Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [810,4,Mod(649,810)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(810, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("810.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 810.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
649.1 |
|
− | 2.00000i | 0 | −4.00000 | −9.35710 | − | 6.11921i | 0 | 15.3362i | 8.00000i | 0 | −12.2384 | + | 18.7142i | |||||||||||||||||||||||||||||||||||||||||||
649.2 | − | 2.00000i | 0 | −4.00000 | −4.01358 | + | 10.4351i | 0 | − | 14.0253i | 8.00000i | 0 | 20.8702 | + | 8.02717i | |||||||||||||||||||||||||||||||||||||||||||
649.3 | − | 2.00000i | 0 | −4.00000 | 3.36692 | − | 10.6613i | 0 | − | 27.8276i | 8.00000i | 0 | −21.3227 | − | 6.73383i | |||||||||||||||||||||||||||||||||||||||||||
649.4 | − | 2.00000i | 0 | −4.00000 | 9.82343 | + | 5.33856i | 0 | − | 8.56259i | 8.00000i | 0 | 10.6771 | − | 19.6469i | |||||||||||||||||||||||||||||||||||||||||||
649.5 | − | 2.00000i | 0 | −4.00000 | 11.1803 | + | 0.00687881i | 0 | 34.0793i | 8.00000i | 0 | 0.0137576 | − | 22.3607i | ||||||||||||||||||||||||||||||||||||||||||||
649.6 | 2.00000i | 0 | −4.00000 | −9.35710 | + | 6.11921i | 0 | − | 15.3362i | − | 8.00000i | 0 | −12.2384 | − | 18.7142i | |||||||||||||||||||||||||||||||||||||||||||
649.7 | 2.00000i | 0 | −4.00000 | −4.01358 | − | 10.4351i | 0 | 14.0253i | − | 8.00000i | 0 | 20.8702 | − | 8.02717i | ||||||||||||||||||||||||||||||||||||||||||||
649.8 | 2.00000i | 0 | −4.00000 | 3.36692 | + | 10.6613i | 0 | 27.8276i | − | 8.00000i | 0 | −21.3227 | + | 6.73383i | ||||||||||||||||||||||||||||||||||||||||||||
649.9 | 2.00000i | 0 | −4.00000 | 9.82343 | − | 5.33856i | 0 | 8.56259i | − | 8.00000i | 0 | 10.6771 | + | 19.6469i | ||||||||||||||||||||||||||||||||||||||||||||
649.10 | 2.00000i | 0 | −4.00000 | 11.1803 | − | 0.00687881i | 0 | − | 34.0793i | − | 8.00000i | 0 | 0.0137576 | + | 22.3607i | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 810.4.c.b | yes | 10 |
3.b | odd | 2 | 1 | 810.4.c.a | ✓ | 10 | |
5.b | even | 2 | 1 | inner | 810.4.c.b | yes | 10 |
15.d | odd | 2 | 1 | 810.4.c.a | ✓ | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
810.4.c.a | ✓ | 10 | 3.b | odd | 2 | 1 | |
810.4.c.a | ✓ | 10 | 15.d | odd | 2 | 1 | |
810.4.c.b | yes | 10 | 1.a | even | 1 | 1 | trivial |
810.4.c.b | yes | 10 | 5.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|