L(s) = 1 | + 2i·2-s − 4·4-s + (3.36 + 10.6i)5-s + 27.8i·7-s − 8i·8-s + (−21.3 + 6.73i)10-s + 13.2·11-s + 54.4i·13-s − 55.6·14-s + 16·16-s + 28.7i·17-s + 109.·19-s + (−13.4 − 42.6i)20-s + 26.4i·22-s + 176. i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (0.301 + 0.953i)5-s + 1.50i·7-s − 0.353i·8-s + (−0.674 + 0.212i)10-s + 0.361·11-s + 1.16i·13-s − 1.06·14-s + 0.250·16-s + 0.410i·17-s + 1.32·19-s + (−0.150 − 0.476i)20-s + 0.255i·22-s + 1.60i·23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)(−0.953+0.301i)Λ(4−s)
Λ(s)=(=(810s/2ΓC(s+3/2)L(s)(−0.953+0.301i)Λ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
−0.953+0.301i
|
Analytic conductor: |
47.7915 |
Root analytic conductor: |
6.91314 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :3/2), −0.953+0.301i)
|
Particular Values
L(2) |
≈ |
1.978934584 |
L(21) |
≈ |
1.978934584 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1 |
| 5 | 1+(−3.36−10.6i)T |
good | 7 | 1−27.8iT−343T2 |
| 11 | 1−13.2T+1.33e3T2 |
| 13 | 1−54.4iT−2.19e3T2 |
| 17 | 1−28.7iT−4.91e3T2 |
| 19 | 1−109.T+6.85e3T2 |
| 23 | 1−176.iT−1.21e4T2 |
| 29 | 1−68.8T+2.43e4T2 |
| 31 | 1+11.3T+2.97e4T2 |
| 37 | 1+73.9iT−5.06e4T2 |
| 41 | 1−320.T+6.89e4T2 |
| 43 | 1+403.iT−7.95e4T2 |
| 47 | 1−400.iT−1.03e5T2 |
| 53 | 1+106.iT−1.48e5T2 |
| 59 | 1−434.T+2.05e5T2 |
| 61 | 1−812.T+2.26e5T2 |
| 67 | 1−411.iT−3.00e5T2 |
| 71 | 1+254.T+3.57e5T2 |
| 73 | 1+586.iT−3.89e5T2 |
| 79 | 1+1.35e3T+4.93e5T2 |
| 83 | 1+752.iT−5.71e5T2 |
| 89 | 1+1.55e3T+7.04e5T2 |
| 97 | 1+816.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01039169889820317877474760966, −9.351395122536100340317854363519, −8.743009354399470988109938801260, −7.56539711865008718892543032595, −6.86293069525421676075857030622, −5.89224758558411029740466682785, −5.42699359373176791888494613033, −3.98100791023143308855501196712, −2.86220030994256645266021020238, −1.69622047092740210548819898228,
0.62532817631652801605204159546, 1.11013987304757603036125882511, 2.73857273264401053546307640316, 3.90669438020426885397198553718, 4.69359914818304780008684774519, 5.59386237614709180812440199282, 6.87681013643337836745568727158, 7.87041032742478185698218687446, 8.591820916178147046662568962231, 9.721711641415808794454368451111