L(s) = 1 | + 2i·2-s − 4·4-s + (3.36 + 10.6i)5-s + 27.8i·7-s − 8i·8-s + (−21.3 + 6.73i)10-s + 13.2·11-s + 54.4i·13-s − 55.6·14-s + 16·16-s + 28.7i·17-s + 109.·19-s + (−13.4 − 42.6i)20-s + 26.4i·22-s + 176. i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (0.301 + 0.953i)5-s + 1.50i·7-s − 0.353i·8-s + (−0.674 + 0.212i)10-s + 0.361·11-s + 1.16i·13-s − 1.06·14-s + 0.250·16-s + 0.410i·17-s + 1.32·19-s + (−0.150 − 0.476i)20-s + 0.255i·22-s + 1.60i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.953 + 0.301i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.953 + 0.301i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.978934584\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.978934584\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 2iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-3.36 - 10.6i)T \) |
good | 7 | \( 1 - 27.8iT - 343T^{2} \) |
| 11 | \( 1 - 13.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 54.4iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 28.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 109.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 176. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 68.8T + 2.43e4T^{2} \) |
| 31 | \( 1 + 11.3T + 2.97e4T^{2} \) |
| 37 | \( 1 + 73.9iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 320.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 403. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 400. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 106. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 434.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 812.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 411. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 254.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 586. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.35e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 752. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.55e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 816. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01039169889820317877474760966, −9.351395122536100340317854363519, −8.743009354399470988109938801260, −7.56539711865008718892543032595, −6.86293069525421676075857030622, −5.89224758558411029740466682785, −5.42699359373176791888494613033, −3.98100791023143308855501196712, −2.86220030994256645266021020238, −1.69622047092740210548819898228,
0.62532817631652801605204159546, 1.11013987304757603036125882511, 2.73857273264401053546307640316, 3.90669438020426885397198553718, 4.69359914818304780008684774519, 5.59386237614709180812440199282, 6.87681013643337836745568727158, 7.87041032742478185698218687446, 8.591820916178147046662568962231, 9.721711641415808794454368451111