\(152\) 1.88310e7 3.26162e7i 0.434931 0.753322i
\(153\) 0 0
\(154\) −1.11973e7 1.93943e7i −0.247053 0.427908i
\(155\) 1.09127e6 + 397190.i 0.0235381 + 0.00856718i
\(156\) 0 0
\(157\) −5.21288e7 4.37413e7i −1.07505 0.902075i −0.0795504 0.996831i \(-0.525348\pi\)
−0.995501 + 0.0947560i \(0.969793\pi\)
\(158\) 4.44838e7 1.61908e7i 0.897227 0.326564i
\(159\) 0 0
\(160\) −110479. 626557.i −0.00213235 0.0120932i
\(161\) −2.69742e7 −0.509400
\(162\) 0 0
\(163\) 1.82610e7 0.330270 0.165135 0.986271i \(-0.447194\pi\)
0.165135 + 0.986271i \(0.447194\pi\)
\(164\) −3.96636e6 2.24944e7i −0.0702164 0.398217i
\(165\) 0 0
\(166\) 6.30351e7 2.29429e7i 1.06956 0.389287i
\(167\) 4.75246e7 + 3.98779e7i 0.789607 + 0.662559i 0.945648 0.325191i \(-0.105429\pi\)
−0.156041 + 0.987751i \(0.549873\pi\)
\(168\) 0 0
\(169\) 5.62678e7 + 2.04798e7i 0.896719 + 0.326379i
\(170\) 783659. + 1.35734e6i 0.0122336 + 0.0211893i
\(171\) 0 0
\(172\) −1.03241e7 + 1.78819e7i −0.154704 + 0.267956i
\(173\) −6.40510e7 + 5.37452e7i −0.940513 + 0.789184i −0.977674 0.210125i \(-0.932613\pi\)
0.0371615 + 0.999309i \(0.488168\pi\)
\(174\) 0 0
\(175\) −1.94914e7 + 1.10541e8i −0.274922 + 1.55916i
\(176\) −4.15041e6 + 2.35382e7i −0.0573848 + 0.325446i
\(177\) 0 0
\(178\) −4.59606e7 + 3.85655e7i −0.610824 + 0.512542i
\(179\) −4.47798e7 + 7.75608e7i −0.583574 + 1.01078i 0.411477 + 0.911420i \(0.365013\pi\)
−0.995052 + 0.0993603i \(0.968320\pi\)
\(180\) 0 0
\(181\) −259263. 449056.i −0.00324986 0.00562893i 0.864396 0.502812i \(-0.167701\pi\)
−0.867646 + 0.497183i \(0.834368\pi\)
\(182\) −2.98008e7 1.08466e7i −0.366419 0.133366i
\(183\) 0 0
\(184\) 1.61689e7 + 1.35673e7i 0.191345 + 0.160558i
\(185\) −1.20315e6 + 437912.i −0.0139708 + 0.00508494i
\(186\) 0 0
\(187\) −4.56875e6 2.59107e7i −0.0510918 0.289756i
\(188\) −1.33886e6 −0.0146954
\(189\) 0 0
\(190\) 2.38626e6 0.0252395
\(191\) 1.50980e7 + 8.56249e7i 0.156784 + 0.889167i 0.957137 + 0.289637i \(0.0935346\pi\)
−0.800352 + 0.599530i \(0.795354\pi\)
\(192\) 0 0
\(193\) 1.21280e8 4.41423e7i 1.21433 0.441982i 0.346129 0.938187i \(-0.387496\pi\)
0.868205 + 0.496205i \(0.165274\pi\)
\(194\) −1.62163e8 1.36071e8i −1.59458 1.33801i
\(195\) 0 0
\(196\) −4.86255e7 1.76982e7i −0.461284 0.167894i
\(197\) 8.33198e7 + 1.44314e8i 0.776456 + 1.34486i 0.933973 + 0.357344i \(0.116318\pi\)
−0.157517 + 0.987516i \(0.550349\pi\)
\(198\) 0 0
\(199\) 1.96276e7 3.39961e7i 0.176556 0.305804i −0.764143 0.645047i \(-0.776838\pi\)
0.940699 + 0.339243i \(0.110171\pi\)
\(200\) 6.72828e7 5.64570e7i 0.594702 0.499014i
\(201\) 0 0
\(202\) −2.60874e6 + 1.47949e7i −0.0222690 + 0.126294i
\(203\) −4.41326e7 + 2.50288e8i −0.370274 + 2.09993i
\(204\) 0 0
\(205\) −2.29819e6 + 1.92841e6i −0.0186315 + 0.0156337i
\(206\) 2.86837e7 4.96816e7i 0.228612 0.395968i
\(207\) 0 0
\(208\) 1.69235e7 + 2.93124e7i 0.130397 + 0.225855i
\(209\) −3.76421e7 1.37006e7i −0.285208 0.103807i
\(210\) 0 0
\(211\) −3.49432e7 2.93209e7i −0.256079 0.214876i 0.505705 0.862706i \(-0.331232\pi\)
−0.761785 + 0.647830i \(0.775677\pi\)
\(212\) −4.18404e7 + 1.52287e7i −0.301592 + 0.109771i
\(213\) 0 0
\(214\) −2.04268e7 1.15846e8i −0.142480 0.808042i
\(215\) 2.71202e6 0.0186105
\(216\) 0 0
\(217\) −3.05095e8 −2.02687
\(218\) −1.89749e7 1.07612e8i −0.124045 0.703497i
\(219\) 0 0
\(220\) −256159. + 93234.1i −0.00162192 + 0.000590331i
\(221\) −2.85417e7 2.39493e7i −0.177872 0.149252i
\(222\) 0 0
\(223\) −1.59536e8 5.80664e7i −0.963367 0.350637i −0.188015 0.982166i \(-0.560205\pi\)
−0.775352 + 0.631529i \(0.782428\pi\)
\(224\) 8.35732e7 + 1.44753e8i 0.496820 + 0.860518i
\(225\) 0 0
\(226\) −1.34020e8 + 2.32130e8i −0.772309 + 1.33768i
\(227\) −6.25650e6 + 5.24983e6i −0.0355011 + 0.0297889i −0.660366 0.750944i \(-0.729599\pi\)
0.624864 + 0.780733i \(0.285154\pi\)
\(228\) 0 0
\(229\) −5.52307e7 + 3.13229e8i −0.303918 + 1.72360i 0.324637 + 0.945839i \(0.394758\pi\)
−0.628555 + 0.777766i \(0.716353\pi\)
\(230\) −232227. + 1.31702e6i −0.00125853 + 0.00713750i
\(231\) 0 0
\(232\) 1.52342e8 1.27830e8i 0.800964 0.672088i
\(233\) 1.76173e8 3.05140e8i 0.912417 1.58035i 0.101778 0.994807i \(-0.467547\pi\)
0.810640 0.585546i \(-0.199120\pi\)
\(234\) 0 0
\(235\) 87925.7 + 152292.i 0.000441955 + 0.000765489i
\(236\) 1.16546e8 + 4.24191e7i 0.577170 + 0.210073i
\(237\) 0 0
\(238\) −3.15427e8 2.64675e8i −1.51663 1.27260i
\(239\) −2.38903e8 + 8.69535e7i −1.13195 + 0.411997i −0.839001 0.544130i \(-0.816860\pi\)
−0.292952 + 0.956127i \(0.594638\pi\)
\(240\) 0 0
\(241\) −1.75072e7 9.92884e7i −0.0805671 0.456918i −0.998225 0.0595482i \(-0.981034\pi\)
0.917658 0.397370i \(-0.130077\pi\)
\(242\) −2.35184e8 −1.06673
\(243\) 0 0
\(244\) 1.07361e8 0.473132
\(245\) 1.18021e6 + 6.69331e6i 0.00512718 + 0.0290777i
\(246\) 0 0
\(247\) −5.33056e7 + 1.94017e7i −0.225078 + 0.0819218i
\(248\) 1.82880e8 + 1.53455e8i 0.761353 + 0.638851i
\(249\) 0 0
\(250\) 1.04608e7 + 3.80742e6i 0.0423423 + 0.0154113i
\(251\) −1.35795e8 2.35204e8i −0.542033 0.938828i −0.998787 0.0492355i \(-0.984321\pi\)
0.456754 0.889593i \(-0.349012\pi\)
\(252\) 0 0
\(253\) 1.12249e7 1.94421e7i 0.0435773 0.0754781i
\(254\) 3.52946e8 2.96157e8i 1.35142 1.13398i
\(255\) 0 0
\(256\) 4.12101e7 2.33714e8i 0.153519 0.870652i
\(257\) 5.37242e7 3.04685e8i 0.197426 1.11966i −0.711495 0.702691i \(-0.751982\pi\)
0.908921 0.416968i \(-0.136907\pi\)
\(258\) 0 0
\(259\) 2.57678e8 2.16218e8i 0.921570 0.773289i
\(260\) −193016. + 334313.i −0.000681060 + 0.00117963i
\(261\) 0 0
\(262\) 2.76022e8 + 4.78084e8i 0.948176 + 1.64229i
\(263\) 2.20619e8 + 8.02987e7i 0.747821 + 0.272185i 0.687689 0.726006i \(-0.258625\pi\)
0.0601325 + 0.998190i \(0.480848\pi\)
\(264\) 0 0
\(265\) 4.47997e6 + 3.75914e6i 0.0147882 + 0.0124087i
\(266\) −5.89104e8 + 2.14416e8i −1.91914 + 0.698510i
\(267\) 0 0
\(268\) −7.17019e6 4.06642e7i −0.0227541 0.129045i
\(269\) 7.71837e7 0.241764 0.120882 0.992667i \(-0.461428\pi\)
0.120882 + 0.992667i \(0.461428\pi\)
\(270\) 0 0
\(271\) 4.05282e8 1.23699 0.618493 0.785790i \(-0.287743\pi\)
0.618493 + 0.785790i \(0.287743\pi\)
\(272\) 7.63122e7 + 4.32788e8i 0.229934 + 1.30402i
\(273\) 0 0
\(274\) 2.13587e8 7.77393e7i 0.627260 0.228304i
\(275\) −7.15632e7 6.00486e7i −0.207503 0.174116i
\(276\) 0 0
\(277\) 2.46614e8 + 8.97600e7i 0.697169 + 0.253749i 0.666202 0.745772i \(-0.267919\pi\)
0.0309672 + 0.999520i \(0.490141\pi\)
\(278\) 1.32612e8 + 2.29691e8i 0.370191 + 0.641189i
\(279\) 0 0
\(280\) 4.42188e6 7.65892e6i 0.0120380 0.0208504i
\(281\) −5.19869e8 + 4.36222e8i −1.39773 + 1.17283i −0.435627 + 0.900127i \(0.643473\pi\)
−0.962098 + 0.272704i \(0.912082\pi\)
\(282\) 0 0
\(283\) −5.38308e7 + 3.05290e8i −0.141182 + 0.800681i 0.829172 + 0.558993i \(0.188812\pi\)
−0.970354 + 0.241688i \(0.922299\pi\)
\(284\) 5.40310e6 3.06425e7i 0.0139968 0.0793799i
\(285\) 0 0
\(286\) 2.02189e7 1.69657e7i 0.0511066 0.0428836i
\(287\) 3.94086e8 6.82577e8i 0.984022 1.70438i
\(288\) 0 0
\(289\) −3.67105e7 6.35845e7i −0.0894639 0.154956i
\(290\) 1.18404e7 + 4.30957e6i 0.0285085 + 0.0103763i
\(291\) 0 0
\(292\) 1.40090e8 + 1.17549e8i 0.329281 + 0.276299i
\(293\) 5.20570e8 1.89472e8i 1.20904 0.440056i 0.342673 0.939455i \(-0.388668\pi\)
0.866372 + 0.499399i \(0.166446\pi\)
\(294\) 0 0
\(295\) −2.82873e6 1.60425e7i −0.00641525 0.0363827i
\(296\) −2.63209e8 −0.589902
\(297\) 0 0
\(298\) 4.79779e8 1.05023
\(299\) −5.52054e6 3.13085e7i −0.0119435 0.0677351i
\(300\) 0 0
\(301\) −6.69526e8 + 2.43688e8i −1.41509 + 0.515051i
\(302\) −4.71094e6 3.95295e6i −0.00984201 0.00825843i
\(303\) 0 0
\(304\) 6.28740e8 + 2.28843e8i 1.28355 + 0.467175i
\(305\) −7.05062e6 1.22120e7i −0.0142291 0.0246456i
\(306\) 0 0
\(307\) 3.39921e8 5.88760e8i 0.670491 1.16132i −0.307274 0.951621i \(-0.599417\pi\)
0.977765 0.209704i \(-0.0672500\pi\)
\(308\) 5.48612e7 4.60340e7i 0.106989 0.0897742i
\(309\) 0 0
\(310\) −2.62663e6 + 1.48963e7i −0.00500764 + 0.0283997i
\(311\) 4.98335e7 2.82620e8i 0.0939420 0.532772i −0.901124 0.433561i \(-0.857257\pi\)
0.995066 0.0992110i \(-0.0316319\pi\)
\(312\) 0 0
\(313\) −3.27990e8 + 2.75216e8i −0.604581 + 0.507304i −0.892915 0.450226i \(-0.851343\pi\)
0.288333 + 0.957530i \(0.406899\pi\)
\(314\) 4.43175e8 7.67601e8i 0.807833 1.39921i
\(315\) 0 0
\(316\) 7.56929e7 + 1.31104e8i 0.134943 + 0.233728i
\(317\) 4.08692e8 + 1.48752e8i 0.720591 + 0.262274i 0.676176 0.736740i \(-0.263636\pi\)
0.0444141 + 0.999013i \(0.485858\pi\)
\(318\) 0 0
\(319\) −1.62034e8 1.35963e8i −0.279472 0.234505i
\(320\) −5.36108e6 + 1.95127e6i −0.00914592 + 0.00332884i
\(321\) 0 0
\(322\) −6.10100e7 3.46005e8i −0.101837 0.577546i
\(323\) −7.36531e8 −1.21614
\(324\) 0 0
\(325\) −1.32292e8 −0.213768
\(326\) 4.13026e7 + 2.34238e8i 0.0660261 + 0.374452i
\(327\) 0 0
\(328\) −5.79541e8 + 2.10936e8i −0.906830 + 0.330059i
\(329\) −3.53906e7 2.96963e7i −0.0547901 0.0459744i
\(330\) 0 0
\(331\) −1.55840e8 5.67211e7i −0.236201 0.0859700i 0.221208 0.975227i \(-0.429000\pi\)
−0.457409 + 0.889257i \(0.651222\pi\)
\(332\) 1.07259e8 + 1.85779e8i 0.160861 + 0.278620i
\(333\) 0 0
\(334\) −4.04032e8 + 6.99805e8i −0.593340 + 1.02769i
\(335\) −4.15456e6 + 3.48609e6i −0.00603766 + 0.00506619i
\(336\) 0 0
\(337\) 1.94766e8 1.10457e9i 0.277210 1.57213i −0.454644 0.890673i \(-0.650234\pi\)
0.731854 0.681462i \(-0.238655\pi\)
\(338\) −1.35433e8 + 7.68080e8i −0.190773 + 1.08193i
\(339\) 0 0
\(340\) −3.83954e6 + 3.22176e6i −0.00529790 + 0.00444546i
\(341\) 1.26960e8 2.19902e8i 0.173392 0.300323i
\(342\) 0 0
\(343\) −3.00945e8 5.21252e8i −0.402678 0.697459i
\(344\) 5.23896e8 + 1.90682e8i 0.693890 + 0.252555i
\(345\) 0 0
\(346\) −8.34271e8 7.00037e8i −1.08278 0.908562i
\(347\) 5.89105e8 2.14417e8i 0.756902 0.275490i 0.0653951 0.997859i \(-0.479169\pi\)
0.691507 + 0.722370i \(0.256947\pi\)
\(348\) 0 0
\(349\) 2.00694e8 + 1.13819e9i 0.252723 + 1.43326i 0.801850 + 0.597525i \(0.203849\pi\)
−0.549127 + 0.835739i \(0.685040\pi\)
\(350\) −1.46202e9 −1.82270
\(351\) 0 0
\(352\) −1.39111e8 −0.170005
\(353\) −4.37131e7 2.47909e8i −0.0528932 0.299972i 0.946873 0.321609i \(-0.104223\pi\)
−0.999766 + 0.0216364i \(0.993112\pi\)
\(354\) 0 0
\(355\) −3.84034e6 + 1.39777e6i −0.00455586 + 0.00165820i
\(356\) −1.46979e8 1.23330e8i −0.172655 0.144875i
\(357\) 0 0
\(358\) −1.09617e9 3.98974e8i −1.26267 0.459573i
\(359\) 6.01731e7 + 1.04223e8i 0.0686391 + 0.118886i 0.898302 0.439378i \(-0.144801\pi\)
−0.829663 + 0.558264i \(0.811468\pi\)
\(360\) 0 0
\(361\) −1.13753e8 + 1.97026e8i −0.127259 + 0.220419i
\(362\) 5.17375e6 4.34129e6i 0.00573225 0.00480993i
\(363\) 0 0
\(364\) 1.76109e7 9.98762e7i 0.0191393 0.108544i
\(365\) 4.17094e6 2.36546e7i 0.00448961 0.0254618i
\(366\) 0 0
\(367\) 8.72383e8 7.32016e8i 0.921247 0.773018i −0.0529784 0.998596i \(-0.516871\pi\)
0.974225 + 0.225578i \(0.0724270\pi\)
\(368\) −1.87490e8 + 3.24743e8i −0.196115 + 0.339682i
\(369\) 0 0
\(370\) −8.33847e6 1.44427e7i −0.00855816 0.0148232i
\(371\) −1.44376e9 5.25486e8i −1.46787 0.534260i
\(372\) 0 0
\(373\) 1.37048e9 + 1.14997e9i 1.36738 + 1.14737i 0.973624 + 0.228159i \(0.0732705\pi\)
0.393760 + 0.919213i \(0.371174\pi\)
\(374\) 3.22028e8 1.17209e8i 0.318305 0.115854i
\(375\) 0 0
\(376\) 6.27743e6 + 3.56011e7i 0.00609010 + 0.0345387i
\(377\) −2.99538e8 −0.287910
\(378\) 0 0
\(379\) 5.19397e8 0.490074 0.245037 0.969514i \(-0.421200\pi\)
0.245037 + 0.969514i \(0.421200\pi\)
\(380\) 1.32513e6 + 7.51516e6i 0.00123884 + 0.00702580i
\(381\) 0 0
\(382\) −1.06418e9 + 3.87330e8i −0.976774 + 0.355517i
\(383\) −5.09232e7 4.27297e7i −0.0463149 0.0388628i 0.619336 0.785126i \(-0.287402\pi\)
−0.665651 + 0.746263i \(0.731846\pi\)
\(384\) 0 0
\(385\) −8.83910e6 3.21717e6i −0.00789397 0.00287317i
\(386\) 8.40532e8 + 1.45584e9i 0.743873 + 1.28843i
\(387\) 0 0
\(388\) 3.38483e8 5.86270e8i 0.294189 0.509550i
\(389\) −7.52754e8 + 6.31636e8i −0.648380 + 0.544055i −0.906579 0.422036i \(-0.861315\pi\)
0.258199 + 0.966092i \(0.416871\pi\)
\(390\) 0 0
\(391\) 7.16779e7 4.06505e8i 0.0606410 0.343912i
\(392\) −2.42619e8 + 1.37596e9i −0.203434 + 1.15373i
\(393\) 0 0
\(394\) −1.66270e9 + 1.39517e9i −1.36955 + 1.14919i
\(395\) 9.94182e6 1.72197e7i 0.00811663 0.0140584i
\(396\) 0 0
\(397\) −6.10031e8 1.05660e9i −0.489311 0.847512i 0.510613 0.859811i \(-0.329418\pi\)
−0.999924 + 0.0122987i \(0.996085\pi\)
\(398\) 4.80469e8 + 1.74876e8i 0.382010 + 0.139040i
\(399\) 0 0
\(400\) 1.19533e9 + 1.00300e9i 0.933849 + 0.783592i
\(401\) −4.95883e8 + 1.80487e8i −0.384038 + 0.139778i −0.526822 0.849975i \(-0.676617\pi\)
0.142784 + 0.989754i \(0.454394\pi\)
\(402\) 0 0
\(403\) −6.24407e7 3.54119e8i −0.0475226 0.269514i
\(404\) −4.80429e7 −0.0362489
\(405\) 0 0
\(406\) −3.31032e9 −2.45488
\(407\) 4.86135e7 + 2.75701e8i 0.0357418 + 0.202702i
\(408\) 0 0
\(409\) 1.27025e9 4.62333e8i 0.918031 0.334136i 0.160576 0.987023i \(-0.448665\pi\)
0.757455 + 0.652888i \(0.226443\pi\)
\(410\) −2.99342e7 2.51178e7i −0.0214499 0.0179986i
\(411\) 0 0
\(412\) 1.72393e8 + 6.27459e7i 0.121445 + 0.0442023i
\(413\) 2.13983e9 + 3.70629e9i 1.49470 + 2.58890i
\(414\) 0 0
\(415\) 1.40879e7 2.44010e7i 0.00967560 0.0167586i
\(416\) −1.50908e8 + 1.26627e8i −0.102775 + 0.0862383i
\(417\) 0 0
\(418\) 9.06024e7 5.13832e8i 0.0606768 0.344115i
\(419\) 1.78253e8 1.01093e9i 0.118383 0.671383i −0.866637 0.498940i \(-0.833723\pi\)
0.985020 0.172443i \(-0.0551660\pi\)
\(420\) 0 0
\(421\) −5.03941e8 + 4.22857e8i −0.329149 + 0.276189i −0.792353 0.610063i \(-0.791144\pi\)
0.463204 + 0.886252i \(0.346700\pi\)
\(422\) 2.97071e8 5.14542e8i 0.192427 0.333294i
\(423\) 0 0
\(424\) 6.01114e8 + 1.04116e9i 0.382980 + 0.663341i
\(425\) −1.61408e9 5.87476e8i −1.01991 0.371218i
\(426\) 0 0
\(427\) 2.83792e9 + 2.38130e9i 1.76401 + 1.48018i
\(428\) 3.53497e8 1.28662e8i 0.217937 0.0793228i
\(429\) 0 0
\(430\) 6.13401e6 + 3.47877e7i 0.00372053 + 0.0211002i
\(431\) 1.08232e9 0.651154 0.325577 0.945516i \(-0.394441\pi\)
0.325577 + 0.945516i \(0.394441\pi\)
\(432\) 0 0
\(433\) 6.42005e8 0.380041 0.190021 0.981780i \(-0.439144\pi\)
0.190021 + 0.981780i \(0.439144\pi\)
\(434\) −6.90060e8 3.91353e9i −0.405203 2.29802i
\(435\) 0 0
\(436\) 3.28370e8 1.19517e8i 0.189741 0.0690599i
\(437\) −4.81426e8 4.03965e8i −0.275959 0.231557i
\(438\) 0 0
\(439\) −1.30664e9 4.75580e8i −0.737109 0.268286i −0.0539382 0.998544i \(-0.517177\pi\)
−0.683171 + 0.730258i \(0.739400\pi\)
\(440\) 3.68018e6 + 6.37427e6i 0.00205961 + 0.00356735i
\(441\) 0 0
\(442\) 2.42648e8 4.20279e8i 0.133659 0.231505i
\(443\) 2.46316e9 2.06684e9i 1.34611 1.12952i 0.366094 0.930578i \(-0.380695\pi\)
0.980012 0.198939i \(-0.0637496\pi\)
\(444\) 0 0
\(445\) −4.37604e6 + 2.48178e7i −0.00235408 + 0.0133507i
\(446\) 3.83994e8 2.17774e9i 0.204952 1.16234i
\(447\) 0 0
\(448\) 1.14818e9 9.63435e8i 0.603304 0.506232i
\(449\) 4.51576e8 7.82152e8i 0.235433 0.407783i −0.723965 0.689837i \(-0.757682\pi\)
0.959399 + 0.282054i \(0.0910157\pi\)
\(450\) 0 0
\(451\) 3.27985e8 + 5.68087e8i 0.168359 + 0.291606i
\(452\) −8.05481e8 2.93171e8i −0.410271 0.149326i
\(453\) 0 0
\(454\) −8.14916e7 6.83796e7i −0.0408712 0.0342950i
\(455\) −1.25172e7 + 4.55589e6i −0.00622970 + 0.00226743i
\(456\) 0 0
\(457\) −2.39224e8 1.35671e9i −0.117246 0.664935i −0.985614 0.169014i \(-0.945942\pi\)
0.868368 0.495921i \(-0.165169\pi\)
\(458\) −4.14278e9 −2.01494
\(459\) 0 0
\(460\) −4.27672e6 −0.00204861
\(461\) 2.98676e8 + 1.69387e9i 0.141986 + 0.805245i 0.969738 + 0.244150i \(0.0785088\pi\)
−0.827751 + 0.561095i \(0.810380\pi\)
\(462\) 0 0
\(463\) 7.08753e8 2.57965e8i 0.331865 0.120789i −0.170713 0.985321i \(-0.554607\pi\)
0.502578 + 0.864532i \(0.332385\pi\)
\(464\) 2.70647e9 + 2.27100e9i 1.25774 + 1.05537i
\(465\) 0 0
\(466\) 4.31257e9 + 1.56965e9i 1.97417 + 0.718541i
\(467\) 7.19037e8 + 1.24541e9i 0.326695 + 0.565852i 0.981854 0.189639i \(-0.0607318\pi\)
−0.655159 + 0.755491i \(0.727398\pi\)
\(468\) 0 0
\(469\) 7.12409e8 1.23393e9i 0.318878 0.552313i
\(470\) −1.75461e6 + 1.47229e6i −0.000779540 + 0.000654112i
\(471\) 0 0
\(472\) 5.81509e8 3.29790e9i 0.254542 1.44358i
\(473\) 1.02971e8 5.83977e8i 0.0447405 0.253736i
\(474\) 0 0
\(475\) −2.00334e9 + 1.68100e9i −0.857681 + 0.719680i
\(476\) 6.58391e8 1.14037e9i 0.279808 0.484641i
\(477\) 0 0
\(478\) −1.65572e9 2.86779e9i −0.693408 1.20102i
\(479\) −7.34515e8 2.67342e8i −0.305370 0.111146i 0.184790 0.982778i \(-0.440839\pi\)
−0.490160 + 0.871632i \(0.663062\pi\)
\(480\) 0 0
\(481\) 3.03696e8 + 2.54832e8i 0.124432 + 0.104411i
\(482\) 1.23400e9 4.49138e8i 0.501937 0.182690i
\(483\) 0 0
\(484\) −1.30601e8 7.40676e8i −0.0523586 0.296941i
\(485\) −8.89156e7 −0.0353901
\(486\) 0 0
\(487\) −9.45953e8 −0.371123 −0.185562 0.982633i \(-0.559410\pi\)
−0.185562 + 0.982633i \(0.559410\pi\)
\(488\) −5.03377e8 2.85479e9i −0.196076 1.11200i
\(489\) 0 0
\(490\) −8.31872e7 + 3.02777e7i −0.0319426 + 0.0116262i
\(491\) −1.96294e9 1.64710e9i −0.748379 0.627964i 0.186695 0.982418i \(-0.440222\pi\)
−0.935074 + 0.354454i \(0.884667\pi\)
\(492\) 0 0
\(493\) −3.65461e9 1.33017e9i −1.37365 0.499968i
\(494\) −3.69435e8 6.39881e8i −0.137878 0.238811i
\(495\) 0 0
\(496\) −2.12063e9 + 3.67304e9i −0.780332 + 1.35158i
\(497\) 8.22482e8 6.90144e8i 0.300524 0.252169i
\(498\) 0 0
\(499\) 2.82535e8 1.60234e9i 0.101794 0.577300i −0.890659 0.454672i \(-0.849757\pi\)
0.992453 0.122629i \(-0.0391324\pi\)
\(500\) −6.18184e6 + 3.50590e7i −0.00221168 + 0.0125431i
\(501\) 0 0
\(502\) 2.70987e9 2.27385e9i 0.956061 0.802231i
\(503\) 2.16263e8 3.74579e8i 0.0757695 0.131237i −0.825651 0.564181i \(-0.809192\pi\)
0.901421 + 0.432944i \(0.142525\pi\)
\(504\) 0 0
\(505\) 3.15508e6 + 5.46475e6i 0.00109016 + 0.00188821i
\(506\) 2.74776e8 + 1.00010e8i 0.0942871 + 0.0343177i
\(507\) 0 0
\(508\) 1.12870e9 + 9.47088e8i 0.381992 + 0.320529i
\(509\) −7.08016e8 + 2.57697e8i −0.237975 + 0.0866157i −0.458254 0.888821i \(-0.651525\pi\)
0.220280 + 0.975437i \(0.429303\pi\)
\(510\) 0 0
\(511\) 1.09578e9 + 6.21446e9i 0.363286 + 2.06030i
\(512\) −5.52800e8 −0.182022
\(513\) 0 0
\(514\) 4.02978e9 1.30891
\(515\) −4.18422e6 2.37299e7i −0.00134986 0.00765545i
\(516\) 0 0
\(517\) 3.61312e7 1.31507e7i 0.0114992 0.00418535i
\(518\) 3.35629e9 + 2.81626e9i 1.06097 + 0.890263i
\(519\) 0 0
\(520\) 9.79455e6 + 3.56493e6i 0.00305473 + 0.00111183i
\(521\) 3.91735e8 + 6.78505e8i 0.121356 + 0.210194i 0.920303 0.391207i \(-0.127942\pi\)
−0.798947 + 0.601402i \(0.794609\pi\)
\(522\) 0 0
\(523\) 1.77238e9 3.06985e9i 0.541752 0.938341i −0.457052 0.889440i \(-0.651095\pi\)
0.998804 0.0489013i \(-0.0155720\pi\)
\(524\) −1.35237e9 + 1.13477e9i −0.410617 + 0.344548i
\(525\) 0 0
\(526\) −5.31017e8 + 3.01155e9i −0.159096 + 0.902276i
\(527\) 8.10721e8 4.59783e9i 0.241287 1.36841i
\(528\) 0 0
\(529\) −2.33844e9 + 1.96218e9i −0.686802 + 0.576295i
\(530\) −3.80866e7 + 6.59679e7i −0.0111124 + 0.0192472i
\(531\) 0 0
\(532\) −1.00241e9 1.73622e9i −0.288639 0.499937i
\(533\) 8.72909e8 + 3.17713e8i 0.249703 + 0.0908845i
\(534\) 0 0
\(535\) −3.78498e7 3.17598e7i −0.0106863 0.00896684i
\(536\) −1.04767e9 + 3.81319e8i −0.293864 + 0.106958i
\(537\) 0 0
\(538\) 1.74573e8 + 9.90052e8i 0.0483325 + 0.274107i
\(539\) 1.48607e9 0.408771
\(540\) 0 0
\(541\) 3.13979e8 0.0852532 0.0426266 0.999091i \(-0.486427\pi\)
0.0426266 + 0.999091i \(0.486427\pi\)
\(542\) 9.16661e8 + 5.19864e9i 0.247293 + 1.40247i
\(543\) 0 0
\(544\) −2.40352e9 + 8.74812e8i −0.640107 + 0.232980i
\(545\) −3.51594e7 2.95023e7i −0.00930367 0.00780670i
\(546\) 0 0
\(547\) −2.93207e9 1.06718e9i −0.765981 0.278794i −0.0706667 0.997500i \(-0.522513\pi\)
−0.695314 + 0.718706i \(0.744735\pi\)
\(548\) 3.63436e8 + 6.29489e8i 0.0943400 + 0.163402i
\(549\) 0 0
\(550\) 6.08397e8 1.05377e9i 0.155926 0.270071i
\(551\) −4.53597e9 + 3.80613e9i −1.15515 + 0.969288i
\(552\) 0 0
\(553\) −9.07098e8 + 5.14441e9i −0.228095 + 1.29359i
\(554\) −5.93585e8 + 3.36639e9i −0.148320 + 0.841162i
\(555\) 0 0
\(556\) −6.49733e8 + 5.45191e8i −0.160315 + 0.134520i
\(557\) −1.12588e9 + 1.95008e9i −0.276057 + 0.478144i −0.970401 0.241499i \(-0.922361\pi\)
0.694345 + 0.719643i \(0.255694\pi\)
\(558\) 0 0
\(559\) −4.19869e8 7.27234e8i −0.101665 0.176089i
\(560\) 1.47640e8 + 5.37367e7i 0.0355261 + 0.0129304i
\(561\) 0 0
\(562\) −6.77135e9 5.68184e9i −1.60916 1.35024i
\(563\) 2.27725e9 8.28852e8i 0.537814 0.195748i −0.0588103 0.998269i \(-0.518731\pi\)
0.596624 + 0.802521i \(0.296508\pi\)
\(564\) 0 0
\(565\) 1.95502e7 + 1.10875e8i 0.00456017 + 0.0258620i
\(566\) −4.03777e9 −0.936018
\(567\) 0 0
\(568\) −8.40136e8 −0.192367
\(569\) 1.25702e9 + 7.12891e9i 0.286055 + 1.62230i 0.701494 + 0.712676i \(0.252517\pi\)
−0.415439 + 0.909621i \(0.636372\pi\)
\(570\) 0 0
\(571\) −1.70919e8 + 6.22094e7i −0.0384206 + 0.0139839i −0.361159 0.932504i \(-0.617619\pi\)
0.322738 + 0.946488i \(0.395397\pi\)
\(572\) 6.46588e7 + 5.42551e7i 0.0144458 + 0.0121215i
\(573\) 0 0
\(574\) 9.64691e9 + 3.51119e9i 2.12910 + 0.774930i
\(575\) −7.32814e8 1.26927e9i −0.160752 0.278430i
\(576\) 0 0
\(577\) −4.95492e8 + 8.58216e8i −0.107379 + 0.185987i −0.914708 0.404116i \(-0.867579\pi\)
0.807328 + 0.590102i \(0.200913\pi\)
\(578\) 7.32581e8 6.14708e8i 0.157800 0.132410i
\(579\) 0 0
\(580\) −6.99715e6 + 3.96828e7i −0.00148910 + 0.00844509i
\(581\) −1.28539e9 + 7.28981e9i −0.271906 + 1.54205i
\(582\) 0 0
\(583\) 9.79549e8 8.21939e8i 0.204732 0.171791i
\(584\) 2.46887e9 4.27622e9i 0.512925 0.888413i
\(585\) 0 0
\(586\) 3.60782e9 + 6.24892e9i 0.740633 + 1.28281i
\(587\) −8.44657e8 3.07430e8i −0.172364 0.0627354i 0.254397 0.967100i \(-0.418123\pi\)
−0.426761 + 0.904365i \(0.640345\pi\)
\(588\) 0 0
\(589\) −5.44523e9 4.56909e9i −1.09803 0.921353i
\(590\) 1.99383e8 7.25694e7i 0.0399674 0.0145469i
\(591\) 0 0
\(592\) −8.11996e8 4.60506e9i −0.160853 0.912240i
\(593\) −4.20907e9 −0.828885 −0.414443 0.910075i \(-0.636023\pi\)
−0.414443 + 0.910075i \(0.636023\pi\)
\(594\) 0 0
\(595\) −1.72952e8 −0.0336601
\(596\) 2.66428e8 + 1.51099e9i 0.0515488 + 0.292348i
\(597\) 0 0
\(598\) 3.89115e8 1.41626e8i 0.0744088 0.0270826i
\(599\) −6.20645e9 5.20783e9i −1.17991 0.990064i −0.999980 0.00638485i \(-0.997968\pi\)
−0.179932 0.983679i \(-0.557588\pi\)
\(600\) 0 0
\(601\) −6.70007e9 2.43863e9i −1.25898 0.458231i −0.375554 0.926801i \(-0.622547\pi\)
−0.883427 + 0.468569i \(0.844770\pi\)
\(602\) −4.64016e9 8.03699e9i −0.866852 1.50143i
\(603\) 0 0
\(604\) 9.83315e6 1.70315e7i 0.00181578 0.00314503i
\(605\) −7.56731e7 + 6.34973e7i −0.0138931 + 0.0116577i
\(606\) 0 0
\(607\) 6.83671e8 3.87729e9i 0.124076 0.703668i −0.857777 0.514022i \(-0.828155\pi\)
0.981853 0.189646i \(-0.0607340\pi\)
\(608\) −6.76230e8 + 3.83509e9i −0.122020 + 0.692011i
\(609\) 0 0
\(610\) 1.40700e8 1.18061e8i 0.0250980 0.0210597i
\(611\) 2.72249e7 4.71549e7i 0.00482861 0.00836339i
\(612\) 0 0
\(613\) 2.59844e9 + 4.50064e9i 0.455619 + 0.789155i 0.998724 0.0505100i \(-0.0160847\pi\)
−0.543105 + 0.839665i \(0.682751\pi\)
\(614\) 8.32098e9 + 3.02859e9i 1.45073 + 0.528021i
\(615\) 0 0
\(616\) −1.48130e9 1.24296e9i −0.255334 0.214251i
\(617\) −6.65865e8 + 2.42355e8i −0.114127 + 0.0415388i −0.398452 0.917189i \(-0.630453\pi\)
0.284326 + 0.958728i \(0.408230\pi\)
\(618\) 0 0
\(619\) −7.83048e8 4.44089e9i −0.132700 0.752579i −0.976434 0.215817i \(-0.930758\pi\)
0.843734 0.536762i \(-0.180353\pi\)
\(620\) −4.83724e7 −0.00815129
\(621\) 0 0
\(622\) 3.73794e9 0.622825
\(623\) −1.14966e9 6.52006e9i −0.190486 1.08030i
\(624\) 0 0
\(625\) −5.72884e9 + 2.08513e9i −0.938613 + 0.341627i
\(626\) −4.27210e9 3.58472e9i −0.696035 0.584043i
\(627\) 0 0
\(628\) 2.66354e9 + 9.69450e8i 0.429142 + 0.156195i
\(629\) 2.57371e9 + 4.45779e9i 0.412365 + 0.714238i
\(630\) 0 0
\(631\) −2.12321e9 + 3.67750e9i −0.336426 + 0.582707i −0.983758 0.179501i \(-0.942552\pi\)
0.647332 + 0.762208i \(0.275885\pi\)
\(632\) 3.13123e9 2.62742e9i 0.493408 0.414018i
\(633\) 0 0
\(634\) −9.83698e8 + 5.57883e9i −0.153303 + 0.869422i
\(635\) 3.36050e7 1.90583e8i 0.00520830 0.0295377i
\(636\) 0 0
\(637\) 1.61211e9 1.35272e9i 0.247119 0.207357i
\(638\) 1.37754e9 2.38596e9i 0.210006 0.363740i
\(639\) 0 0
\(640\) −7.78733e7 1.34880e8i −0.0117424 0.0203385i
\(641\) 4.56402e9 + 1.66117e9i 0.684455 + 0.249121i 0.660759 0.750598i \(-0.270235\pi\)
0.0236956 + 0.999719i \(0.492457\pi\)
\(642\) 0 0
\(643\) −5.39412e9 4.52620e9i −0.800170 0.671422i 0.148070 0.988977i \(-0.452694\pi\)
−0.948240 + 0.317555i \(0.897138\pi\)
\(644\) 1.05581e9 3.84283e8i 0.155770 0.0566957i
\(645\) 0 0
\(646\) −1.66587e9 9.44764e9i −0.243124 1.37883i
\(647\) 1.11556e10 1.61930 0.809652 0.586911i \(-0.199656\pi\)
0.809652 + 0.586911i \(0.199656\pi\)
\(648\) 0 0
\(649\) −3.56182e9 −0.511464
\(650\) −2.99217e8 1.69694e9i −0.0427356 0.242366i
\(651\) 0 0
\(652\) −7.14762e8 + 2.60152e8i −0.100994 + 0.0367587i
\(653\) 4.70902e8 + 3.95134e8i 0.0661812 + 0.0555326i 0.675278 0.737563i \(-0.264024\pi\)
−0.609097 + 0.793096i \(0.708468\pi\)
\(654\) 0 0
\(655\) 2.17891e8 + 7.93057e7i 0.0302966 + 0.0110271i
\(656\) −5.47837e9 9.48881e9i −0.757683 1.31235i
\(657\) 0 0
\(658\) 3.00875e8 5.21130e8i 0.0411713 0.0713108i
\(659\) −2.91625e9 + 2.44702e9i −0.396940 + 0.333072i −0.819310 0.573351i \(-0.805643\pi\)
0.422369 + 0.906424i \(0.361199\pi\)
\(660\) 0 0
\(661\) −1.46070e9 + 8.28405e9i −0.196724 + 1.11568i 0.713219 + 0.700941i \(0.247236\pi\)
−0.909943 + 0.414734i \(0.863875\pi\)
\(662\) 3.75098e8 2.12729e9i 0.0502507 0.284986i
\(663\) 0 0
\(664\) 4.43707e9 3.72314e9i 0.588176 0.493539i
\(665\) −1.31661e8 + 2.28043e8i −0.0173612 + 0.0300705i
\(666\) 0 0
\(667\) −1.65924e9 2.87389e9i −0.216506 0.374999i
\(668\) −2.42829e9 8.83826e8i −0.315198 0.114723i
\(669\) 0 0
\(670\) −5.41136e7 4.54067e7i −0.00695096 0.00583255i
\(671\) −2.89731e9 + 1.05453e9i −0.370225 + 0.134751i
\(672\) 0 0
\(673\) 1.71287e9 + 9.71417e9i 0.216607 + 1.22844i 0.878097 + 0.478483i \(0.158813\pi\)
−0.661490 + 0.749954i \(0.730076\pi\)
\(674\) 1.46091e10 1.83787
\(675\) 0 0
\(676\) −2.49416e9 −0.310535
\(677\) 4.98796e7 + 2.82881e8i 0.00617821 + 0.0350384i 0.987741 0.156102i \(-0.0498927\pi\)
−0.981563 + 0.191140i \(0.938782\pi\)
\(678\) 0 0
\(679\) 2.19509e10 7.98947e9i 2.69096 0.979431i
\(680\) 1.03671e8 + 8.69901e7i 0.0126437 + 0.0106093i
\(681\) 0 0
\(682\) 3.10789e9 + 1.13118e9i 0.375163 + 0.136548i
\(683\) 1.41357e8 + 2.44837e8i 0.0169763 + 0.0294039i 0.874389 0.485226i \(-0.161263\pi\)
−0.857412 + 0.514630i \(0.827929\pi\)
\(684\) 0 0
\(685\) 4.77352e7 8.26798e7i 0.00567442 0.00982839i
\(686\) 6.00554e9 5.03925e9i 0.710261 0.595980i
\(687\) 0 0
\(688\) −1.71993e9 + 9.75423e9i −0.201350 + 1.14191i
\(689\) 3.14443e8 1.78329e9i 0.0366247 0.207709i
\(690\) 0 0
\(691\) 9.68251e9 8.12459e9i 1.11639 0.936760i 0.117971 0.993017i \(-0.462361\pi\)
0.998416 + 0.0562566i \(0.0179165\pi\)
\(692\) 1.74137e9 3.01615e9i 0.199766 0.346004i
\(693\) 0 0
\(694\) 4.08280e9 + 7.07162e9i 0.463661 + 0.803084i
\(695\) 1.04683e8 + 3.81017e7i 0.0118285 + 0.00430524i
\(696\) 0 0
\(697\) 9.23934e9 + 7.75272e9i 1.03354 + 0.867241i
\(698\) −1.41459e10 + 5.14869e9i −1.57448 + 0.573063i
\(699\) 0 0
\(700\) −8.11882e8 4.60441e9i −0.0894643 0.507378i
\(701\) 4.40806e9 0.483320 0.241660 0.970361i \(-0.422308\pi\)
0.241660 + 0.970361i \(0.422308\pi\)
\(702\) 0 0
\(703\) 7.83701e9 0.850760
\(704\) 2.16615e8 + 1.22848e9i 0.0233983 + 0.132698i
\(705\) 0 0
\(706\) 3.08112e9 1.12143e9i 0.329527 0.119938i
\(707\) −1.26994e9 1.06560e9i −0.135149 0.113404i
\(708\) 0 0
\(709\) −8.70335e9 3.16776e9i −0.917117 0.333803i −0.160026 0.987113i \(-0.551158\pi\)
−0.757091 + 0.653310i \(0.773380\pi\)
\(710\) −2.66155e7 4.60995e7i −0.00279081 0.00483383i
\(711\) 0 0
\(712\) −2.59028e9 + 4.48650e9i −0.268947 + 0.465831i
\(713\) 3.05169e9 2.56067e9i 0.315302 0.264570i
\(714\) 0 0
\(715\) 1.92510e6 1.09178e7i 0.000196962 0.00111703i
\(716\) 6.47787e8 3.67378e9i 0.0659533 0.374040i
\(717\) 0 0
\(718\) −1.20079e9 + 1.00758e9i −0.121069 + 0.101589i
\(719\) −5.66535e9 + 9.81267e9i −0.568428 + 0.984546i 0.428294 + 0.903639i \(0.359115\pi\)
−0.996722 + 0.0809064i \(0.974219\pi\)
\(720\) 0 0
\(721\) 3.16521e9 + 5.48231e9i 0.314506 + 0.544741i
\(722\) −2.78458e9 1.01351e9i −0.275347 0.100218i
\(723\) 0 0
\(724\) 1.65453e7 + 1.38831e7i 0.00162028 + 0.00135957i
\(725\) −1.29763e10 + 4.72297e9i −1.26464 + 0.460291i
\(726\) 0 0
\(727\) 3.48347e8 + 1.97558e9i 0.0336234 + 0.190688i 0.996993 0.0774885i \(-0.0246901\pi\)
−0.963370 + 0.268176i \(0.913579\pi\)
\(728\) −2.73834e9 −0.263043
\(729\) 0 0
\(730\) 3.12856e8 0.0297656
\(731\) −1.89329e9 1.07374e10i −0.179270 1.01669i
\(732\) 0 0
\(733\) 1.65008e9 6.00581e8i 0.154754 0.0563258i −0.263482 0.964664i \(-0.584871\pi\)
0.418236 + 0.908339i \(0.362649\pi\)
\(734\) 1.13629e10 + 9.53459e9i 1.06060 + 0.889950i
\(735\) 0 0
\(736\) −2.05085e9 7.46448e8i −0.189610 0.0690124i
\(737\) 5.92915e8 + 1.02696e9i 0.0545577 + 0.0944967i
\(738\) 0 0
\(739\) −1.41722e9 + 2.45470e9i −0.129176 + 0.223740i −0.923358 0.383941i \(-0.874567\pi\)
0.794181 + 0.607681i \(0.207900\pi\)
\(740\) 4.08545e7 3.42810e7i 0.00370620 0.00310987i
\(741\) 0 0
\(742\) 3.47505e9 1.97080e10i 0.312282 1.77104i
\(743\) 7.93434e8 4.49979e9i 0.0709660 0.402468i −0.928546 0.371218i \(-0.878940\pi\)
0.999512 0.0312497i \(-0.00994871\pi\)
\(744\) 0 0
\(745\) 1.54374e8 1.29535e8i 0.0136782 0.0114773i
\(746\) −1.16512e10 + 2.01804e10i −1.02750 + 1.77969i
\(747\) 0 0
\(748\) 5.47958e8 + 9.49090e8i 0.0478731 + 0.0829186i
\(749\) 1.21979e10 + 4.43967e9i 1.06071 + 0.386068i
\(750\) 0 0
\(751\) −3.66565e9 3.07584e9i −0.315799 0.264987i 0.471085 0.882088i \(-0.343863\pi\)
−0.786884 + 0.617101i \(0.788307\pi\)
\(752\) −6.03504e8 + 2.19657e8i −0.0517508 + 0.0188358i
\(753\) 0 0
\(754\) −6.77490e8 3.84224e9i −0.0575577 0.326426i
\(755\) −2.58306e6 −0.000218434
\(756\) 0 0
\(757\) 1.49204e9 0.125010 0.0625052 0.998045i \(-0.480091\pi\)
0.0625052 + 0.998045i \(0.480091\pi\)
\(758\) 1.17476e9 + 6.66242e9i 0.0979734 + 0.555635i
\(759\) 0 0
\(760\) 1.93620e8 7.04718e7i 0.0159993 0.00582328i
\(761\) 4.84834e9 + 4.06824e9i 0.398792 + 0.334626i 0.820027 0.572326i \(-0.193959\pi\)
−0.421234 + 0.906952i \(0.638403\pi\)
\(762\) 0 0
\(763\) 1.13308e10 + 4.12409e9i 0.923477 + 0.336118i
\(764\) −1.81079e9 3.13638e9i −0.146907 0.254450i
\(765\) 0 0
\(766\) 4.32926e8 7.49849e8i 0.0348027 0.0602800i
\(767\) −3.86389e9 + 3.24219e9i −0.309201 + 0.259451i
\(768\) 0 0
\(769\) −2.81854e9 + 1.59847e10i −0.223502 + 1.26754i 0.642026 + 0.766683i \(0.278094\pi\)
−0.865528 + 0.500861i \(0.833017\pi\)
\(770\) 2.12752e7 1.20658e8i 0.00167941 0.00952439i
\(771\) 0 0
\(772\) −4.11820e9 + 3.45558e9i −0.322141 + 0.270309i
\(773\) 7.59410e9 1.31534e10i 0.591355 1.02426i −0.402695 0.915334i \(-0.631927\pi\)
0.994050 0.108923i \(-0.0347401\pi\)
\(774\) 0 0
\(775\) −8.28858e9 1.43562e10i −0.639623 1.10786i
\(776\) −1.71763e10 6.25166e9i −1.31951 0.480263i
\(777\) 0 0
\(778\) −9.80470e9 8.22712e9i −0.746459 0.626353i
\(779\) 1.72558e10 6.28058e9i 1.30783 0.476013i
\(780\) 0 0
\(781\) 1.55169e8 + 8.80008e8i 0.0116554 + 0.0661010i
\(782\) 5.37646e9 0.402043
\(783\) 0 0
\(784\) −2.48220e10 −1.83963
\(785\) −6.46480e7 3.66637e8i −0.00476992 0.0270516i
\(786\) 0 0
\(787\) −5.51581e9 + 2.00759e9i −0.403365 + 0.146813i −0.535732 0.844388i \(-0.679964\pi\)
0.132367 + 0.991201i \(0.457742\pi\)
\(788\) −5.31719e9 4.46165e9i −0.387116 0.324829i
\(789\) 0 0
\(790\) 2.43368e8 + 8.85786e7i 0.0175618 + 0.00639196i
\(791\) −1.47890e10 2.56153e10i −1.06248 1.84027i
\(792\) 0 0
\(793\) −2.18312e9 + 3.78128e9i −0.155461 + 0.269267i
\(794\) 1.21735e10 1.02148e10i 0.863069 0.724201i
\(795\) 0 0
\(796\) −2.83935e8 + 1.61027e9i −0.0199537 + 0.113163i
\(797\) −1.30162e9 + 7.38183e9i −0.0910707 + 0.516488i 0.904810 + 0.425815i \(0.140013\pi\)
−0.995881 + 0.0906724i \(0.971098\pi\)
\(798\) 0 0
\(799\) 5.41569e8 4.54430e8i 0.0375612 0.0315176i
\(800\) −4.54090e9 + 7.86506e9i −0.313564 + 0.543109i
\(801\) 0 0
\(802\) −3.43673e9 5.95258e9i −0.235253 0.407470i
\(803\) −4.93515e9 1.79625e9i −0.336353 0.122423i
\(804\) 0 0
\(805\) −1.13048e8 9.48588e7i −0.00763798 0.00640903i
\(806\) 4.40113e9 1.60188e9i 0.296068 0.107760i
\(807\) 0 0
\(808\) 2.25256e8 + 1.27749e9i 0.0150223 + 0.0851957i
\(809\) 9.98418e9 0.662968 0.331484 0.943461i \(-0.392451\pi\)
0.331484 + 0.943461i \(0.392451\pi\)
\(810\) 0 0
\(811\) 6.54182e9 0.430651 0.215326 0.976542i \(-0.430919\pi\)
0.215326 + 0.976542i \(0.430919\pi\)
\(812\) −1.83827e9 1.04254e10i −0.120493 0.683352i
\(813\) 0 0
\(814\) −3.42652e9 + 1.24715e9i −0.222673 + 0.0810465i
\(815\) 7.65315e7 + 6.42176e7i 0.00495209 + 0.00415530i
\(816\) 0 0
\(817\) −1.55989e10 5.67754e9i −1.00073 0.364236i
\(818\) 8.80348e9 + 1.52481e10i 0.562364 + 0.974043i
\(819\) 0 0
\(820\) 6.24817e7 1.08222e8i 0.00395735 0.00685433i
\(821\) −1.60378e10 + 1.34573e10i −1.01145 + 0.848705i −0.988529 0.151032i \(-0.951740\pi\)
−0.0229187 + 0.999737i \(0.507296\pi\)
\(822\) 0 0
\(823\) −1.40791e9 + 7.98467e9i −0.0880393 + 0.499296i 0.908620 + 0.417624i \(0.137137\pi\)
−0.996659 + 0.0816717i \(0.973974\pi\)
\(824\) 8.60163e8 4.87822e9i 0.0535593 0.303750i
\(825\) 0 0
\(826\) −4.27016e10 + 3.58309e10i −2.63642 + 2.21222i
\(827\) −1.11812e10 + 1.93665e10i −0.687417 + 1.19064i 0.285253 + 0.958452i \(0.407922\pi\)
−0.972671 + 0.232189i \(0.925411\pi\)
\(828\) 0 0
\(829\) −1.13780e10 1.97073e10i −0.693627 1.20140i −0.970641 0.240531i \(-0.922678\pi\)
0.277015 0.960866i \(-0.410655\pi\)
\(830\) 3.44860e8 + 1.25519e8i 0.0209349 + 0.00761966i
\(831\) 0 0
\(832\) 1.35323e9 + 1.13549e9i 0.0814591 + 0.0683523i
\(833\) 2.56761e10 9.34534e9i 1.53912 0.560193i
\(834\) 0 0
\(835\) 5.89381e7 + 3.34254e8i 0.00350343 + 0.0198689i
\(836\) 1.66855e9 0.0987680
\(837\) 0 0
\(838\) 1.33705e10 0.784865
\(839\) 3.62950e9 + 2.05839e10i 0.212168 + 1.20326i 0.885754 + 0.464155i \(0.153642\pi\)
−0.673586 + 0.739109i \(0.735247\pi\)
\(840\) 0 0
\(841\) −1.31714e10 + 4.79399e9i −0.763564 + 0.277915i
\(842\) −6.56389e9 5.50775e9i −0.378938 0.317967i
\(843\) 0 0
\(844\) 1.78544e9 + 6.49847e8i 0.102223 + 0.0372060i
\(845\) 1.63797e8 + 2.83704e8i 0.00933913 + 0.0161758i
\(846\) 0 0
\(847\) 1.29762e10 2.24754e10i 0.733760 1.27091i
\(848\) −1.63615e10 + 1.37289e10i −0.921378 + 0.773128i
\(849\) 0 0
\(850\) 3.88499e9 2.20329e10i 0.216982 1.23057i
\(851\) −7.62684e8 + 4.32540e9i −0.0424220 + 0.240587i
\(852\) 0 0
\(853\) 4.46060e9 3.74289e9i 0.246077 0.206483i −0.511404 0.859341i \(-0.670874\pi\)
0.757481 + 0.652857i \(0.226430\pi\)
\(854\) −2.41267e10 + 4.17886e10i −1.32555 + 2.29591i
\(855\) 0 0
\(856\) −5.07862e9 8.79643e9i −0.276750 0.479345i
\(857\) −2.44791e10 8.90966e9i −1.32850 0.483535i −0.422329 0.906443i \(-0.638787\pi\)
−0.906173 + 0.422907i \(0.861010\pi\)
\(858\) 0 0
\(859\) 1.13629e10 + 9.53458e9i 0.611663 + 0.513246i 0.895170 0.445724i \(-0.147054\pi\)
−0.283508 + 0.958970i \(0.591498\pi\)
\(860\) −1.06152e8 + 3.86363e7i −0.00569095 + 0.00207134i
\(861\) 0 0
\(862\) 2.44797e9 + 1.38831e10i 0.130176 + 0.738264i
\(863\) 2.11355e10 1.11937 0.559687 0.828704i \(-0.310921\pi\)
0.559687 + 0.828704i \(0.310921\pi\)
\(864\) 0 0
\(865\) −4.57439e8 −0.0240313
\(866\) 1.45208e9 + 8.23515e9i 0.0759762 + 0.430882i
\(867\) 0 0
\(868\) 1.19418e10 4.34648e9i 0.619801 0.225589i
\(869\) −3.33043e9 2.79457e9i −0.172160 0.144459i
\(870\) 0 0
\(871\) 1.57800e9 + 5.74346e8i 0.0809178 + 0.0294517i
\(872\) −4.71763e9 8.17117e9i −0.240944 0.417327i
\(873\) 0 0
\(874\) 4.09286e9 7.08905e9i 0.207366 0.359168i
\(875\) −9.41024e8 + 7.89613e8i −0.0474868 + 0.0398461i
\(876\) 0 0
\(877\) 5.26742e9 2.98730e10i 0.263693 1.49548i −0.509037 0.860745i \(-0.669998\pi\)
0.772730 0.634734i \(-0.218890\pi\)
\(878\) 3.14502e9 1.78363e10i 0.156817 0.889352i
\(879\) 0 0
\(880\) −1.00170e8 + 8.40523e7i −0.00495503 + 0.00415777i
\(881\) 3.82992e9 6.63362e9i 0.188701 0.326840i −0.756116 0.654437i \(-0.772906\pi\)
0.944817 + 0.327598i \(0.106239\pi\)
\(882\) 0 0
\(883\) 8.33122e9 + 1.44301e10i 0.407236 + 0.705353i 0.994579 0.103985i \(-0.0331594\pi\)
−0.587343 + 0.809338i \(0.699826\pi\)
\(884\) 1.45835e9 + 5.30796e8i 0.0710034 + 0.0258431i
\(885\) 0 0
\(886\) 3.20829e10 + 2.69207e10i 1.54973 + 1.30038i
\(887\) 8.74648e9 3.18346e9i 0.420824 0.153168i −0.122924 0.992416i \(-0.539227\pi\)
0.543748 + 0.839249i \(0.317005\pi\)
\(888\) 0 0
\(889\) 8.82861e9 + 5.00695e10i 0.421440 + 2.39011i
\(890\) −3.28241e8 −0.0156073
\(891\) 0 0
\(892\) 7.07169e9 0.333615
\(893\) −1.86909e8 1.06002e9i −0.00878317 0.0498118i
\(894\) 0 0
\(895\) −4.60425e8 + 1.67581e8i −0.0214673 + 0.00781347i
\(896\) 3.13445e10 + 2.63011e10i 1.45574 + 1.22151i
\(897\) 0 0
\(898\) 1.10542e10 + 4.02340e9i 0.509402 + 0.185407i
\(899\) −1.87671e10 3.25055e10i −0.861465 1.49210i
\(900\) 0 0
\(901\) 1.17556e10 2.03613e10i 0.535437 0.927404i
\(902\) −6.54514e9 + 5.49203e9i −0.296959 + 0.249178i
\(903\) 0 0
\(904\) −4.01899e9 + 2.27928e10i −0.180937 + 1.02614i
\(905\) 492608. 2.79372e6i 2.20918e−5 0.000125289i
\(906\) 0 0
\(907\) 2.37992e10 1.99699e10i 1.05910 0.888689i 0.0650781 0.997880i \(-0.479270\pi\)
0.994021 + 0.109191i \(0.0348259\pi\)
\(908\) 1.70097e8 2.94617e8i 0.00754045 0.0130604i
\(909\) 0 0
\(910\) −8.67506e7 1.50256e8i −0.00381617 0.00660980i
\(911\) 1.55761e9 + 5.66923e8i 0.0682565 + 0.0248433i 0.375923 0.926651i \(-0.377326\pi\)
−0.307666 + 0.951494i \(0.599548\pi\)
\(912\) 0 0
\(913\) −4.71934e9 3.96000e9i −0.205227 0.172206i
\(914\) 1.68617e10 6.13716e9i 0.730449 0.265862i
\(915\) 0 0
\(916\) −2.30054e9 1.30470e10i −0.0989000 0.560890i
\(917\) −6.09174e10 −2.60885
\(918\) 0 0
\(919\) −1.73662e10 −0.738075 −0.369037 0.929415i \(-0.620313\pi\)
−0.369037 + 0.929415i \(0.620313\pi\)
\(920\) 2.00520e7 + 1.13721e8i 0.000848986 + 0.00481484i
\(921\) 0 0
\(922\) −2.10522e10 + 7.66236e9i −0.884583 + 0.321962i
\(923\) 9.69367e8 + 8.13396e8i 0.0405772 + 0.0340483i
\(924\) 0 0
\(925\) 1.71745e10 + 6.25100e9i 0.713490 + 0.259689i
\(926\) 4.91202e9 + 8.50787e9i 0.203293 + 0.352113i
\(927\) 0 0
\(928\) −1.02815e10 + 1.78081e10i −0.422319 + 0.731477i
\(929\) 2.23840e10 1.87824e10i 0.915971 0.768591i −0.0572745 0.998358i \(-0.518241\pi\)
0.973246 + 0.229768i \(0.0737966\pi\)
\(930\) 0 0
\(931\) 7.22395e9 4.09691e10i 0.293394 1.66392i
\(932\) −2.54853e9 + 1.44534e10i −0.103118 + 0.584810i
\(933\) 0 0
\(934\) −1.43488e10 + 1.20401e10i −0.576239 + 0.483522i
\(935\) 7.19710e7 1.24657e8i 0.00287950 0.00498744i
\(936\) 0 0
\(937\) 8.77877e9 + 1.52053e10i 0.348614 + 0.603817i 0.986004 0.166725i \(-0.0533191\pi\)
−0.637389 + 0.770542i \(0.719986\pi\)
\(938\) 1.74392e10 + 6.34735e9i 0.689949 + 0.251121i
\(939\) 0 0
\(940\) −5.61112e6 4.70829e6i −0.000220345 0.000184891i
\(941\) 3.24494e10 1.18106e10i 1.26953 0.462072i 0.382575 0.923925i \(-0.375037\pi\)
0.886956 + 0.461853i \(0.152815\pi\)
\(942\) 0 0
\(943\) 1.78707e9 + 1.01350e10i 0.0693987 + 0.393580i
\(944\) 5.94934e10 2.30180
\(945\) 0 0
\(946\) 7.72370e9 0.296624
\(947\) −8.33813e9 4.72879e10i −0.319039 1.80936i −0.548621 0.836071i \(-0.684847\pi\)
0.229582 0.973289i \(-0.426264\pi\)
\(948\) 0 0
\(949\) −6.98875e9 + 2.54370e9i −0.265441 + 0.0966126i
\(950\) −2.60937e10 2.18952e10i −0.987421 0.828544i
\(951\) 0 0
\(952\) −3.34100e10 1.21602e10i −1.25501 0.456786i
\(953\) 8.01373e9 + 1.38802e10i 0.299923 + 0.519482i 0.976118 0.217241i \(-0.0697057\pi\)
−0.676195 + 0.736723i \(0.736372\pi\)
\(954\) 0 0
\(955\) −2.37837e8 + 4.11946e8i −0.00883624 + 0.0153048i
\(956\) 8.11222e9 6.80696e9i 0.300287 0.251971i
\(957\) 0 0
\(958\) 1.76794e9 1.00265e10i 0.0649661 0.368441i
\(959\) −4.35539e9 + 2.47007e10i −0.159464 + 0.904364i
\(960\) 0 0
\(961\) 1.34406e10 1.12780e10i 0.488525 0.409921i
\(962\) −2.58189e9 + 4.47196e9i −0.0935027 + 0.161951i
\(963\) 0 0
\(964\) 2.09975e9 + 3.63687e9i 0.0754914 + 0.130755i
\(965\) 6.63513e8 + 2.41499e8i 0.0237686 + 0.00865107i
\(966\) 0 0
\(967\) 1.43456e10 + 1.20374e10i 0.510182 + 0.428093i 0.861193 0.508278i \(-0.169718\pi\)
−0.351011 + 0.936371i \(0.614162\pi\)
\(968\) −1.90827e10 + 6.94553e9i −0.676201 + 0.246117i
\(969\) 0 0
\(970\) −2.01108e8 1.14054e9i −0.00707503 0.0401245i
\(971\) 2.06237e9 0.0722934 0.0361467 0.999346i \(-0.488492\pi\)
0.0361467 + 0.999346i \(0.488492\pi\)
\(972\) 0 0
\(973\) −2.92672e10 −1.01856
\(974\) −2.13954e9 1.21340e10i −0.0741933 0.420771i
\(975\) 0 0
\(976\) 4.83940e10 1.76140e10i 1.66616 0.606433i
\(977\) −1.51585e10 1.27195e10i −0.520028 0.436355i 0.344614 0.938745i \(-0.388010\pi\)
−0.864641 + 0.502390i \(0.832454\pi\)
\(978\) 0 0
\(979\) 5.17784e9 + 1.88458e9i 0.176364 + 0.0641911i
\(980\) −1.41550e8 2.45172e8i −0.00480417 0.00832106i
\(981\) 0 0
\(982\) 1.66880e10 2.89044e10i 0.562359 0.974034i
\(983\) 3.17068e10 2.66052e10i 1.06467 0.893364i 0.0701111 0.997539i \(-0.477665\pi\)
0.994559 + 0.104175i \(0.0332202\pi\)
\(984\) 0 0
\(985\) −1.58310e8 + 8.97823e8i −0.00527816 + 0.0299339i
\(986\) 8.79643e9 4.98870e10i 0.292238 1.65737i
\(987\) 0 0
\(988\) 1.81005e9 1.51881e9i 0.0597093 0.0501021i
\(989\) 4.65160e9 8.05681e9i 0.152903 0.264835i
\(990\) 0 0
\(991\) −6.74755e9 1.16871e10i −0.220236 0.381460i 0.734644 0.678453i \(-0.237349\pi\)
−0.954880 + 0.296993i \(0.904016\pi\)
\(992\) −2.31964e10 8.44279e9i −0.754448 0.274597i
\(993\) 0 0
\(994\) 1.07129e10 + 8.98920e9i 0.345983 + 0.290315i
\(995\) 2.01811e8 7.34532e7i 0.00649478 0.00236391i
\(996\) 0 0
\(997\) −8.62945e9 4.89400e10i −0.275772 1.56398i −0.736499 0.676439i \(-0.763522\pi\)
0.460727 0.887542i \(-0.347589\pi\)
\(998\) 2.11926e10 0.674880
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.e.a.10.16 120
3.2 odd 2 27.8.e.a.13.5 120
27.2 odd 18 27.8.e.a.25.5 yes 120
27.25 even 9 inner 81.8.e.a.73.16 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.8.e.a.13.5 120 3.2 odd 2
27.8.e.a.25.5 yes 120 27.2 odd 18
81.8.e.a.10.16 120 1.1 even 1 trivial
81.8.e.a.73.16 120 27.25 even 9 inner