Properties

Label 810.4.c.b
Level 810810
Weight 44
Character orbit 810.c
Analytic conductor 47.79247.792
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(649,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 810=2345 810 = 2 \cdot 3^{4} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 810.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 47.791547104647.7915471046
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x104x9+8x8+326x7+17389x626726x5+20930x4+60664x3++5604552 x^{10} - 4 x^{9} + 8 x^{8} + 326 x^{7} + 17389 x^{6} - 26726 x^{5} + 20930 x^{4} + 60664 x^{3} + \cdots + 5604552 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 28325 2^{8}\cdot 3^{2}\cdot 5
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q24q4+(β5+2)q5+β7q7+4β1q8+(β42β1)q10+(β33)q11+(β9β7+β6+1)q13++(14β9+2β8++12)q98+O(q100) q - \beta_1 q^{2} - 4 q^{4} + ( - \beta_{5} + 2) q^{5} + \beta_{7} q^{7} + 4 \beta_1 q^{8} + (\beta_{4} - 2 \beta_1) q^{10} + (\beta_{3} - 3) q^{11} + (\beta_{9} - \beta_{7} + \beta_{6} + \cdots - 1) q^{13}+ \cdots + ( - 14 \beta_{9} + 2 \beta_{8} + \cdots + 12) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q40q4+22q54q1028q114q14+160q1642q1988q20+96q25108q26+216q29+88q3164q3422q35+16q40+38q41+112q44++2472q95+O(q100) 10 q - 40 q^{4} + 22 q^{5} - 4 q^{10} - 28 q^{11} - 4 q^{14} + 160 q^{16} - 42 q^{19} - 88 q^{20} + 96 q^{25} - 108 q^{26} + 216 q^{29} + 88 q^{31} - 64 q^{34} - 22 q^{35} + 16 q^{40} + 38 q^{41} + 112 q^{44}+ \cdots + 2472 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x104x9+8x8+326x7+17389x626726x5+20930x4+60664x3++5604552 x^{10} - 4 x^{9} + 8 x^{8} + 326 x^{7} + 17389 x^{6} - 26726 x^{5} + 20930 x^{4} + 60664 x^{3} + \cdots + 5604552 : Copy content Toggle raw display

β1\beta_{1}== (3069306257ν9+9839161208ν814292291865ν71055859400495ν6++10 ⁣ ⁣88)/59 ⁣ ⁣00 ( - 3069306257 \nu^{9} + 9839161208 \nu^{8} - 14292291865 \nu^{7} - 1055859400495 \nu^{6} + \cdots + 10\!\cdots\!88 ) / 59\!\cdots\!00 Copy content Toggle raw display
β2\beta_{2}== (126984661ν9+3338428935ν89319640328ν729990085728ν6++71 ⁣ ⁣68)/128391834330000 ( - 126984661 \nu^{9} + 3338428935 \nu^{8} - 9319640328 \nu^{7} - 29990085728 \nu^{6} + \cdots + 71\!\cdots\!68 ) / 128391834330000 Copy content Toggle raw display
β3\beta_{3}== (36511750ν9+256633707ν81158090966ν710310201786ν6++397138179818268)/25678366866000 ( - 36511750 \nu^{9} + 256633707 \nu^{8} - 1158090966 \nu^{7} - 10310201786 \nu^{6} + \cdots + 397138179818268 ) / 25678366866000 Copy content Toggle raw display
β4\beta_{4}== (7693431431ν934071112675ν8+25567729558ν7+2584536858358ν6+97 ⁣ ⁣88)/39 ⁣ ⁣00 ( 7693431431 \nu^{9} - 34071112675 \nu^{8} + 25567729558 \nu^{7} + 2584536858358 \nu^{6} + \cdots - 97\!\cdots\!88 ) / 39\!\cdots\!00 Copy content Toggle raw display
β5\beta_{5}== (74929422752ν9+224040810959ν8514785758458ν7++20 ⁣ ⁣92)/23 ⁣ ⁣00 ( - 74929422752 \nu^{9} + 224040810959 \nu^{8} - 514785758458 \nu^{7} + \cdots + 20\!\cdots\!92 ) / 23\!\cdots\!00 Copy content Toggle raw display
β6\beta_{6}== (2948768567ν97163257166ν87371870266ν7+1027047802894ν6++47 ⁣ ⁣80)/770351005980000 ( 2948768567 \nu^{9} - 7163257166 \nu^{8} - 7371870266 \nu^{7} + 1027047802894 \nu^{6} + \cdots + 47\!\cdots\!80 ) / 770351005980000 Copy content Toggle raw display
β7\beta_{7}== (188930110468ν9614441663143ν8+1113969161918ν7+59856351456698ν6+69 ⁣ ⁣56)/23 ⁣ ⁣00 ( 188930110468 \nu^{9} - 614441663143 \nu^{8} + 1113969161918 \nu^{7} + 59856351456698 \nu^{6} + \cdots - 69\!\cdots\!56 ) / 23\!\cdots\!00 Copy content Toggle raw display
β8\beta_{8}== (98781710869ν9406287078952ν8+673324404908ν7+33188487895928ν6+76 ⁣ ⁣00)/11 ⁣ ⁣00 ( 98781710869 \nu^{9} - 406287078952 \nu^{8} + 673324404908 \nu^{7} + 33188487895928 \nu^{6} + \cdots - 76\!\cdots\!00 ) / 11\!\cdots\!00 Copy content Toggle raw display
β9\beta_{9}== (34320285080ν9118550902779ν8+145374880822ν7+11460236117462ν6+17 ⁣ ⁣16)/26 ⁣ ⁣00 ( 34320285080 \nu^{9} - 118550902779 \nu^{8} + 145374880822 \nu^{7} + 11460236117462 \nu^{6} + \cdots - 17\!\cdots\!16 ) / 26\!\cdots\!00 Copy content Toggle raw display
ν\nu== (10β9+4β86β6+40β520β410β3+5β230β1+46)/120 ( 10\beta_{9} + 4\beta_{8} - 6\beta_{6} + 40\beta_{5} - 20\beta_{4} - 10\beta_{3} + 5\beta_{2} - 30\beta _1 + 46 ) / 120 Copy content Toggle raw display
ν2\nu^{2}== (β94β8+6β76β6+23β5β4186β1+5)/6 ( -\beta_{9} - 4\beta_{8} + 6\beta_{7} - 6\beta_{6} + 23\beta_{5} - \beta_{4} - 186\beta _1 + 5 ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (1610β91336β8240β71506β6340β52620β4+13894)/120 ( 1610 \beta_{9} - 1336 \beta_{8} - 240 \beta_{7} - 1506 \beta_{6} - 340 \beta_{5} - 2620 \beta_{4} + \cdots - 13894 ) / 120 Copy content Toggle raw display
ν4\nu^{4}== (237β8+618β6330β5855β4+35β3265β222950)/3 ( -237\beta_{8} + 618\beta_{6} - 330\beta_{5} - 855\beta_{4} + 35\beta_{3} - 265\beta_{2} - 22950 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (220990β9+20624β8+11400β7+191514β6783760β5+2756374)/120 ( - 220990 \beta_{9} + 20624 \beta_{8} + 11400 \beta_{7} + 191514 \beta_{6} - 783760 \beta_{5} + \cdots - 2756374 ) / 120 Copy content Toggle raw display
ν6\nu^{6}== (37181β9+101482β8133734β7+149010β6517757β5+64301)/6 ( - 37181 \beta_{9} + 101482 \beta_{8} - 133734 \beta_{7} + 149010 \beta_{6} - 517757 \beta_{5} + \cdots - 64301 ) / 6 Copy content Toggle raw display
ν7\nu^{7}== (30358790β9+31821184β81787040β7+23227614β617187140β5++553595986)/120 ( - 30358790 \beta_{9} + 31821184 \beta_{8} - 1787040 \beta_{7} + 23227614 \beta_{6} - 17187140 \beta_{5} + \cdots + 553595986 ) / 120 Copy content Toggle raw display
ν8\nu^{8}== (5834631β811326734β6+12011790β5+17161365β44382105β3++456964542)/3 ( 5834631 \beta_{8} - 11326734 \beta_{6} + 12011790 \beta_{5} + 17161365 \beta_{4} - 4382105 \beta_{3} + \cdots + 456964542 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (4251951010β9577521056β8+690973800β75576633766β6++93344792506)/120 ( 4251951010 \beta_{9} - 577521056 \beta_{8} + 690973800 \beta_{7} - 5576633766 \beta_{6} + \cdots + 93344792506 ) / 120 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/810Z)×\left(\mathbb{Z}/810\mathbb{Z}\right)^\times.

nn 487487 731731
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
649.1
2.81091 2.81091i
8.80143 8.80143i
0.785134 0.785134i
−7.54004 + 7.54004i
−2.85744 + 2.85744i
2.81091 + 2.81091i
8.80143 + 8.80143i
0.785134 + 0.785134i
−7.54004 7.54004i
−2.85744 2.85744i
2.00000i 0 −4.00000 −9.35710 6.11921i 0 15.3362i 8.00000i 0 −12.2384 + 18.7142i
649.2 2.00000i 0 −4.00000 −4.01358 + 10.4351i 0 14.0253i 8.00000i 0 20.8702 + 8.02717i
649.3 2.00000i 0 −4.00000 3.36692 10.6613i 0 27.8276i 8.00000i 0 −21.3227 6.73383i
649.4 2.00000i 0 −4.00000 9.82343 + 5.33856i 0 8.56259i 8.00000i 0 10.6771 19.6469i
649.5 2.00000i 0 −4.00000 11.1803 + 0.00687881i 0 34.0793i 8.00000i 0 0.0137576 22.3607i
649.6 2.00000i 0 −4.00000 −9.35710 + 6.11921i 0 15.3362i 8.00000i 0 −12.2384 18.7142i
649.7 2.00000i 0 −4.00000 −4.01358 10.4351i 0 14.0253i 8.00000i 0 20.8702 8.02717i
649.8 2.00000i 0 −4.00000 3.36692 + 10.6613i 0 27.8276i 8.00000i 0 −21.3227 + 6.73383i
649.9 2.00000i 0 −4.00000 9.82343 5.33856i 0 8.56259i 8.00000i 0 10.6771 + 19.6469i
649.10 2.00000i 0 −4.00000 11.1803 0.00687881i 0 34.0793i 8.00000i 0 0.0137576 + 22.3607i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 649.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.4.c.b yes 10
3.b odd 2 1 810.4.c.a 10
5.b even 2 1 inner 810.4.c.b yes 10
15.d odd 2 1 810.4.c.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
810.4.c.a 10 3.b odd 2 1
810.4.c.a 10 15.d odd 2 1
810.4.c.b yes 10 1.a even 1 1 trivial
810.4.c.b yes 10 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(810,[χ])S_{4}^{\mathrm{new}}(810, [\chi]):

T710+2441T78+1955296T76+608633056T74+76656025856T72+3050751289600 T_{7}^{10} + 2441T_{7}^{8} + 1955296T_{7}^{6} + 608633056T_{7}^{4} + 76656025856T_{7}^{2} + 3050751289600 Copy content Toggle raw display
T115+14T1144475T11328900T112+4412500T1143750000 T_{11}^{5} + 14T_{11}^{4} - 4475T_{11}^{3} - 28900T_{11}^{2} + 4412500T_{11} - 43750000 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)5 (T^{2} + 4)^{5} Copy content Toggle raw display
33 T10 T^{10} Copy content Toggle raw display
55 T10++30517578125 T^{10} + \cdots + 30517578125 Copy content Toggle raw display
77 T10++3050751289600 T^{10} + \cdots + 3050751289600 Copy content Toggle raw display
1111 (T5+14T4+43750000)2 (T^{5} + 14 T^{4} + \cdots - 43750000)^{2} Copy content Toggle raw display
1313 T10++16 ⁣ ⁣00 T^{10} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
1717 T10++15 ⁣ ⁣56 T^{10} + \cdots + 15\!\cdots\!56 Copy content Toggle raw display
1919 (T5+21T4+47258100)2 (T^{5} + 21 T^{4} + \cdots - 47258100)^{2} Copy content Toggle raw display
2323 T10++57 ⁣ ⁣00 T^{10} + \cdots + 57\!\cdots\!00 Copy content Toggle raw display
2929 (T5108T4+7402995000)2 (T^{5} - 108 T^{4} + \cdots - 7402995000)^{2} Copy content Toggle raw display
3131 (T544T4+2754440224)2 (T^{5} - 44 T^{4} + \cdots - 2754440224)^{2} Copy content Toggle raw display
3737 T10++10 ⁣ ⁣00 T^{10} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
4141 (T5+1170493111492)2 (T^{5} + \cdots - 1170493111492)^{2} Copy content Toggle raw display
4343 T10++30 ⁣ ⁣00 T^{10} + \cdots + 30\!\cdots\!00 Copy content Toggle raw display
4747 T10++40 ⁣ ⁣04 T^{10} + \cdots + 40\!\cdots\!04 Copy content Toggle raw display
5353 T10++83 ⁣ ⁣44 T^{10} + \cdots + 83\!\cdots\!44 Copy content Toggle raw display
5959 (T5++10387813550000)2 (T^{5} + \cdots + 10387813550000)^{2} Copy content Toggle raw display
6161 (T5+150160521759320)2 (T^{5} + \cdots - 150160521759320)^{2} Copy content Toggle raw display
6767 T10++59 ⁣ ⁣04 T^{10} + \cdots + 59\!\cdots\!04 Copy content Toggle raw display
7171 (T5+73647711587952)2 (T^{5} + \cdots - 73647711587952)^{2} Copy content Toggle raw display
7373 T10++23 ⁣ ⁣44 T^{10} + \cdots + 23\!\cdots\!44 Copy content Toggle raw display
7979 (T5++139713892015104)2 (T^{5} + \cdots + 139713892015104)^{2} Copy content Toggle raw display
8383 T10++10 ⁣ ⁣76 T^{10} + \cdots + 10\!\cdots\!76 Copy content Toggle raw display
8989 (T5+78592909601762)2 (T^{5} + \cdots - 78592909601762)^{2} Copy content Toggle raw display
9797 T10++28 ⁣ ⁣76 T^{10} + \cdots + 28\!\cdots\!76 Copy content Toggle raw display
show more
show less