L(s) = 1 | − 20·4-s + 22·5-s − 28·11-s + 240·16-s − 42·19-s − 440·20-s + 290·25-s + 216·29-s + 88·31-s + 38·41-s + 560·44-s + 989·49-s − 616·55-s − 2.05e3·59-s + 1.06e3·61-s − 2.24e3·64-s − 2.84e3·71-s + 840·76-s − 1.60e3·79-s + 5.28e3·80-s + 1.13e3·89-s − 924·95-s − 5.80e3·100-s + 4.19e3·101-s − 1.74e3·109-s − 4.32e3·116-s − 3.77e3·121-s + ⋯ |
L(s) = 1 | − 5/2·4-s + 1.96·5-s − 0.767·11-s + 15/4·16-s − 0.507·19-s − 4.91·20-s + 2.31·25-s + 1.38·29-s + 0.509·31-s + 0.144·41-s + 1.91·44-s + 2.88·49-s − 1.51·55-s − 4.52·59-s + 2.23·61-s − 4.37·64-s − 4.75·71-s + 1.26·76-s − 2.29·79-s + 7.37·80-s + 1.34·89-s − 0.997·95-s − 5.79·100-s + 4.12·101-s − 1.53·109-s − 3.45·116-s − 2.83·121-s + ⋯ |
Λ(s)=(=((210⋅340⋅510)s/2ΓC(s)10L(s)Λ(4−s)
Λ(s)=(=((210⋅340⋅510)s/2ΓC(s+3/2)10L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
37.96112913 |
L(21) |
≈ |
37.96112913 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+p2T2)5 |
| 3 | 1 |
| 5 | 1−22T+194T2−1968T3+4801pT4−9956p2T5+4801p4T6−1968p6T7+194p9T8−22p12T9+p15T10 |
good | 7 | 1−989T2+11253p2T4−216725100T6+82684409322T8−597847827342p2T10+82684409322p6T12−216725100p12T14+11253p20T16−989p24T18+p30T20 |
| 11 | (1+14T+2180T2+45636T3+4259435T4+28129324T5+4259435p3T6+45636p6T7+2180p9T8+14p12T9+p15T10)2 |
| 13 | 1−8467T2+41346012T4−11961676089pT6+462940014645519T8−1116082425021637272T10+462940014645519p6T12−11961676089p13T14+41346012p18T16−8467p24T18+p30T20 |
| 17 | 1−27564T2+387966374T4−215798168622pT6+25966368140009113T8−14⋯04T10+25966368140009113p6T12−215798168622p13T14+387966374p18T16−27564p24T18+p30T20 |
| 19 | (1+21T+14570T2+323139T3+157538305T4+2409635700T5+157538305p3T6+323139p6T7+14570p9T8+21p12T9+p15T10)2 |
| 23 | 1−73005T2+2524256189T4−56433033194028T6+941157412042844530T8−12⋯54T10+941157412042844530p6T12−56433033194028p12T14+2524256189p18T16−73005p24T18+p30T20 |
| 29 | (1−108T+93091T2−7346268T3+3874520917T4−237257418168T5+3874520917p3T6−7346268p6T7+93091p9T8−108p12T9+p15T10)2 |
| 31 | (1−44T+87240T2+2084718T3+3208376163T4+199557551580T5+3208376163p3T6+2084718p6T7+87240p9T8−44p12T9+p15T10)2 |
| 37 | 1−436280T2+88749670398T4−11064509169435714T6+93⋯21T8−55⋯92T10+93⋯21p6T12−11064509169435714p12T14+88749670398p18T16−436280p24T18+p30T20 |
| 41 | (1−19T+104036T2+27771483T3+5625867263T4+2838087609352T5+5625867263p3T6+27771483p6T7+104036p9T8−19p12T9+p15T10)2 |
| 43 | 1−547898T2+142594310133T4−23619463504397688T6+28⋯54T8−25⋯88T10+28⋯54p6T12−23619463504397688p12T14+142594310133p18T16−547898p24T18+p30T20 |
| 47 | 1−160917T2+32408020925T4−3943665433054572T6+59⋯70T8−57⋯82T10+59⋯70p6T12−3943665433054572p12T14+32408020925p18T16−160917p24T18+p30T20 |
| 53 | 1−481721T2+124883352789T4−26025554285726556T6+48⋯38T8−78⋯26T10+48⋯38p6T12−26025554285726556p12T14+124883352789p18T16−481721p24T18+p30T20 |
| 59 | (1+1025T+934574T2+580021995T3+352700074433T4+162166394208160T5+352700074433p3T6+580021995p6T7+934574p9T8+1025p12T9+p15T10)2 |
| 61 | (1−532T+39126T2+81398814T3+68239959321T4−58390875038148T5+68239959321p3T6+81398814p6T7+39126p9T8−532p12T9+p15T10)2 |
| 67 | 1−1586630T2+1379172381045T4−812854783643216040T6+35⋯30T8−12⋯12T10+35⋯30p6T12−812854783643216040p12T14+1379172381045p18T16−1586630p24T18+p30T20 |
| 71 | (1+1422T+1367800T2+667635588T3+237071942839T4+39943322814060T5+237071942839p3T6+667635588p6T7+1367800p9T8+1422p12T9+p15T10)2 |
| 73 | 1−1686776T2+1611760751694T4−1069814961419818746T6+55⋯93T8−23⋯96T10+55⋯93p6T12−1069814961419818746p12T14+1611760751694p18T16−1686776p24T18+p30T20 |
| 79 | (1+804T+1138415T2+981795360T3+809210827198T4+716956068535416T5+809210827198p3T6+981795360p6T7+1138415p9T8+804p12T9+p15T10)2 |
| 83 | 1−4865814T2+11000705361557T4−15256377151494541416T6+14⋯14T8−96⋯00T10+14⋯14p6T12−15256377151494541416p12T14+11000705361557p18T16−4865814p24T18+p30T20 |
| 89 | (1−566T+1553291T2+305869032T3+513050516045T4+915246283006106T5+513050516045p3T6+305869032p6T7+1553291p9T8−566p12T9+p15T10)2 |
| 97 | 1−4862354T2+13215632715069T4−24078303722833694904T6+32⋯98T8−33⋯04T10+32⋯98p6T12−24078303722833694904p12T14+13215632715069p18T16−4862354p24T18+p30T20 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.20012574991461262710978635113, −3.11716804542729319821410206107, −2.97780153356235720578147589868, −2.96830211297804533488749467709, −2.86220030994256645266021020238, −2.81477574390382032654998240856, −2.73857273264401053546307640316, −2.70423261202175805403604164022, −2.36359121162051749389777895123, −2.21412511758739147103541661629, −2.02889000047207762832615659699, −1.82336654075094747969050728901, −1.73646346877050199827174811808, −1.69622047092740210548819898228, −1.67354250906786515053071774960, −1.53606155759569238903463756194, −1.44951430205188373343506235215, −1.11013987304757603036125882511, −0.932431330277150885729181405210, −0.67224859964194900460775949325, −0.62532817631652801605204159546, −0.55404822595746457559784160385, −0.45147084300872390607139243010, −0.39164367490995192215528324954, −0.31907315472650086965856078249,
0.31907315472650086965856078249, 0.39164367490995192215528324954, 0.45147084300872390607139243010, 0.55404822595746457559784160385, 0.62532817631652801605204159546, 0.67224859964194900460775949325, 0.932431330277150885729181405210, 1.11013987304757603036125882511, 1.44951430205188373343506235215, 1.53606155759569238903463756194, 1.67354250906786515053071774960, 1.69622047092740210548819898228, 1.73646346877050199827174811808, 1.82336654075094747969050728901, 2.02889000047207762832615659699, 2.21412511758739147103541661629, 2.36359121162051749389777895123, 2.70423261202175805403604164022, 2.73857273264401053546307640316, 2.81477574390382032654998240856, 2.86220030994256645266021020238, 2.96830211297804533488749467709, 2.97780153356235720578147589868, 3.11716804542729319821410206107, 3.20012574991461262710978635113
Plot not available for L-functions of degree greater than 10.