Properties

Label 810.4.c.b.649.7
Level $810$
Weight $4$
Character 810.649
Analytic conductor $47.792$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(649,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} + 8 x^{8} + 326 x^{7} + 17389 x^{6} - 26726 x^{5} + 20930 x^{4} + 60664 x^{3} + \cdots + 5604552 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.7
Root \(8.80143 + 8.80143i\) of defining polynomial
Character \(\chi\) \(=\) 810.649
Dual form 810.4.c.b.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} +(-4.01358 - 10.4351i) q^{5} +14.0253i q^{7} -8.00000i q^{8} +(20.8702 - 8.02717i) q^{10} -52.5103 q^{11} -21.1274i q^{13} -28.0507 q^{14} +16.0000 q^{16} +82.7470i q^{17} +0.509099 q^{19} +(16.0543 + 41.7404i) q^{20} -105.021i q^{22} -25.9505i q^{23} +(-92.7823 + 83.7642i) q^{25} +42.2548 q^{26} -56.1014i q^{28} -46.6800 q^{29} +189.954 q^{31} +32.0000i q^{32} -165.494 q^{34} +(146.356 - 56.2919i) q^{35} -115.919i q^{37} +1.01820i q^{38} +(-83.4807 + 32.1087i) q^{40} +148.335 q^{41} +239.050i q^{43} +210.041 q^{44} +51.9011 q^{46} -565.182i q^{47} +146.290 q^{49} +(-167.528 - 185.565i) q^{50} +84.5096i q^{52} -391.662i q^{53} +(210.755 + 547.950i) q^{55} +112.203 q^{56} -93.3599i q^{58} -653.898 q^{59} +706.549 q^{61} +379.907i q^{62} -64.0000 q^{64} +(-220.466 + 84.7966i) q^{65} -276.287i q^{67} -330.988i q^{68} +(112.584 + 292.712i) q^{70} +1005.28 q^{71} +488.491i q^{73} +231.837 q^{74} -2.03640 q^{76} -736.476i q^{77} +653.783 q^{79} +(-64.2174 - 166.961i) q^{80} +296.670i q^{82} -394.215i q^{83} +(863.472 - 332.112i) q^{85} -478.099 q^{86} +420.083i q^{88} +1003.84 q^{89} +296.319 q^{91} +103.802i q^{92} +1130.36 q^{94} +(-2.04331 - 5.31250i) q^{95} -680.290i q^{97} +292.579i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 40 q^{4} + 22 q^{5} - 4 q^{10} - 28 q^{11} - 4 q^{14} + 160 q^{16} - 42 q^{19} - 88 q^{20} + 96 q^{25} - 108 q^{26} + 216 q^{29} + 88 q^{31} - 64 q^{34} - 22 q^{35} + 16 q^{40} + 38 q^{41} + 112 q^{44}+ \cdots + 2472 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) −4.01358 10.4351i −0.358986 0.933343i
\(6\) 0 0
\(7\) 14.0253i 0.757298i 0.925540 + 0.378649i \(0.123611\pi\)
−0.925540 + 0.378649i \(0.876389\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 20.8702 8.02717i 0.659973 0.253841i
\(11\) −52.5103 −1.43931 −0.719657 0.694330i \(-0.755701\pi\)
−0.719657 + 0.694330i \(0.755701\pi\)
\(12\) 0 0
\(13\) 21.1274i 0.450745i −0.974273 0.225373i \(-0.927640\pi\)
0.974273 0.225373i \(-0.0723599\pi\)
\(14\) −28.0507 −0.535490
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 82.7470i 1.18053i 0.807208 + 0.590267i \(0.200978\pi\)
−0.807208 + 0.590267i \(0.799022\pi\)
\(18\) 0 0
\(19\) 0.509099 0.00614712 0.00307356 0.999995i \(-0.499022\pi\)
0.00307356 + 0.999995i \(0.499022\pi\)
\(20\) 16.0543 + 41.7404i 0.179493 + 0.466671i
\(21\) 0 0
\(22\) 105.021i 1.01775i
\(23\) 25.9505i 0.235263i −0.993057 0.117632i \(-0.962470\pi\)
0.993057 0.117632i \(-0.0375302\pi\)
\(24\) 0 0
\(25\) −92.7823 + 83.7642i −0.742258 + 0.670114i
\(26\) 42.2548 0.318725
\(27\) 0 0
\(28\) 56.1014i 0.378649i
\(29\) −46.6800 −0.298905 −0.149453 0.988769i \(-0.547751\pi\)
−0.149453 + 0.988769i \(0.547751\pi\)
\(30\) 0 0
\(31\) 189.954 1.10054 0.550269 0.834987i \(-0.314525\pi\)
0.550269 + 0.834987i \(0.314525\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −165.494 −0.834764
\(35\) 146.356 56.2919i 0.706818 0.271859i
\(36\) 0 0
\(37\) 115.919i 0.515051i −0.966271 0.257526i \(-0.917093\pi\)
0.966271 0.257526i \(-0.0829072\pi\)
\(38\) 1.01820i 0.00434667i
\(39\) 0 0
\(40\) −83.4807 + 32.1087i −0.329987 + 0.126921i
\(41\) 148.335 0.565025 0.282512 0.959264i \(-0.408832\pi\)
0.282512 + 0.959264i \(0.408832\pi\)
\(42\) 0 0
\(43\) 239.050i 0.847784i 0.905713 + 0.423892i \(0.139336\pi\)
−0.905713 + 0.423892i \(0.860664\pi\)
\(44\) 210.041 0.719657
\(45\) 0 0
\(46\) 51.9011 0.166356
\(47\) 565.182i 1.75405i −0.480447 0.877024i \(-0.659526\pi\)
0.480447 0.877024i \(-0.340474\pi\)
\(48\) 0 0
\(49\) 146.290 0.426500
\(50\) −167.528 185.565i −0.473842 0.524856i
\(51\) 0 0
\(52\) 84.5096i 0.225373i
\(53\) 391.662i 1.01507i −0.861630 0.507537i \(-0.830556\pi\)
0.861630 0.507537i \(-0.169444\pi\)
\(54\) 0 0
\(55\) 210.755 + 547.950i 0.516694 + 1.34337i
\(56\) 112.203 0.267745
\(57\) 0 0
\(58\) 93.3599i 0.211358i
\(59\) −653.898 −1.44289 −0.721443 0.692474i \(-0.756521\pi\)
−0.721443 + 0.692474i \(0.756521\pi\)
\(60\) 0 0
\(61\) 706.549 1.48302 0.741511 0.670941i \(-0.234110\pi\)
0.741511 + 0.670941i \(0.234110\pi\)
\(62\) 379.907i 0.778198i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) −220.466 + 84.7966i −0.420700 + 0.161811i
\(66\) 0 0
\(67\) 276.287i 0.503788i −0.967755 0.251894i \(-0.918947\pi\)
0.967755 0.251894i \(-0.0810534\pi\)
\(68\) 330.988i 0.590267i
\(69\) 0 0
\(70\) 112.584 + 292.712i 0.192233 + 0.499796i
\(71\) 1005.28 1.68035 0.840177 0.542313i \(-0.182451\pi\)
0.840177 + 0.542313i \(0.182451\pi\)
\(72\) 0 0
\(73\) 488.491i 0.783199i 0.920136 + 0.391600i \(0.128078\pi\)
−0.920136 + 0.391600i \(0.871922\pi\)
\(74\) 231.837 0.364196
\(75\) 0 0
\(76\) −2.03640 −0.00307356
\(77\) 736.476i 1.08999i
\(78\) 0 0
\(79\) 653.783 0.931092 0.465546 0.885024i \(-0.345858\pi\)
0.465546 + 0.885024i \(0.345858\pi\)
\(80\) −64.2174 166.961i −0.0897465 0.233336i
\(81\) 0 0
\(82\) 296.670i 0.399533i
\(83\) 394.215i 0.521334i −0.965429 0.260667i \(-0.916058\pi\)
0.965429 0.260667i \(-0.0839425\pi\)
\(84\) 0 0
\(85\) 863.472 332.112i 1.10184 0.423795i
\(86\) −478.099 −0.599474
\(87\) 0 0
\(88\) 420.083i 0.508874i
\(89\) 1003.84 1.19558 0.597792 0.801651i \(-0.296045\pi\)
0.597792 + 0.801651i \(0.296045\pi\)
\(90\) 0 0
\(91\) 296.319 0.341348
\(92\) 103.802i 0.117632i
\(93\) 0 0
\(94\) 1130.36 1.24030
\(95\) −2.04331 5.31250i −0.00220673 0.00573738i
\(96\) 0 0
\(97\) 680.290i 0.712093i −0.934468 0.356046i \(-0.884125\pi\)
0.934468 0.356046i \(-0.115875\pi\)
\(98\) 292.579i 0.301581i
\(99\) 0 0
\(100\) 371.129 335.057i 0.371129 0.335057i
\(101\) 1681.27 1.65636 0.828179 0.560463i \(-0.189377\pi\)
0.828179 + 0.560463i \(0.189377\pi\)
\(102\) 0 0
\(103\) 776.043i 0.742386i 0.928556 + 0.371193i \(0.121051\pi\)
−0.928556 + 0.371193i \(0.878949\pi\)
\(104\) −169.019 −0.159362
\(105\) 0 0
\(106\) 783.324 0.717766
\(107\) 428.280i 0.386947i 0.981105 + 0.193474i \(0.0619754\pi\)
−0.981105 + 0.193474i \(0.938025\pi\)
\(108\) 0 0
\(109\) 1218.41 1.07067 0.535334 0.844641i \(-0.320186\pi\)
0.535334 + 0.844641i \(0.320186\pi\)
\(110\) −1095.90 + 421.509i −0.949909 + 0.365358i
\(111\) 0 0
\(112\) 224.406i 0.189324i
\(113\) 1635.43i 1.36149i −0.732522 0.680743i \(-0.761657\pi\)
0.732522 0.680743i \(-0.238343\pi\)
\(114\) 0 0
\(115\) −270.796 + 104.155i −0.219581 + 0.0844563i
\(116\) 186.720 0.149453
\(117\) 0 0
\(118\) 1307.80i 1.02027i
\(119\) −1160.56 −0.894016
\(120\) 0 0
\(121\) 1426.33 1.07163
\(122\) 1413.10i 1.04865i
\(123\) 0 0
\(124\) −759.814 −0.550269
\(125\) 1246.48 + 631.997i 0.891906 + 0.452220i
\(126\) 0 0
\(127\) 1122.34i 0.784184i 0.919926 + 0.392092i \(0.128249\pi\)
−0.919926 + 0.392092i \(0.871751\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) −169.593 440.933i −0.114418 0.297480i
\(131\) −2216.10 −1.47803 −0.739014 0.673691i \(-0.764708\pi\)
−0.739014 + 0.673691i \(0.764708\pi\)
\(132\) 0 0
\(133\) 7.14029i 0.00465520i
\(134\) 552.573 0.356232
\(135\) 0 0
\(136\) 661.976 0.417382
\(137\) 2456.05i 1.53164i 0.643055 + 0.765820i \(0.277667\pi\)
−0.643055 + 0.765820i \(0.722333\pi\)
\(138\) 0 0
\(139\) −1445.09 −0.881805 −0.440903 0.897555i \(-0.645342\pi\)
−0.440903 + 0.897555i \(0.645342\pi\)
\(140\) −585.423 + 225.168i −0.353409 + 0.135930i
\(141\) 0 0
\(142\) 2010.56i 1.18819i
\(143\) 1109.41i 0.648764i
\(144\) 0 0
\(145\) 187.354 + 487.110i 0.107303 + 0.278981i
\(146\) −976.982 −0.553806
\(147\) 0 0
\(148\) 463.674i 0.257526i
\(149\) −2266.69 −1.24627 −0.623135 0.782114i \(-0.714141\pi\)
−0.623135 + 0.782114i \(0.714141\pi\)
\(150\) 0 0
\(151\) 1649.79 0.889124 0.444562 0.895748i \(-0.353359\pi\)
0.444562 + 0.895748i \(0.353359\pi\)
\(152\) 4.07279i 0.00217334i
\(153\) 0 0
\(154\) 1472.95 0.770739
\(155\) −762.395 1982.18i −0.395078 1.02718i
\(156\) 0 0
\(157\) 3307.20i 1.68117i 0.541680 + 0.840585i \(0.317788\pi\)
−0.541680 + 0.840585i \(0.682212\pi\)
\(158\) 1307.57i 0.658382i
\(159\) 0 0
\(160\) 333.923 128.435i 0.164993 0.0634603i
\(161\) 363.965 0.178164
\(162\) 0 0
\(163\) 483.406i 0.232290i −0.993232 0.116145i \(-0.962946\pi\)
0.993232 0.116145i \(-0.0370538\pi\)
\(164\) −593.339 −0.282512
\(165\) 0 0
\(166\) 788.430 0.368639
\(167\) 582.296i 0.269817i −0.990858 0.134908i \(-0.956926\pi\)
0.990858 0.134908i \(-0.0430740\pi\)
\(168\) 0 0
\(169\) 1750.63 0.796829
\(170\) 664.224 + 1726.94i 0.299669 + 0.779121i
\(171\) 0 0
\(172\) 956.199i 0.423892i
\(173\) 2283.85i 1.00369i −0.864958 0.501844i \(-0.832655\pi\)
0.864958 0.501844i \(-0.167345\pi\)
\(174\) 0 0
\(175\) −1174.82 1301.30i −0.507476 0.562110i
\(176\) −840.165 −0.359829
\(177\) 0 0
\(178\) 2007.68i 0.845405i
\(179\) 3122.10 1.30367 0.651834 0.758361i \(-0.274000\pi\)
0.651834 + 0.758361i \(0.274000\pi\)
\(180\) 0 0
\(181\) 579.179 0.237845 0.118923 0.992904i \(-0.462056\pi\)
0.118923 + 0.992904i \(0.462056\pi\)
\(182\) 592.638i 0.241370i
\(183\) 0 0
\(184\) −207.604 −0.0831782
\(185\) −1209.62 + 465.249i −0.480720 + 0.184896i
\(186\) 0 0
\(187\) 4345.07i 1.69916i
\(188\) 2260.73i 0.877024i
\(189\) 0 0
\(190\) 10.6250 4.08663i 0.00405694 0.00156039i
\(191\) −658.943 −0.249631 −0.124815 0.992180i \(-0.539834\pi\)
−0.124815 + 0.992180i \(0.539834\pi\)
\(192\) 0 0
\(193\) 2039.19i 0.760541i 0.924875 + 0.380270i \(0.124169\pi\)
−0.924875 + 0.380270i \(0.875831\pi\)
\(194\) 1360.58 0.503526
\(195\) 0 0
\(196\) −585.159 −0.213250
\(197\) 763.154i 0.276002i 0.990432 + 0.138001i \(0.0440678\pi\)
−0.990432 + 0.138001i \(0.955932\pi\)
\(198\) 0 0
\(199\) −2025.78 −0.721627 −0.360814 0.932638i \(-0.617501\pi\)
−0.360814 + 0.932638i \(0.617501\pi\)
\(200\) 670.114 + 742.258i 0.236921 + 0.262428i
\(201\) 0 0
\(202\) 3362.53i 1.17122i
\(203\) 654.703i 0.226360i
\(204\) 0 0
\(205\) −595.355 1547.89i −0.202836 0.527362i
\(206\) −1552.09 −0.524946
\(207\) 0 0
\(208\) 338.038i 0.112686i
\(209\) −26.7330 −0.00884764
\(210\) 0 0
\(211\) 1416.50 0.462162 0.231081 0.972935i \(-0.425774\pi\)
0.231081 + 0.972935i \(0.425774\pi\)
\(212\) 1566.65i 0.507537i
\(213\) 0 0
\(214\) −856.559 −0.273613
\(215\) 2494.51 959.446i 0.791274 0.304343i
\(216\) 0 0
\(217\) 2664.17i 0.833435i
\(218\) 2436.82i 0.757076i
\(219\) 0 0
\(220\) −843.018 2191.80i −0.258347 0.671687i
\(221\) 1748.23 0.532120
\(222\) 0 0
\(223\) 5434.74i 1.63201i −0.578047 0.816003i \(-0.696185\pi\)
0.578047 0.816003i \(-0.303815\pi\)
\(224\) −448.811 −0.133873
\(225\) 0 0
\(226\) 3270.85 0.962717
\(227\) 3327.34i 0.972877i 0.873715 + 0.486438i \(0.161704\pi\)
−0.873715 + 0.486438i \(0.838296\pi\)
\(228\) 0 0
\(229\) 2357.60 0.680325 0.340163 0.940367i \(-0.389518\pi\)
0.340163 + 0.940367i \(0.389518\pi\)
\(230\) −208.309 541.592i −0.0597196 0.155268i
\(231\) 0 0
\(232\) 373.440i 0.105679i
\(233\) 6083.13i 1.71038i −0.518312 0.855191i \(-0.673439\pi\)
0.518312 0.855191i \(-0.326561\pi\)
\(234\) 0 0
\(235\) −5897.72 + 2268.40i −1.63713 + 0.629678i
\(236\) 2615.59 0.721443
\(237\) 0 0
\(238\) 2321.11i 0.632165i
\(239\) 3620.05 0.979754 0.489877 0.871791i \(-0.337042\pi\)
0.489877 + 0.871791i \(0.337042\pi\)
\(240\) 0 0
\(241\) 2887.00 0.771651 0.385825 0.922572i \(-0.373917\pi\)
0.385825 + 0.922572i \(0.373917\pi\)
\(242\) 2852.67i 0.757754i
\(243\) 0 0
\(244\) −2826.19 −0.741511
\(245\) −587.146 1526.55i −0.153108 0.398071i
\(246\) 0 0
\(247\) 10.7559i 0.00277079i
\(248\) 1519.63i 0.389099i
\(249\) 0 0
\(250\) −1263.99 + 2492.95i −0.319768 + 0.630673i
\(251\) −7003.18 −1.76110 −0.880551 0.473951i \(-0.842827\pi\)
−0.880551 + 0.473951i \(0.842827\pi\)
\(252\) 0 0
\(253\) 1362.67i 0.338618i
\(254\) −2244.68 −0.554502
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1085.48i 0.263464i 0.991285 + 0.131732i \(0.0420538\pi\)
−0.991285 + 0.131732i \(0.957946\pi\)
\(258\) 0 0
\(259\) 1625.80 0.390047
\(260\) 881.865 339.186i 0.210350 0.0809056i
\(261\) 0 0
\(262\) 4432.20i 1.04512i
\(263\) 3824.97i 0.896798i −0.893833 0.448399i \(-0.851994\pi\)
0.893833 0.448399i \(-0.148006\pi\)
\(264\) 0 0
\(265\) −4087.03 + 1571.97i −0.947412 + 0.364397i
\(266\) −14.2806 −0.00329173
\(267\) 0 0
\(268\) 1105.15i 0.251894i
\(269\) −1867.03 −0.423178 −0.211589 0.977359i \(-0.567864\pi\)
−0.211589 + 0.977359i \(0.567864\pi\)
\(270\) 0 0
\(271\) 5572.42 1.24908 0.624540 0.780993i \(-0.285286\pi\)
0.624540 + 0.780993i \(0.285286\pi\)
\(272\) 1323.95i 0.295134i
\(273\) 0 0
\(274\) −4912.10 −1.08303
\(275\) 4872.03 4398.49i 1.06834 0.964505i
\(276\) 0 0
\(277\) 6954.86i 1.50858i −0.656540 0.754291i \(-0.727981\pi\)
0.656540 0.754291i \(-0.272019\pi\)
\(278\) 2890.18i 0.623531i
\(279\) 0 0
\(280\) −450.335 1170.85i −0.0961167 0.249898i
\(281\) 7779.54 1.65156 0.825780 0.563992i \(-0.190735\pi\)
0.825780 + 0.563992i \(0.190735\pi\)
\(282\) 0 0
\(283\) 2928.65i 0.615160i −0.951522 0.307580i \(-0.900481\pi\)
0.951522 0.307580i \(-0.0995191\pi\)
\(284\) −4021.13 −0.840177
\(285\) 0 0
\(286\) −2218.81 −0.458745
\(287\) 2080.45i 0.427892i
\(288\) 0 0
\(289\) −1934.06 −0.393663
\(290\) −974.219 + 374.708i −0.197269 + 0.0758745i
\(291\) 0 0
\(292\) 1953.96i 0.391600i
\(293\) 537.860i 0.107243i −0.998561 0.0536214i \(-0.982924\pi\)
0.998561 0.0536214i \(-0.0170764\pi\)
\(294\) 0 0
\(295\) 2624.48 + 6823.49i 0.517976 + 1.34671i
\(296\) −927.349 −0.182098
\(297\) 0 0
\(298\) 4533.37i 0.881246i
\(299\) −548.267 −0.106044
\(300\) 0 0
\(301\) −3352.75 −0.642025
\(302\) 3299.57i 0.628705i
\(303\) 0 0
\(304\) 8.14559 0.00153678
\(305\) −2835.79 7372.90i −0.532384 1.38417i
\(306\) 0 0
\(307\) 656.196i 0.121991i −0.998138 0.0609953i \(-0.980573\pi\)
0.998138 0.0609953i \(-0.0194275\pi\)
\(308\) 2945.90i 0.544995i
\(309\) 0 0
\(310\) 3964.37 1524.79i 0.726325 0.279362i
\(311\) 659.872 0.120315 0.0601574 0.998189i \(-0.480840\pi\)
0.0601574 + 0.998189i \(0.480840\pi\)
\(312\) 0 0
\(313\) 8839.73i 1.59633i 0.602439 + 0.798165i \(0.294196\pi\)
−0.602439 + 0.798165i \(0.705804\pi\)
\(314\) −6614.41 −1.18877
\(315\) 0 0
\(316\) −2615.13 −0.465546
\(317\) 8168.32i 1.44725i −0.690193 0.723625i \(-0.742474\pi\)
0.690193 0.723625i \(-0.257526\pi\)
\(318\) 0 0
\(319\) 2451.18 0.430219
\(320\) 256.869 + 667.846i 0.0448732 + 0.116668i
\(321\) 0 0
\(322\) 727.930i 0.125981i
\(323\) 42.1264i 0.00725690i
\(324\) 0 0
\(325\) 1769.72 + 1960.25i 0.302051 + 0.334569i
\(326\) 966.813 0.164254
\(327\) 0 0
\(328\) 1186.68i 0.199766i
\(329\) 7926.87 1.32834
\(330\) 0 0
\(331\) −9601.08 −1.59433 −0.797165 0.603762i \(-0.793668\pi\)
−0.797165 + 0.603762i \(0.793668\pi\)
\(332\) 1576.86i 0.260667i
\(333\) 0 0
\(334\) 1164.59 0.190789
\(335\) −2883.08 + 1108.90i −0.470207 + 0.180853i
\(336\) 0 0
\(337\) 7616.16i 1.23109i 0.788100 + 0.615547i \(0.211065\pi\)
−0.788100 + 0.615547i \(0.788935\pi\)
\(338\) 3501.27i 0.563443i
\(339\) 0 0
\(340\) −3453.89 + 1328.45i −0.550922 + 0.211898i
\(341\) −9974.53 −1.58402
\(342\) 0 0
\(343\) 6862.46i 1.08029i
\(344\) 1912.40 0.299737
\(345\) 0 0
\(346\) 4567.70 0.709715
\(347\) 8132.41i 1.25813i 0.777354 + 0.629064i \(0.216562\pi\)
−0.777354 + 0.629064i \(0.783438\pi\)
\(348\) 0 0
\(349\) −10738.2 −1.64699 −0.823497 0.567321i \(-0.807980\pi\)
−0.823497 + 0.567321i \(0.807980\pi\)
\(350\) 2602.61 2349.65i 0.397472 0.358839i
\(351\) 0 0
\(352\) 1680.33i 0.254437i
\(353\) 2000.45i 0.301624i 0.988562 + 0.150812i \(0.0481888\pi\)
−0.988562 + 0.150812i \(0.951811\pi\)
\(354\) 0 0
\(355\) −4034.79 10490.2i −0.603223 1.56835i
\(356\) −4015.36 −0.597792
\(357\) 0 0
\(358\) 6244.20i 0.921833i
\(359\) 2760.83 0.405880 0.202940 0.979191i \(-0.434950\pi\)
0.202940 + 0.979191i \(0.434950\pi\)
\(360\) 0 0
\(361\) −6858.74 −0.999962
\(362\) 1158.36i 0.168182i
\(363\) 0 0
\(364\) −1185.28 −0.170674
\(365\) 5097.45 1960.60i 0.730994 0.281158i
\(366\) 0 0
\(367\) 8673.55i 1.23367i −0.787094 0.616833i \(-0.788415\pi\)
0.787094 0.616833i \(-0.211585\pi\)
\(368\) 415.208i 0.0588159i
\(369\) 0 0
\(370\) −930.498 2419.24i −0.130741 0.339920i
\(371\) 5493.20 0.768713
\(372\) 0 0
\(373\) 13507.5i 1.87504i −0.347929 0.937521i \(-0.613115\pi\)
0.347929 0.937521i \(-0.386885\pi\)
\(374\) 8690.14 1.20149
\(375\) 0 0
\(376\) −4521.45 −0.620149
\(377\) 986.226i 0.134730i
\(378\) 0 0
\(379\) −6177.16 −0.837202 −0.418601 0.908170i \(-0.637479\pi\)
−0.418601 + 0.908170i \(0.637479\pi\)
\(380\) 8.17325 + 21.2500i 0.00110337 + 0.00286869i
\(381\) 0 0
\(382\) 1317.89i 0.176515i
\(383\) 212.553i 0.0283576i 0.999899 + 0.0141788i \(0.00451340\pi\)
−0.999899 + 0.0141788i \(0.995487\pi\)
\(384\) 0 0
\(385\) −7685.19 + 2955.91i −1.01733 + 0.391291i
\(386\) −4078.39 −0.537783
\(387\) 0 0
\(388\) 2721.16i 0.356046i
\(389\) 1006.08 0.131131 0.0655657 0.997848i \(-0.479115\pi\)
0.0655657 + 0.997848i \(0.479115\pi\)
\(390\) 0 0
\(391\) 2147.33 0.277737
\(392\) 1170.32i 0.150791i
\(393\) 0 0
\(394\) −1526.31 −0.195163
\(395\) −2624.01 6822.28i −0.334249 0.869028i
\(396\) 0 0
\(397\) 13571.9i 1.71576i −0.513852 0.857879i \(-0.671782\pi\)
0.513852 0.857879i \(-0.328218\pi\)
\(398\) 4051.56i 0.510268i
\(399\) 0 0
\(400\) −1484.52 + 1340.23i −0.185565 + 0.167528i
\(401\) 5809.06 0.723418 0.361709 0.932291i \(-0.382193\pi\)
0.361709 + 0.932291i \(0.382193\pi\)
\(402\) 0 0
\(403\) 4013.23i 0.496062i
\(404\) −6725.06 −0.828179
\(405\) 0 0
\(406\) 1309.41 0.160061
\(407\) 6086.92i 0.741321i
\(408\) 0 0
\(409\) −10164.8 −1.22889 −0.614445 0.788960i \(-0.710620\pi\)
−0.614445 + 0.788960i \(0.710620\pi\)
\(410\) 3095.78 1190.71i 0.372901 0.143427i
\(411\) 0 0
\(412\) 3104.17i 0.371193i
\(413\) 9171.15i 1.09269i
\(414\) 0 0
\(415\) −4113.67 + 1582.22i −0.486583 + 0.187152i
\(416\) 676.077 0.0796812
\(417\) 0 0
\(418\) 53.4659i 0.00625623i
\(419\) −651.862 −0.0760037 −0.0380018 0.999278i \(-0.512099\pi\)
−0.0380018 + 0.999278i \(0.512099\pi\)
\(420\) 0 0
\(421\) 15288.9 1.76992 0.884962 0.465664i \(-0.154185\pi\)
0.884962 + 0.465664i \(0.154185\pi\)
\(422\) 2833.01i 0.326798i
\(423\) 0 0
\(424\) −3133.30 −0.358883
\(425\) −6931.24 7677.45i −0.791093 0.876262i
\(426\) 0 0
\(427\) 9909.59i 1.12309i
\(428\) 1713.12i 0.193474i
\(429\) 0 0
\(430\) 1918.89 + 4989.01i 0.215203 + 0.559515i
\(431\) −10299.1 −1.15102 −0.575511 0.817794i \(-0.695197\pi\)
−0.575511 + 0.817794i \(0.695197\pi\)
\(432\) 0 0
\(433\) 1675.89i 0.186001i −0.995666 0.0930003i \(-0.970354\pi\)
0.995666 0.0930003i \(-0.0296458\pi\)
\(434\) −5328.33 −0.589327
\(435\) 0 0
\(436\) −4873.65 −0.535334
\(437\) 13.2114i 0.00144619i
\(438\) 0 0
\(439\) −4079.37 −0.443503 −0.221752 0.975103i \(-0.571177\pi\)
−0.221752 + 0.975103i \(0.571177\pi\)
\(440\) 4383.60 1686.04i 0.474954 0.182679i
\(441\) 0 0
\(442\) 3496.46i 0.376266i
\(443\) 379.021i 0.0406498i 0.999793 + 0.0203249i \(0.00647006\pi\)
−0.999793 + 0.0203249i \(0.993530\pi\)
\(444\) 0 0
\(445\) −4029.00 10475.2i −0.429198 1.11589i
\(446\) 10869.5 1.15400
\(447\) 0 0
\(448\) 897.622i 0.0946622i
\(449\) 7313.50 0.768698 0.384349 0.923188i \(-0.374426\pi\)
0.384349 + 0.923188i \(0.374426\pi\)
\(450\) 0 0
\(451\) −7789.11 −0.813248
\(452\) 6541.71i 0.680743i
\(453\) 0 0
\(454\) −6654.67 −0.687928
\(455\) −1189.30 3092.12i −0.122539 0.318595i
\(456\) 0 0
\(457\) 9265.55i 0.948411i −0.880414 0.474206i \(-0.842735\pi\)
0.880414 0.474206i \(-0.157265\pi\)
\(458\) 4715.20i 0.481063i
\(459\) 0 0
\(460\) 1083.18 416.619i 0.109791 0.0422281i
\(461\) 1543.17 0.155906 0.0779530 0.996957i \(-0.475162\pi\)
0.0779530 + 0.996957i \(0.475162\pi\)
\(462\) 0 0
\(463\) 8530.45i 0.856249i −0.903720 0.428125i \(-0.859174\pi\)
0.903720 0.428125i \(-0.140826\pi\)
\(464\) −746.879 −0.0747263
\(465\) 0 0
\(466\) 12166.3 1.20942
\(467\) 5681.61i 0.562985i −0.959564 0.281492i \(-0.909171\pi\)
0.959564 0.281492i \(-0.0908294\pi\)
\(468\) 0 0
\(469\) 3875.02 0.381517
\(470\) −4536.81 11795.4i −0.445250 1.15762i
\(471\) 0 0
\(472\) 5231.19i 0.510137i
\(473\) 12552.6i 1.22023i
\(474\) 0 0
\(475\) −47.2354 + 42.6443i −0.00456275 + 0.00411927i
\(476\) 4642.22 0.447008
\(477\) 0 0
\(478\) 7240.09i 0.692791i
\(479\) 5261.48 0.501885 0.250943 0.968002i \(-0.419259\pi\)
0.250943 + 0.968002i \(0.419259\pi\)
\(480\) 0 0
\(481\) −2449.06 −0.232157
\(482\) 5773.99i 0.545639i
\(483\) 0 0
\(484\) −5705.34 −0.535813
\(485\) −7098.89 + 2730.40i −0.664627 + 0.255631i
\(486\) 0 0
\(487\) 9628.87i 0.895946i 0.894047 + 0.447973i \(0.147854\pi\)
−0.894047 + 0.447973i \(0.852146\pi\)
\(488\) 5652.39i 0.524327i
\(489\) 0 0
\(490\) 3053.09 1174.29i 0.281479 0.108263i
\(491\) 6806.82 0.625636 0.312818 0.949813i \(-0.398727\pi\)
0.312818 + 0.949813i \(0.398727\pi\)
\(492\) 0 0
\(493\) 3862.63i 0.352868i
\(494\) 21.5119 0.00195924
\(495\) 0 0
\(496\) 3039.26 0.275134
\(497\) 14099.4i 1.27253i
\(498\) 0 0
\(499\) 8434.75 0.756696 0.378348 0.925663i \(-0.376492\pi\)
0.378348 + 0.925663i \(0.376492\pi\)
\(500\) −4985.91 2527.99i −0.445953 0.226110i
\(501\) 0 0
\(502\) 14006.4i 1.24529i
\(503\) 12595.8i 1.11654i 0.829660 + 0.558269i \(0.188534\pi\)
−0.829660 + 0.558269i \(0.811466\pi\)
\(504\) 0 0
\(505\) −6747.90 17544.2i −0.594609 1.54595i
\(506\) −2725.34 −0.239439
\(507\) 0 0
\(508\) 4489.35i 0.392092i
\(509\) −15456.3 −1.34595 −0.672976 0.739664i \(-0.734984\pi\)
−0.672976 + 0.739664i \(0.734984\pi\)
\(510\) 0 0
\(511\) −6851.26 −0.593115
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −2170.95 −0.186297
\(515\) 8098.08 3114.71i 0.692901 0.266506i
\(516\) 0 0
\(517\) 29677.9i 2.52463i
\(518\) 3251.60i 0.275805i
\(519\) 0 0
\(520\) 678.373 + 1763.73i 0.0572089 + 0.148740i
\(521\) 15300.5 1.28662 0.643309 0.765607i \(-0.277561\pi\)
0.643309 + 0.765607i \(0.277561\pi\)
\(522\) 0 0
\(523\) 7037.51i 0.588392i 0.955745 + 0.294196i \(0.0950518\pi\)
−0.955745 + 0.294196i \(0.904948\pi\)
\(524\) 8864.40 0.739014
\(525\) 0 0
\(526\) 7649.95 0.634132
\(527\) 15718.1i 1.29922i
\(528\) 0 0
\(529\) 11493.6 0.944651
\(530\) −3143.94 8174.06i −0.257668 0.669922i
\(531\) 0 0
\(532\) 28.5612i 0.00232760i
\(533\) 3133.93i 0.254682i
\(534\) 0 0
\(535\) 4469.14 1718.94i 0.361154 0.138909i
\(536\) −2210.29 −0.178116
\(537\) 0 0
\(538\) 3734.06i 0.299232i
\(539\) −7681.72 −0.613868
\(540\) 0 0
\(541\) 5929.44 0.471214 0.235607 0.971848i \(-0.424292\pi\)
0.235607 + 0.971848i \(0.424292\pi\)
\(542\) 11144.8i 0.883233i
\(543\) 0 0
\(544\) −2647.90 −0.208691
\(545\) −4890.20 12714.2i −0.384354 0.999300i
\(546\) 0 0
\(547\) 1212.28i 0.0947597i 0.998877 + 0.0473799i \(0.0150871\pi\)
−0.998877 + 0.0473799i \(0.984913\pi\)
\(548\) 9824.21i 0.765820i
\(549\) 0 0
\(550\) 8796.97 + 9744.06i 0.682008 + 0.755433i
\(551\) −23.7647 −0.00183741
\(552\) 0 0
\(553\) 9169.53i 0.705114i
\(554\) 13909.7 1.06673
\(555\) 0 0
\(556\) 5780.36 0.440903
\(557\) 20048.2i 1.52508i 0.646943 + 0.762539i \(0.276047\pi\)
−0.646943 + 0.762539i \(0.723953\pi\)
\(558\) 0 0
\(559\) 5050.50 0.382135
\(560\) 2341.69 900.671i 0.176705 0.0679648i
\(561\) 0 0
\(562\) 15559.1i 1.16783i
\(563\) 21986.7i 1.64587i 0.568132 + 0.822937i \(0.307666\pi\)
−0.568132 + 0.822937i \(0.692334\pi\)
\(564\) 0 0
\(565\) −17065.8 + 6563.92i −1.27073 + 0.488755i
\(566\) 5857.30 0.434984
\(567\) 0 0
\(568\) 8042.26i 0.594095i
\(569\) −13733.6 −1.01185 −0.505926 0.862577i \(-0.668849\pi\)
−0.505926 + 0.862577i \(0.668849\pi\)
\(570\) 0 0
\(571\) −1117.81 −0.0819248 −0.0409624 0.999161i \(-0.513042\pi\)
−0.0409624 + 0.999161i \(0.513042\pi\)
\(572\) 4437.63i 0.324382i
\(573\) 0 0
\(574\) −4160.90 −0.302565
\(575\) 2173.73 + 2407.75i 0.157653 + 0.174626i
\(576\) 0 0
\(577\) 10950.0i 0.790045i −0.918671 0.395022i \(-0.870737\pi\)
0.918671 0.395022i \(-0.129263\pi\)
\(578\) 3868.13i 0.278362i
\(579\) 0 0
\(580\) −749.416 1948.44i −0.0536514 0.139491i
\(581\) 5529.00 0.394805
\(582\) 0 0
\(583\) 20566.3i 1.46101i
\(584\) 3907.93 0.276903
\(585\) 0 0
\(586\) 1075.72 0.0758320
\(587\) 22487.0i 1.58116i 0.612362 + 0.790578i \(0.290220\pi\)
−0.612362 + 0.790578i \(0.709780\pi\)
\(588\) 0 0
\(589\) 96.7052 0.00676514
\(590\) −13647.0 + 5248.95i −0.952266 + 0.366264i
\(591\) 0 0
\(592\) 1854.70i 0.128763i
\(593\) 220.992i 0.0153036i −0.999971 0.00765182i \(-0.997564\pi\)
0.999971 0.00765182i \(-0.00243567\pi\)
\(594\) 0 0
\(595\) 4657.99 + 12110.5i 0.320939 + 0.834424i
\(596\) 9066.74 0.623135
\(597\) 0 0
\(598\) 1096.53i 0.0749843i
\(599\) −25281.8 −1.72452 −0.862258 0.506470i \(-0.830950\pi\)
−0.862258 + 0.506470i \(0.830950\pi\)
\(600\) 0 0
\(601\) 4498.03 0.305289 0.152644 0.988281i \(-0.451221\pi\)
0.152644 + 0.988281i \(0.451221\pi\)
\(602\) 6705.51i 0.453980i
\(603\) 0 0
\(604\) −6599.14 −0.444562
\(605\) −5724.71 14883.9i −0.384699 1.00019i
\(606\) 0 0
\(607\) 26455.9i 1.76905i 0.466495 + 0.884524i \(0.345517\pi\)
−0.466495 + 0.884524i \(0.654483\pi\)
\(608\) 16.2912i 0.00108667i
\(609\) 0 0
\(610\) 14745.8 5671.59i 0.978754 0.376452i
\(611\) −11940.8 −0.790628
\(612\) 0 0
\(613\) 13618.2i 0.897280i −0.893713 0.448640i \(-0.851909\pi\)
0.893713 0.448640i \(-0.148091\pi\)
\(614\) 1312.39 0.0862603
\(615\) 0 0
\(616\) −5891.80 −0.385369
\(617\) 19616.1i 1.27993i 0.768406 + 0.639963i \(0.221050\pi\)
−0.768406 + 0.639963i \(0.778950\pi\)
\(618\) 0 0
\(619\) 17780.3 1.15452 0.577262 0.816559i \(-0.304121\pi\)
0.577262 + 0.816559i \(0.304121\pi\)
\(620\) 3049.58 + 7928.73i 0.197539 + 0.513590i
\(621\) 0 0
\(622\) 1319.74i 0.0850754i
\(623\) 14079.2i 0.905413i
\(624\) 0 0
\(625\) 1592.10 15543.7i 0.101895 0.994795i
\(626\) −17679.5 −1.12878
\(627\) 0 0
\(628\) 13228.8i 0.840585i
\(629\) 9591.92 0.608036
\(630\) 0 0
\(631\) 11555.7 0.729042 0.364521 0.931195i \(-0.381233\pi\)
0.364521 + 0.931195i \(0.381233\pi\)
\(632\) 5230.26i 0.329191i
\(633\) 0 0
\(634\) 16336.6 1.02336
\(635\) 11711.7 4504.60i 0.731913 0.281511i
\(636\) 0 0
\(637\) 3090.72i 0.192243i
\(638\) 4902.36i 0.304211i
\(639\) 0 0
\(640\) −1335.69 + 513.739i −0.0824966 + 0.0317302i
\(641\) −3245.63 −0.199992 −0.0999958 0.994988i \(-0.531883\pi\)
−0.0999958 + 0.994988i \(0.531883\pi\)
\(642\) 0 0
\(643\) 27598.8i 1.69267i −0.532648 0.846337i \(-0.678803\pi\)
0.532648 0.846337i \(-0.321197\pi\)
\(644\) −1455.86 −0.0890822
\(645\) 0 0
\(646\) −84.2529 −0.00513140
\(647\) 29412.9i 1.78724i 0.448827 + 0.893619i \(0.351842\pi\)
−0.448827 + 0.893619i \(0.648158\pi\)
\(648\) 0 0
\(649\) 34336.4 2.07677
\(650\) −3920.50 + 3539.44i −0.236576 + 0.213582i
\(651\) 0 0
\(652\) 1933.63i 0.116145i
\(653\) 9847.46i 0.590139i −0.955476 0.295070i \(-0.904657\pi\)
0.955476 0.295070i \(-0.0953429\pi\)
\(654\) 0 0
\(655\) 8894.50 + 23125.2i 0.530591 + 1.37951i
\(656\) 2373.36 0.141256
\(657\) 0 0
\(658\) 15853.7i 0.939275i
\(659\) −12575.0 −0.743324 −0.371662 0.928368i \(-0.621212\pi\)
−0.371662 + 0.928368i \(0.621212\pi\)
\(660\) 0 0
\(661\) 1744.88 0.102674 0.0513372 0.998681i \(-0.483652\pi\)
0.0513372 + 0.998681i \(0.483652\pi\)
\(662\) 19202.2i 1.12736i
\(663\) 0 0
\(664\) −3153.72 −0.184319
\(665\) 74.5096 28.6582i 0.00434490 0.00167115i
\(666\) 0 0
\(667\) 1211.37i 0.0703215i
\(668\) 2329.18i 0.134908i
\(669\) 0 0
\(670\) −2217.80 5766.15i −0.127882 0.332487i
\(671\) −37101.1 −2.13453
\(672\) 0 0
\(673\) 13646.3i 0.781616i 0.920472 + 0.390808i \(0.127804\pi\)
−0.920472 + 0.390808i \(0.872196\pi\)
\(674\) −15232.3 −0.870515
\(675\) 0 0
\(676\) −7002.53 −0.398414
\(677\) 3649.90i 0.207204i −0.994619 0.103602i \(-0.966963\pi\)
0.994619 0.103602i \(-0.0330368\pi\)
\(678\) 0 0
\(679\) 9541.31 0.539266
\(680\) −2656.90 6907.78i −0.149834 0.389561i
\(681\) 0 0
\(682\) 19949.1i 1.12007i
\(683\) 3066.68i 0.171806i 0.996304 + 0.0859029i \(0.0273775\pi\)
−0.996304 + 0.0859029i \(0.972623\pi\)
\(684\) 0 0
\(685\) 25629.1 9857.57i 1.42955 0.549837i
\(686\) −13724.9 −0.763877
\(687\) 0 0
\(688\) 3824.79i 0.211946i
\(689\) −8274.80 −0.457540
\(690\) 0 0
\(691\) 2855.12 0.157184 0.0785919 0.996907i \(-0.474958\pi\)
0.0785919 + 0.996907i \(0.474958\pi\)
\(692\) 9135.41i 0.501844i
\(693\) 0 0
\(694\) −16264.8 −0.889631
\(695\) 5799.99 + 15079.6i 0.316556 + 0.823027i
\(696\) 0 0
\(697\) 12274.3i 0.667031i
\(698\) 21476.3i 1.16460i
\(699\) 0 0
\(700\) 4699.29 + 5205.21i 0.253738 + 0.281055i
\(701\) 33677.5 1.81453 0.907263 0.420564i \(-0.138168\pi\)
0.907263 + 0.420564i \(0.138168\pi\)
\(702\) 0 0
\(703\) 59.0141i 0.00316608i
\(704\) 3360.66 0.179914
\(705\) 0 0
\(706\) −4000.90 −0.213280
\(707\) 23580.3i 1.25436i
\(708\) 0 0
\(709\) 5793.96 0.306906 0.153453 0.988156i \(-0.450961\pi\)
0.153453 + 0.988156i \(0.450961\pi\)
\(710\) 20980.4 8069.57i 1.10899 0.426543i
\(711\) 0 0
\(712\) 8030.73i 0.422703i
\(713\) 4929.40i 0.258916i
\(714\) 0 0
\(715\) 11576.8 4452.70i 0.605519 0.232897i
\(716\) −12488.4 −0.651834
\(717\) 0 0
\(718\) 5521.65i 0.287000i
\(719\) 33612.1 1.74342 0.871712 0.490019i \(-0.163010\pi\)
0.871712 + 0.490019i \(0.163010\pi\)
\(720\) 0 0
\(721\) −10884.3 −0.562207
\(722\) 13717.5i 0.707080i
\(723\) 0 0
\(724\) −2316.72 −0.118923
\(725\) 4331.07 3910.11i 0.221865 0.200301i
\(726\) 0 0
\(727\) 29752.0i 1.51780i −0.651207 0.758900i \(-0.725737\pi\)
0.651207 0.758900i \(-0.274263\pi\)
\(728\) 2370.55i 0.120685i
\(729\) 0 0
\(730\) 3921.20 + 10194.9i 0.198808 + 0.516891i
\(731\) −19780.6 −1.00084
\(732\) 0 0
\(733\) 30803.9i 1.55221i 0.630605 + 0.776104i \(0.282807\pi\)
−0.630605 + 0.776104i \(0.717193\pi\)
\(734\) 17347.1 0.872334
\(735\) 0 0
\(736\) 830.417 0.0415891
\(737\) 14507.9i 0.725109i
\(738\) 0 0
\(739\) 19199.9 0.955725 0.477863 0.878435i \(-0.341412\pi\)
0.477863 + 0.878435i \(0.341412\pi\)
\(740\) 4838.48 1861.00i 0.240360 0.0924481i
\(741\) 0 0
\(742\) 10986.4i 0.543562i
\(743\) 25489.7i 1.25858i −0.777171 0.629290i \(-0.783346\pi\)
0.777171 0.629290i \(-0.216654\pi\)
\(744\) 0 0
\(745\) 9097.54 + 23653.1i 0.447393 + 1.16320i
\(746\) 27015.0 1.32585
\(747\) 0 0
\(748\) 17380.3i 0.849580i
\(749\) −6006.77 −0.293034
\(750\) 0 0
\(751\) 14864.4 0.722248 0.361124 0.932518i \(-0.382393\pi\)
0.361124 + 0.932518i \(0.382393\pi\)
\(752\) 9042.91i 0.438512i
\(753\) 0 0
\(754\) −1972.45 −0.0952685
\(755\) −6621.56 17215.7i −0.319183 0.829857i
\(756\) 0 0
\(757\) 14713.0i 0.706412i −0.935546 0.353206i \(-0.885091\pi\)
0.935546 0.353206i \(-0.114909\pi\)
\(758\) 12354.3i 0.591991i
\(759\) 0 0
\(760\) −42.5000 + 16.3465i −0.00202847 + 0.000780197i
\(761\) 10378.9 0.494396 0.247198 0.968965i \(-0.420490\pi\)
0.247198 + 0.968965i \(0.420490\pi\)
\(762\) 0 0
\(763\) 17088.7i 0.810814i
\(764\) 2635.77 0.124815
\(765\) 0 0
\(766\) −425.106 −0.0200518
\(767\) 13815.2i 0.650374i
\(768\) 0 0
\(769\) 28877.6 1.35417 0.677083 0.735907i \(-0.263244\pi\)
0.677083 + 0.735907i \(0.263244\pi\)
\(770\) −5911.81 15370.4i −0.276684 0.719364i
\(771\) 0 0
\(772\) 8156.77i 0.380270i
\(773\) 17861.5i 0.831092i −0.909572 0.415546i \(-0.863591\pi\)
0.909572 0.415546i \(-0.136409\pi\)
\(774\) 0 0
\(775\) −17624.3 + 15911.3i −0.816883 + 0.737486i
\(776\) −5442.32 −0.251763
\(777\) 0 0
\(778\) 2012.15i 0.0927239i
\(779\) 75.5172 0.00347328
\(780\) 0 0
\(781\) −52787.7 −2.41856
\(782\) 4294.66i 0.196390i
\(783\) 0 0
\(784\) 2340.63 0.106625
\(785\) 34511.0 13273.7i 1.56911 0.603516i
\(786\) 0 0
\(787\) 27737.0i 1.25631i −0.778088 0.628155i \(-0.783810\pi\)
0.778088 0.628155i \(-0.216190\pi\)
\(788\) 3052.62i 0.138001i
\(789\) 0 0
\(790\) 13644.6 5248.02i 0.614496 0.236350i
\(791\) 22937.4 1.03105
\(792\) 0 0
\(793\) 14927.5i 0.668464i
\(794\) 27143.9 1.21322
\(795\) 0 0
\(796\) 8103.13 0.360814
\(797\) 5397.76i 0.239898i −0.992780 0.119949i \(-0.961727\pi\)
0.992780 0.119949i \(-0.0382730\pi\)
\(798\) 0 0
\(799\) 46767.1 2.07071
\(800\) −2680.46 2969.03i −0.118461 0.131214i
\(801\) 0 0
\(802\) 11618.1i 0.511534i
\(803\) 25650.8i 1.12727i
\(804\) 0 0
\(805\) −1460.80 3798.01i −0.0639585 0.166289i
\(806\) 8026.45 0.350769
\(807\) 0 0
\(808\) 13450.1i 0.585611i
\(809\) 31266.7 1.35881 0.679405 0.733764i \(-0.262238\pi\)
0.679405 + 0.733764i \(0.262238\pi\)
\(810\) 0 0
\(811\) −1701.66 −0.0736788 −0.0368394 0.999321i \(-0.511729\pi\)
−0.0368394 + 0.999321i \(0.511729\pi\)
\(812\) 2618.81i 0.113180i
\(813\) 0 0
\(814\) −12173.8 −0.524193
\(815\) −5044.39 + 1940.19i −0.216806 + 0.0833889i
\(816\) 0 0
\(817\) 121.700i 0.00521144i
\(818\) 20329.6i 0.868956i
\(819\) 0 0
\(820\) 2381.42 + 6191.55i 0.101418 + 0.263681i
\(821\) −19686.1 −0.836846 −0.418423 0.908252i \(-0.637417\pi\)
−0.418423 + 0.908252i \(0.637417\pi\)
\(822\) 0 0
\(823\) 30326.8i 1.28448i −0.766505 0.642239i \(-0.778006\pi\)
0.766505 0.642239i \(-0.221994\pi\)
\(824\) 6208.34 0.262473
\(825\) 0 0
\(826\) 18342.3 0.772652
\(827\) 40104.4i 1.68630i 0.537682 + 0.843148i \(0.319300\pi\)
−0.537682 + 0.843148i \(0.680700\pi\)
\(828\) 0 0
\(829\) −21809.6 −0.913727 −0.456864 0.889537i \(-0.651027\pi\)
−0.456864 + 0.889537i \(0.651027\pi\)
\(830\) −3164.43 8227.34i −0.132336 0.344066i
\(831\) 0 0
\(832\) 1352.15i 0.0563431i
\(833\) 12105.0i 0.503499i
\(834\) 0 0
\(835\) −6076.31 + 2337.09i −0.251831 + 0.0968604i
\(836\) 106.932 0.00442382
\(837\) 0 0
\(838\) 1303.72i 0.0537427i
\(839\) −9528.13 −0.392071 −0.196035 0.980597i \(-0.562807\pi\)
−0.196035 + 0.980597i \(0.562807\pi\)
\(840\) 0 0
\(841\) −22210.0 −0.910656
\(842\) 30577.9i 1.25152i
\(843\) 0 0
\(844\) −5666.01 −0.231081
\(845\) −7026.31 18268.0i −0.286050 0.743715i
\(846\) 0 0
\(847\) 20004.8i 0.811540i
\(848\) 6266.59i 0.253768i
\(849\) 0 0
\(850\) 15354.9 13862.5i 0.619611 0.559387i
\(851\) −3008.15 −0.121173
\(852\) 0 0
\(853\) 40782.8i 1.63702i 0.574494 + 0.818509i \(0.305199\pi\)
−0.574494 + 0.818509i \(0.694801\pi\)
\(854\) −19819.2 −0.794143
\(855\) 0 0
\(856\) 3426.24 0.136806
\(857\) 30598.2i 1.21962i −0.792548 0.609810i \(-0.791246\pi\)
0.792548 0.609810i \(-0.208754\pi\)
\(858\) 0 0
\(859\) −1102.88 −0.0438066 −0.0219033 0.999760i \(-0.506973\pi\)
−0.0219033 + 0.999760i \(0.506973\pi\)
\(860\) −9978.02 + 3837.78i −0.395637 + 0.152171i
\(861\) 0 0
\(862\) 20598.2i 0.813896i
\(863\) 17309.3i 0.682751i 0.939927 + 0.341376i \(0.110893\pi\)
−0.939927 + 0.341376i \(0.889107\pi\)
\(864\) 0 0
\(865\) −23832.2 + 9166.43i −0.936785 + 0.360310i
\(866\) 3351.79 0.131522
\(867\) 0 0
\(868\) 10656.7i 0.416717i
\(869\) −34330.3 −1.34013
\(870\) 0 0
\(871\) −5837.22 −0.227080
\(872\) 9747.30i 0.378538i
\(873\) 0 0
\(874\) 26.4228 0.00102261
\(875\) −8863.97 + 17482.3i −0.342465 + 0.675439i
\(876\) 0 0
\(877\) 11596.3i 0.446500i 0.974761 + 0.223250i \(0.0716667\pi\)
−0.974761 + 0.223250i \(0.928333\pi\)
\(878\) 8158.75i 0.313604i
\(879\) 0 0
\(880\) 3372.07 + 8767.20i 0.129173 + 0.335843i
\(881\) −32848.2 −1.25617 −0.628085 0.778145i \(-0.716161\pi\)
−0.628085 + 0.778145i \(0.716161\pi\)
\(882\) 0 0
\(883\) 4249.50i 0.161956i 0.996716 + 0.0809779i \(0.0258043\pi\)
−0.996716 + 0.0809779i \(0.974196\pi\)
\(884\) −6992.91 −0.266060
\(885\) 0 0
\(886\) −758.043 −0.0287437
\(887\) 11404.9i 0.431722i −0.976424 0.215861i \(-0.930744\pi\)
0.976424 0.215861i \(-0.0692559\pi\)
\(888\) 0 0
\(889\) −15741.2 −0.593861
\(890\) 20950.3 8058.00i 0.789053 0.303489i
\(891\) 0 0
\(892\) 21739.0i 0.816003i
\(893\) 287.734i 0.0107823i
\(894\) 0 0
\(895\) −12530.8 32579.4i −0.467999 1.21677i
\(896\) 1795.24 0.0669363
\(897\) 0 0
\(898\) 14627.0i 0.543552i
\(899\) −8867.03 −0.328957
\(900\) 0 0
\(901\) 32408.9 1.19833
\(902\) 15578.2i 0.575053i
\(903\) 0 0
\(904\) −13083.4 −0.481358
\(905\) −2324.58 6043.78i −0.0853832 0.221991i
\(906\) 0 0
\(907\) 22836.1i 0.836008i 0.908445 + 0.418004i \(0.137270\pi\)
−0.908445 + 0.418004i \(0.862730\pi\)
\(908\) 13309.3i 0.486438i
\(909\) 0 0
\(910\) 6184.23 2378.60i 0.225281 0.0866483i
\(911\) −23102.2 −0.840188 −0.420094 0.907481i \(-0.638003\pi\)
−0.420094 + 0.907481i \(0.638003\pi\)
\(912\) 0 0
\(913\) 20700.4i 0.750364i
\(914\) 18531.1 0.670628
\(915\) 0 0
\(916\) −9430.39 −0.340163
\(917\) 31081.6i 1.11931i
\(918\) 0 0
\(919\) 15564.1 0.558664 0.279332 0.960195i \(-0.409887\pi\)
0.279332 + 0.960195i \(0.409887\pi\)
\(920\) 833.237 + 2166.37i 0.0298598 + 0.0776338i
\(921\) 0 0
\(922\) 3086.34i 0.110242i
\(923\) 21239.0i 0.757411i
\(924\) 0 0
\(925\) 9709.83 + 10755.2i 0.345143 + 0.382301i
\(926\) 17060.9 0.605460
\(927\) 0 0
\(928\) 1493.76i 0.0528395i
\(929\) 52002.7 1.83655 0.918273 0.395947i \(-0.129584\pi\)
0.918273 + 0.395947i \(0.129584\pi\)
\(930\) 0 0
\(931\) 74.4759 0.00262175
\(932\) 24332.5i 0.855191i
\(933\) 0 0
\(934\) 11363.2 0.398090
\(935\) −45341.2 + 17439.3i −1.58590 + 0.609975i
\(936\) 0 0
\(937\) 54231.8i 1.89080i −0.325918 0.945398i \(-0.605673\pi\)
0.325918 0.945398i \(-0.394327\pi\)
\(938\) 7750.03i 0.269774i
\(939\) 0 0
\(940\) 23590.9 9073.62i 0.818564 0.314839i
\(941\) 20521.3 0.710918 0.355459 0.934692i \(-0.384325\pi\)
0.355459 + 0.934692i \(0.384325\pi\)
\(942\) 0 0
\(943\) 3849.37i 0.132930i
\(944\) −10462.4 −0.360722
\(945\) 0 0
\(946\) 25105.1 0.862832
\(947\) 54047.1i 1.85459i 0.374333 + 0.927294i \(0.377872\pi\)
−0.374333 + 0.927294i \(0.622128\pi\)
\(948\) 0 0
\(949\) 10320.5 0.353023
\(950\) −85.2886 94.4708i −0.00291277 0.00322635i
\(951\) 0 0
\(952\) 9284.44i 0.316082i
\(953\) 6404.29i 0.217687i 0.994059 + 0.108843i \(0.0347147\pi\)
−0.994059 + 0.108843i \(0.965285\pi\)
\(954\) 0 0
\(955\) 2644.72 + 6876.13i 0.0896139 + 0.232991i
\(956\) −14480.2 −0.489877
\(957\) 0 0
\(958\) 10523.0i 0.354886i
\(959\) −34447.0 −1.15991
\(960\) 0 0
\(961\) 6291.38 0.211184
\(962\) 4898.12i 0.164160i
\(963\) 0 0
\(964\) −11548.0 −0.385825
\(965\) 21279.2 8184.47i 0.709845 0.273023i
\(966\) 0 0
\(967\) 23519.6i 0.782152i 0.920358 + 0.391076i \(0.127897\pi\)
−0.920358 + 0.391076i \(0.872103\pi\)
\(968\) 11410.7i 0.378877i
\(969\) 0 0
\(970\) −5460.80 14197.8i −0.180759 0.469962i
\(971\) 3036.25 0.100348 0.0501739 0.998740i \(-0.484022\pi\)
0.0501739 + 0.998740i \(0.484022\pi\)
\(972\) 0 0
\(973\) 20267.9i 0.667789i
\(974\) −19257.7 −0.633530
\(975\) 0 0
\(976\) 11304.8 0.370755
\(977\) 15308.8i 0.501302i −0.968077 0.250651i \(-0.919355\pi\)
0.968077 0.250651i \(-0.0806447\pi\)
\(978\) 0 0
\(979\) −52712.0 −1.72082
\(980\) 2348.58 + 6106.18i 0.0765538 + 0.199036i
\(981\) 0 0
\(982\) 13613.6i 0.442392i
\(983\) 1973.16i 0.0640225i 0.999488 + 0.0320112i \(0.0101912\pi\)
−0.999488 + 0.0320112i \(0.989809\pi\)
\(984\) 0 0
\(985\) 7963.58 3062.98i 0.257605 0.0990810i
\(986\) 7725.25 0.249515
\(987\) 0 0
\(988\) 43.0238i 0.00138539i
\(989\) 6203.47 0.199453
\(990\) 0 0
\(991\) −60485.8 −1.93884 −0.969422 0.245400i \(-0.921081\pi\)
−0.969422 + 0.245400i \(0.921081\pi\)
\(992\) 6078.52i 0.194549i
\(993\) 0 0
\(994\) −28198.9 −0.899813
\(995\) 8130.65 + 21139.2i 0.259054 + 0.673526i
\(996\) 0 0
\(997\) 2557.84i 0.0812512i −0.999174 0.0406256i \(-0.987065\pi\)
0.999174 0.0406256i \(-0.0129351\pi\)
\(998\) 16869.5i 0.535065i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.c.b.649.7 yes 10
3.2 odd 2 810.4.c.a.649.4 10
5.4 even 2 inner 810.4.c.b.649.2 yes 10
15.14 odd 2 810.4.c.a.649.9 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.4.c.a.649.4 10 3.2 odd 2
810.4.c.a.649.9 yes 10 15.14 odd 2
810.4.c.b.649.2 yes 10 5.4 even 2 inner
810.4.c.b.649.7 yes 10 1.1 even 1 trivial