Properties

Label 810.4.c.b.649.1
Level $810$
Weight $4$
Character 810.649
Analytic conductor $47.792$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(649,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} + 8 x^{8} + 326 x^{7} + 17389 x^{6} - 26726 x^{5} + 20930 x^{4} + 60664 x^{3} + \cdots + 5604552 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(2.81091 - 2.81091i\) of defining polynomial
Character \(\chi\) \(=\) 810.649
Dual form 810.4.c.b.649.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -4.00000 q^{4} +(-9.35710 - 6.11921i) q^{5} +15.3362i q^{7} +8.00000i q^{8} +(-12.2384 + 18.7142i) q^{10} +22.0754 q^{11} +7.07434i q^{13} +30.6725 q^{14} +16.0000 q^{16} -43.9694i q^{17} -107.012 q^{19} +(37.4284 + 24.4768i) q^{20} -44.1508i q^{22} +117.609i q^{23} +(50.1106 + 114.516i) q^{25} +14.1487 q^{26} -61.3449i q^{28} +168.170 q^{29} +96.5359 q^{31} -32.0000i q^{32} -87.9388 q^{34} +(93.8456 - 143.503i) q^{35} -48.5614i q^{37} +214.024i q^{38} +(48.9537 - 74.8568i) q^{40} +251.025 q^{41} -159.323i q^{43} -88.3016 q^{44} +235.219 q^{46} -202.889i q^{47} +107.800 q^{49} +(229.032 - 100.221i) q^{50} -28.2974i q^{52} -594.696i q^{53} +(-206.562 - 135.084i) q^{55} -122.690 q^{56} -336.340i q^{58} +184.900 q^{59} -743.245 q^{61} -193.072i q^{62} -64.0000 q^{64} +(43.2894 - 66.1953i) q^{65} -753.434i q^{67} +175.878i q^{68} +(-287.005 - 187.691i) q^{70} -930.606 q^{71} +228.974i q^{73} -97.1227 q^{74} +428.049 q^{76} +338.553i q^{77} -466.376 q^{79} +(-149.714 - 97.9073i) q^{80} -502.050i q^{82} -208.466i q^{83} +(-269.058 + 411.426i) q^{85} -318.647 q^{86} +176.603i q^{88} +484.281 q^{89} -108.494 q^{91} -470.437i q^{92} -405.778 q^{94} +(1001.32 + 654.830i) q^{95} -878.085i q^{97} -215.600i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 40 q^{4} + 22 q^{5} - 4 q^{10} - 28 q^{11} - 4 q^{14} + 160 q^{16} - 42 q^{19} - 88 q^{20} + 96 q^{25} - 108 q^{26} + 216 q^{29} + 88 q^{31} - 64 q^{34} - 22 q^{35} + 16 q^{40} + 38 q^{41} + 112 q^{44}+ \cdots + 2472 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) −9.35710 6.11921i −0.836924 0.547319i
\(6\) 0 0
\(7\) 15.3362i 0.828079i 0.910259 + 0.414039i \(0.135882\pi\)
−0.910259 + 0.414039i \(0.864118\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) −12.2384 + 18.7142i −0.387013 + 0.591795i
\(11\) 22.0754 0.605089 0.302545 0.953135i \(-0.402164\pi\)
0.302545 + 0.953135i \(0.402164\pi\)
\(12\) 0 0
\(13\) 7.07434i 0.150928i 0.997149 + 0.0754642i \(0.0240439\pi\)
−0.997149 + 0.0754642i \(0.975956\pi\)
\(14\) 30.6725 0.585540
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 43.9694i 0.627303i −0.949538 0.313651i \(-0.898448\pi\)
0.949538 0.313651i \(-0.101552\pi\)
\(18\) 0 0
\(19\) −107.012 −1.29212 −0.646060 0.763287i \(-0.723584\pi\)
−0.646060 + 0.763287i \(0.723584\pi\)
\(20\) 37.4284 + 24.4768i 0.418462 + 0.273659i
\(21\) 0 0
\(22\) 44.1508i 0.427863i
\(23\) 117.609i 1.06623i 0.846044 + 0.533114i \(0.178978\pi\)
−0.846044 + 0.533114i \(0.821022\pi\)
\(24\) 0 0
\(25\) 50.1106 + 114.516i 0.400885 + 0.916128i
\(26\) 14.1487 0.106723
\(27\) 0 0
\(28\) 61.3449i 0.414039i
\(29\) 168.170 1.07684 0.538421 0.842676i \(-0.319021\pi\)
0.538421 + 0.842676i \(0.319021\pi\)
\(30\) 0 0
\(31\) 96.5359 0.559302 0.279651 0.960102i \(-0.409781\pi\)
0.279651 + 0.960102i \(0.409781\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −87.9388 −0.443570
\(35\) 93.8456 143.503i 0.453223 0.693039i
\(36\) 0 0
\(37\) 48.5614i 0.215769i −0.994163 0.107884i \(-0.965592\pi\)
0.994163 0.107884i \(-0.0344076\pi\)
\(38\) 214.024i 0.913667i
\(39\) 0 0
\(40\) 48.9537 74.8568i 0.193506 0.295897i
\(41\) 251.025 0.956184 0.478092 0.878310i \(-0.341329\pi\)
0.478092 + 0.878310i \(0.341329\pi\)
\(42\) 0 0
\(43\) 159.323i 0.565037i −0.959262 0.282518i \(-0.908830\pi\)
0.959262 0.282518i \(-0.0911698\pi\)
\(44\) −88.3016 −0.302545
\(45\) 0 0
\(46\) 235.219 0.753936
\(47\) 202.889i 0.629668i −0.949147 0.314834i \(-0.898051\pi\)
0.949147 0.314834i \(-0.101949\pi\)
\(48\) 0 0
\(49\) 107.800 0.314286
\(50\) 229.032 100.221i 0.647801 0.283468i
\(51\) 0 0
\(52\) 28.2974i 0.0754642i
\(53\) 594.696i 1.54128i −0.637271 0.770640i \(-0.719937\pi\)
0.637271 0.770640i \(-0.280063\pi\)
\(54\) 0 0
\(55\) −206.562 135.084i −0.506414 0.331176i
\(56\) −122.690 −0.292770
\(57\) 0 0
\(58\) 336.340i 0.761442i
\(59\) 184.900 0.407999 0.204000 0.978971i \(-0.434606\pi\)
0.204000 + 0.978971i \(0.434606\pi\)
\(60\) 0 0
\(61\) −743.245 −1.56005 −0.780023 0.625751i \(-0.784793\pi\)
−0.780023 + 0.625751i \(0.784793\pi\)
\(62\) 193.072i 0.395486i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 43.2894 66.1953i 0.0826060 0.126316i
\(66\) 0 0
\(67\) 753.434i 1.37383i −0.726737 0.686915i \(-0.758964\pi\)
0.726737 0.686915i \(-0.241036\pi\)
\(68\) 175.878i 0.313651i
\(69\) 0 0
\(70\) −287.005 187.691i −0.490053 0.320477i
\(71\) −930.606 −1.55553 −0.777765 0.628556i \(-0.783646\pi\)
−0.777765 + 0.628556i \(0.783646\pi\)
\(72\) 0 0
\(73\) 228.974i 0.367114i 0.983009 + 0.183557i \(0.0587612\pi\)
−0.983009 + 0.183557i \(0.941239\pi\)
\(74\) −97.1227 −0.152571
\(75\) 0 0
\(76\) 428.049 0.646060
\(77\) 338.553i 0.501061i
\(78\) 0 0
\(79\) −466.376 −0.664195 −0.332097 0.943245i \(-0.607756\pi\)
−0.332097 + 0.943245i \(0.607756\pi\)
\(80\) −149.714 97.9073i −0.209231 0.136830i
\(81\) 0 0
\(82\) 502.050i 0.676124i
\(83\) 208.466i 0.275688i −0.990454 0.137844i \(-0.955983\pi\)
0.990454 0.137844i \(-0.0440172\pi\)
\(84\) 0 0
\(85\) −269.058 + 411.426i −0.343334 + 0.525005i
\(86\) −318.647 −0.399541
\(87\) 0 0
\(88\) 176.603i 0.213931i
\(89\) 484.281 0.576783 0.288391 0.957513i \(-0.406880\pi\)
0.288391 + 0.957513i \(0.406880\pi\)
\(90\) 0 0
\(91\) −108.494 −0.124981
\(92\) 470.437i 0.533114i
\(93\) 0 0
\(94\) −405.778 −0.445243
\(95\) 1001.32 + 654.830i 1.08141 + 0.707201i
\(96\) 0 0
\(97\) 878.085i 0.919135i −0.888143 0.459567i \(-0.848005\pi\)
0.888143 0.459567i \(-0.151995\pi\)
\(98\) 215.600i 0.222233i
\(99\) 0 0
\(100\) −200.442 458.064i −0.200442 0.458064i
\(101\) 616.460 0.607327 0.303663 0.952779i \(-0.401790\pi\)
0.303663 + 0.952779i \(0.401790\pi\)
\(102\) 0 0
\(103\) 1656.06i 1.58424i −0.610368 0.792118i \(-0.708978\pi\)
0.610368 0.792118i \(-0.291022\pi\)
\(104\) −56.5948 −0.0533613
\(105\) 0 0
\(106\) −1189.39 −1.08985
\(107\) 1738.82i 1.57101i −0.618855 0.785506i \(-0.712403\pi\)
0.618855 0.785506i \(-0.287597\pi\)
\(108\) 0 0
\(109\) −1349.20 −1.18560 −0.592799 0.805350i \(-0.701977\pi\)
−0.592799 + 0.805350i \(0.701977\pi\)
\(110\) −270.168 + 413.123i −0.234177 + 0.358089i
\(111\) 0 0
\(112\) 245.380i 0.207020i
\(113\) 1321.97i 1.10054i 0.834987 + 0.550269i \(0.185475\pi\)
−0.834987 + 0.550269i \(0.814525\pi\)
\(114\) 0 0
\(115\) 719.675 1100.48i 0.583566 0.892352i
\(116\) −672.681 −0.538421
\(117\) 0 0
\(118\) 369.800i 0.288499i
\(119\) 674.325 0.519456
\(120\) 0 0
\(121\) −843.677 −0.633867
\(122\) 1486.49i 1.10312i
\(123\) 0 0
\(124\) −386.143 −0.279651
\(125\) 231.857 1378.18i 0.165904 0.986142i
\(126\) 0 0
\(127\) 1311.76i 0.916537i −0.888814 0.458269i \(-0.848470\pi\)
0.888814 0.458269i \(-0.151530\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) −132.391 86.5788i −0.0893187 0.0584112i
\(131\) 385.182 0.256897 0.128448 0.991716i \(-0.459000\pi\)
0.128448 + 0.991716i \(0.459000\pi\)
\(132\) 0 0
\(133\) 1641.16i 1.06998i
\(134\) −1506.87 −0.971445
\(135\) 0 0
\(136\) 351.755 0.221785
\(137\) 1476.86i 0.920998i 0.887660 + 0.460499i \(0.152330\pi\)
−0.887660 + 0.460499i \(0.847670\pi\)
\(138\) 0 0
\(139\) −1246.21 −0.760448 −0.380224 0.924894i \(-0.624153\pi\)
−0.380224 + 0.924894i \(0.624153\pi\)
\(140\) −375.382 + 574.011i −0.226611 + 0.346520i
\(141\) 0 0
\(142\) 1861.21i 1.09993i
\(143\) 156.169i 0.0913252i
\(144\) 0 0
\(145\) −1573.58 1029.07i −0.901235 0.589375i
\(146\) 457.947 0.259589
\(147\) 0 0
\(148\) 194.245i 0.107884i
\(149\) 3068.44 1.68709 0.843545 0.537059i \(-0.180465\pi\)
0.843545 + 0.537059i \(0.180465\pi\)
\(150\) 0 0
\(151\) 3333.12 1.79633 0.898164 0.439661i \(-0.144901\pi\)
0.898164 + 0.439661i \(0.144901\pi\)
\(152\) 856.097i 0.456833i
\(153\) 0 0
\(154\) 677.107 0.354304
\(155\) −903.296 590.723i −0.468093 0.306116i
\(156\) 0 0
\(157\) 1378.63i 0.700805i −0.936599 0.350403i \(-0.886045\pi\)
0.936599 0.350403i \(-0.113955\pi\)
\(158\) 932.752i 0.469657i
\(159\) 0 0
\(160\) −195.815 + 299.427i −0.0967532 + 0.147949i
\(161\) −1803.68 −0.882920
\(162\) 0 0
\(163\) 257.789i 0.123875i 0.998080 + 0.0619374i \(0.0197279\pi\)
−0.998080 + 0.0619374i \(0.980272\pi\)
\(164\) −1004.10 −0.478092
\(165\) 0 0
\(166\) −416.931 −0.194941
\(167\) 2279.52i 1.05626i −0.849165 0.528128i \(-0.822894\pi\)
0.849165 0.528128i \(-0.177106\pi\)
\(168\) 0 0
\(169\) 2146.95 0.977221
\(170\) 822.852 + 538.116i 0.371234 + 0.242774i
\(171\) 0 0
\(172\) 637.293i 0.282518i
\(173\) 2692.95i 1.18347i 0.806131 + 0.591737i \(0.201558\pi\)
−0.806131 + 0.591737i \(0.798442\pi\)
\(174\) 0 0
\(175\) −1756.24 + 768.508i −0.758627 + 0.331964i
\(176\) 353.206 0.151272
\(177\) 0 0
\(178\) 968.562i 0.407847i
\(179\) −1259.53 −0.525929 −0.262965 0.964805i \(-0.584700\pi\)
−0.262965 + 0.964805i \(0.584700\pi\)
\(180\) 0 0
\(181\) 337.957 0.138785 0.0693926 0.997589i \(-0.477894\pi\)
0.0693926 + 0.997589i \(0.477894\pi\)
\(182\) 216.988i 0.0883747i
\(183\) 0 0
\(184\) −940.874 −0.376968
\(185\) −297.157 + 454.393i −0.118094 + 0.180582i
\(186\) 0 0
\(187\) 970.641i 0.379574i
\(188\) 811.556i 0.314834i
\(189\) 0 0
\(190\) 1309.66 2002.65i 0.500067 0.764670i
\(191\) 2809.28 1.06425 0.532127 0.846665i \(-0.321393\pi\)
0.532127 + 0.846665i \(0.321393\pi\)
\(192\) 0 0
\(193\) 3497.97i 1.30461i 0.757958 + 0.652303i \(0.226197\pi\)
−0.757958 + 0.652303i \(0.773803\pi\)
\(194\) −1756.17 −0.649926
\(195\) 0 0
\(196\) −431.200 −0.157143
\(197\) 3934.58i 1.42298i −0.702696 0.711490i \(-0.748020\pi\)
0.702696 0.711490i \(-0.251980\pi\)
\(198\) 0 0
\(199\) −1420.01 −0.505840 −0.252920 0.967487i \(-0.581391\pi\)
−0.252920 + 0.967487i \(0.581391\pi\)
\(200\) −916.128 + 400.885i −0.323900 + 0.141734i
\(201\) 0 0
\(202\) 1232.92i 0.429445i
\(203\) 2579.10i 0.891710i
\(204\) 0 0
\(205\) −2348.87 1536.08i −0.800254 0.523337i
\(206\) −3312.12 −1.12022
\(207\) 0 0
\(208\) 113.190i 0.0377321i
\(209\) −2362.34 −0.781848
\(210\) 0 0
\(211\) 1679.13 0.547850 0.273925 0.961751i \(-0.411678\pi\)
0.273925 + 0.961751i \(0.411678\pi\)
\(212\) 2378.79i 0.770640i
\(213\) 0 0
\(214\) −3477.64 −1.11087
\(215\) −974.933 + 1490.80i −0.309255 + 0.472893i
\(216\) 0 0
\(217\) 1480.50i 0.463146i
\(218\) 2698.41i 0.838345i
\(219\) 0 0
\(220\) 826.246 + 540.335i 0.253207 + 0.165588i
\(221\) 311.055 0.0946778
\(222\) 0 0
\(223\) 3486.29i 1.04690i −0.852056 0.523451i \(-0.824644\pi\)
0.852056 0.523451i \(-0.175356\pi\)
\(224\) 490.759 0.146385
\(225\) 0 0
\(226\) 2643.95 0.778198
\(227\) 3779.57i 1.10511i −0.833478 0.552553i \(-0.813654\pi\)
0.833478 0.552553i \(-0.186346\pi\)
\(228\) 0 0
\(229\) −1067.54 −0.308058 −0.154029 0.988066i \(-0.549225\pi\)
−0.154029 + 0.988066i \(0.549225\pi\)
\(230\) −2200.96 1439.35i −0.630988 0.412643i
\(231\) 0 0
\(232\) 1345.36i 0.380721i
\(233\) 819.730i 0.230482i −0.993338 0.115241i \(-0.963236\pi\)
0.993338 0.115241i \(-0.0367640\pi\)
\(234\) 0 0
\(235\) −1241.52 + 1898.45i −0.344629 + 0.526985i
\(236\) −739.601 −0.204000
\(237\) 0 0
\(238\) 1348.65i 0.367311i
\(239\) −4811.58 −1.30224 −0.651119 0.758975i \(-0.725700\pi\)
−0.651119 + 0.758975i \(0.725700\pi\)
\(240\) 0 0
\(241\) 4503.16 1.20363 0.601813 0.798637i \(-0.294445\pi\)
0.601813 + 0.798637i \(0.294445\pi\)
\(242\) 1687.35i 0.448212i
\(243\) 0 0
\(244\) 2972.98 0.780023
\(245\) −1008.69 659.650i −0.263033 0.172014i
\(246\) 0 0
\(247\) 757.041i 0.195018i
\(248\) 772.287i 0.197743i
\(249\) 0 0
\(250\) −2756.35 463.715i −0.697308 0.117312i
\(251\) 1659.33 0.417274 0.208637 0.977993i \(-0.433097\pi\)
0.208637 + 0.977993i \(0.433097\pi\)
\(252\) 0 0
\(253\) 2596.27i 0.645162i
\(254\) −2623.53 −0.648090
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5112.49i 1.24089i −0.784250 0.620444i \(-0.786952\pi\)
0.784250 0.620444i \(-0.213048\pi\)
\(258\) 0 0
\(259\) 744.748 0.178673
\(260\) −173.158 + 264.781i −0.0413030 + 0.0631579i
\(261\) 0 0
\(262\) 770.364i 0.181653i
\(263\) 4759.53i 1.11591i −0.829870 0.557956i \(-0.811586\pi\)
0.829870 0.557956i \(-0.188414\pi\)
\(264\) 0 0
\(265\) −3639.07 + 5564.63i −0.843571 + 1.28993i
\(266\) −3282.33 −0.756588
\(267\) 0 0
\(268\) 3013.74i 0.686915i
\(269\) 6293.34 1.42644 0.713219 0.700942i \(-0.247237\pi\)
0.713219 + 0.700942i \(0.247237\pi\)
\(270\) 0 0
\(271\) −4412.77 −0.989138 −0.494569 0.869138i \(-0.664674\pi\)
−0.494569 + 0.869138i \(0.664674\pi\)
\(272\) 703.510i 0.156826i
\(273\) 0 0
\(274\) 2953.72 0.651244
\(275\) 1106.21 + 2527.99i 0.242571 + 0.554339i
\(276\) 0 0
\(277\) 5450.49i 1.18227i 0.806574 + 0.591134i \(0.201319\pi\)
−0.806574 + 0.591134i \(0.798681\pi\)
\(278\) 2492.42i 0.537718i
\(279\) 0 0
\(280\) 1148.02 + 750.765i 0.245026 + 0.160238i
\(281\) 8226.63 1.74647 0.873237 0.487295i \(-0.162016\pi\)
0.873237 + 0.487295i \(0.162016\pi\)
\(282\) 0 0
\(283\) 2350.25i 0.493666i −0.969058 0.246833i \(-0.920610\pi\)
0.969058 0.246833i \(-0.0793900\pi\)
\(284\) 3722.42 0.777765
\(285\) 0 0
\(286\) 312.338 0.0645767
\(287\) 3849.78i 0.791796i
\(288\) 0 0
\(289\) 2979.69 0.606492
\(290\) −2058.14 + 3147.17i −0.416751 + 0.637270i
\(291\) 0 0
\(292\) 915.894i 0.183557i
\(293\) 4060.90i 0.809693i −0.914385 0.404847i \(-0.867325\pi\)
0.914385 0.404847i \(-0.132675\pi\)
\(294\) 0 0
\(295\) −1730.13 1131.44i −0.341464 0.223306i
\(296\) 388.491 0.0762857
\(297\) 0 0
\(298\) 6136.88i 1.19295i
\(299\) −832.008 −0.160924
\(300\) 0 0
\(301\) 2443.42 0.467895
\(302\) 6666.24i 1.27020i
\(303\) 0 0
\(304\) −1712.19 −0.323030
\(305\) 6954.62 + 4548.07i 1.30564 + 0.853842i
\(306\) 0 0
\(307\) 3369.41i 0.626392i 0.949689 + 0.313196i \(0.101400\pi\)
−0.949689 + 0.313196i \(0.898600\pi\)
\(308\) 1354.21i 0.250531i
\(309\) 0 0
\(310\) −1181.45 + 1806.59i −0.216457 + 0.330992i
\(311\) 2277.32 0.415225 0.207612 0.978211i \(-0.433431\pi\)
0.207612 + 0.978211i \(0.433431\pi\)
\(312\) 0 0
\(313\) 2475.56i 0.447051i 0.974698 + 0.223525i \(0.0717566\pi\)
−0.974698 + 0.223525i \(0.928243\pi\)
\(314\) −2757.25 −0.495544
\(315\) 0 0
\(316\) 1865.50 0.332097
\(317\) 8208.78i 1.45442i −0.686415 0.727210i \(-0.740817\pi\)
0.686415 0.727210i \(-0.259183\pi\)
\(318\) 0 0
\(319\) 3712.42 0.651585
\(320\) 598.854 + 391.629i 0.104616 + 0.0684148i
\(321\) 0 0
\(322\) 3607.37i 0.624319i
\(323\) 4705.26i 0.810550i
\(324\) 0 0
\(325\) −810.126 + 354.500i −0.138270 + 0.0605049i
\(326\) 515.578 0.0875927
\(327\) 0 0
\(328\) 2008.20i 0.338062i
\(329\) 3111.55 0.521415
\(330\) 0 0
\(331\) 6701.98 1.11291 0.556457 0.830877i \(-0.312161\pi\)
0.556457 + 0.830877i \(0.312161\pi\)
\(332\) 833.862i 0.137844i
\(333\) 0 0
\(334\) −4559.04 −0.746885
\(335\) −4610.42 + 7049.96i −0.751923 + 1.14979i
\(336\) 0 0
\(337\) 10642.7i 1.72032i −0.510026 0.860159i \(-0.670364\pi\)
0.510026 0.860159i \(-0.329636\pi\)
\(338\) 4293.91i 0.690999i
\(339\) 0 0
\(340\) 1076.23 1645.70i 0.171667 0.262502i
\(341\) 2131.07 0.338427
\(342\) 0 0
\(343\) 6913.57i 1.08833i
\(344\) 1274.59 0.199771
\(345\) 0 0
\(346\) 5385.90 0.836843
\(347\) 3765.84i 0.582596i −0.956632 0.291298i \(-0.905913\pi\)
0.956632 0.291298i \(-0.0940871\pi\)
\(348\) 0 0
\(349\) 4664.11 0.715369 0.357685 0.933842i \(-0.383566\pi\)
0.357685 + 0.933842i \(0.383566\pi\)
\(350\) 1537.02 + 3512.49i 0.234734 + 0.536430i
\(351\) 0 0
\(352\) 706.412i 0.106966i
\(353\) 577.000i 0.0869989i 0.999053 + 0.0434994i \(0.0138507\pi\)
−0.999053 + 0.0434994i \(0.986149\pi\)
\(354\) 0 0
\(355\) 8707.77 + 5694.57i 1.30186 + 0.851370i
\(356\) −1937.12 −0.288391
\(357\) 0 0
\(358\) 2519.05i 0.371888i
\(359\) 10754.2 1.58102 0.790511 0.612448i \(-0.209815\pi\)
0.790511 + 0.612448i \(0.209815\pi\)
\(360\) 0 0
\(361\) 4592.61 0.669574
\(362\) 675.914i 0.0981360i
\(363\) 0 0
\(364\) 433.975 0.0624903
\(365\) 1401.14 2142.53i 0.200928 0.307247i
\(366\) 0 0
\(367\) 9630.18i 1.36973i 0.728670 + 0.684865i \(0.240139\pi\)
−0.728670 + 0.684865i \(0.759861\pi\)
\(368\) 1881.75i 0.266557i
\(369\) 0 0
\(370\) 908.787 + 594.314i 0.127691 + 0.0835052i
\(371\) 9120.40 1.27630
\(372\) 0 0
\(373\) 13200.8i 1.83247i 0.400645 + 0.916234i \(0.368786\pi\)
−0.400645 + 0.916234i \(0.631214\pi\)
\(374\) −1941.28 −0.268399
\(375\) 0 0
\(376\) 1623.11 0.222621
\(377\) 1189.69i 0.162526i
\(378\) 0 0
\(379\) −6581.79 −0.892042 −0.446021 0.895022i \(-0.647159\pi\)
−0.446021 + 0.895022i \(0.647159\pi\)
\(380\) −4005.29 2619.32i −0.540703 0.353601i
\(381\) 0 0
\(382\) 5618.56i 0.752541i
\(383\) 8383.18i 1.11843i −0.829021 0.559217i \(-0.811102\pi\)
0.829021 0.559217i \(-0.188898\pi\)
\(384\) 0 0
\(385\) 2071.68 3167.88i 0.274240 0.419351i
\(386\) 6995.93 0.922496
\(387\) 0 0
\(388\) 3512.34i 0.459567i
\(389\) −222.395 −0.0289868 −0.0144934 0.999895i \(-0.504614\pi\)
−0.0144934 + 0.999895i \(0.504614\pi\)
\(390\) 0 0
\(391\) 5171.21 0.668847
\(392\) 862.400i 0.111117i
\(393\) 0 0
\(394\) −7869.16 −1.00620
\(395\) 4363.92 + 2853.85i 0.555881 + 0.363526i
\(396\) 0 0
\(397\) 7702.09i 0.973695i 0.873487 + 0.486848i \(0.161853\pi\)
−0.873487 + 0.486848i \(0.838147\pi\)
\(398\) 2840.03i 0.357683i
\(399\) 0 0
\(400\) 801.770 + 1832.26i 0.100221 + 0.229032i
\(401\) −2831.08 −0.352562 −0.176281 0.984340i \(-0.556407\pi\)
−0.176281 + 0.984340i \(0.556407\pi\)
\(402\) 0 0
\(403\) 682.928i 0.0844145i
\(404\) −2465.84 −0.303663
\(405\) 0 0
\(406\) 5158.19 0.630534
\(407\) 1072.01i 0.130559i
\(408\) 0 0
\(409\) −321.757 −0.0388994 −0.0194497 0.999811i \(-0.506191\pi\)
−0.0194497 + 0.999811i \(0.506191\pi\)
\(410\) −3072.15 + 4697.74i −0.370055 + 0.565865i
\(411\) 0 0
\(412\) 6624.23i 0.792118i
\(413\) 2835.67i 0.337855i
\(414\) 0 0
\(415\) −1275.64 + 1950.63i −0.150889 + 0.230730i
\(416\) 226.379 0.0266806
\(417\) 0 0
\(418\) 4724.67i 0.552850i
\(419\) −7459.03 −0.869684 −0.434842 0.900507i \(-0.643196\pi\)
−0.434842 + 0.900507i \(0.643196\pi\)
\(420\) 0 0
\(421\) −6315.85 −0.731154 −0.365577 0.930781i \(-0.619128\pi\)
−0.365577 + 0.930781i \(0.619128\pi\)
\(422\) 3358.27i 0.387389i
\(423\) 0 0
\(424\) 4757.57 0.544925
\(425\) 5035.20 2203.33i 0.574690 0.251476i
\(426\) 0 0
\(427\) 11398.6i 1.29184i
\(428\) 6955.29i 0.785506i
\(429\) 0 0
\(430\) 2981.61 + 1949.87i 0.334386 + 0.218676i
\(431\) −11806.3 −1.31947 −0.659734 0.751499i \(-0.729331\pi\)
−0.659734 + 0.751499i \(0.729331\pi\)
\(432\) 0 0
\(433\) 9553.15i 1.06027i −0.847915 0.530133i \(-0.822142\pi\)
0.847915 0.530133i \(-0.177858\pi\)
\(434\) 2960.99 0.327494
\(435\) 0 0
\(436\) 5396.81 0.592799
\(437\) 12585.6i 1.37769i
\(438\) 0 0
\(439\) 1955.52 0.212601 0.106301 0.994334i \(-0.466099\pi\)
0.106301 + 0.994334i \(0.466099\pi\)
\(440\) 1080.67 1652.49i 0.117089 0.179044i
\(441\) 0 0
\(442\) 622.109i 0.0669473i
\(443\) 5006.58i 0.536952i 0.963286 + 0.268476i \(0.0865200\pi\)
−0.963286 + 0.268476i \(0.913480\pi\)
\(444\) 0 0
\(445\) −4531.46 2963.41i −0.482724 0.315684i
\(446\) −6972.58 −0.740272
\(447\) 0 0
\(448\) 981.519i 0.103510i
\(449\) 4878.58 0.512771 0.256386 0.966575i \(-0.417468\pi\)
0.256386 + 0.966575i \(0.417468\pi\)
\(450\) 0 0
\(451\) 5541.48 0.578577
\(452\) 5287.90i 0.550269i
\(453\) 0 0
\(454\) −7559.14 −0.781428
\(455\) 1015.19 + 663.896i 0.104599 + 0.0684042i
\(456\) 0 0
\(457\) 14790.9i 1.51398i 0.653425 + 0.756991i \(0.273332\pi\)
−0.653425 + 0.756991i \(0.726668\pi\)
\(458\) 2135.09i 0.217830i
\(459\) 0 0
\(460\) −2878.70 + 4401.93i −0.291783 + 0.446176i
\(461\) −9128.46 −0.922245 −0.461122 0.887336i \(-0.652553\pi\)
−0.461122 + 0.887336i \(0.652553\pi\)
\(462\) 0 0
\(463\) 15865.8i 1.59254i 0.604939 + 0.796272i \(0.293198\pi\)
−0.604939 + 0.796272i \(0.706802\pi\)
\(464\) 2690.72 0.269210
\(465\) 0 0
\(466\) −1639.46 −0.162975
\(467\) 11496.2i 1.13914i −0.821941 0.569572i \(-0.807109\pi\)
0.821941 0.569572i \(-0.192891\pi\)
\(468\) 0 0
\(469\) 11554.8 1.13764
\(470\) 3796.90 + 2483.04i 0.372634 + 0.243690i
\(471\) 0 0
\(472\) 1479.20i 0.144249i
\(473\) 3517.13i 0.341898i
\(474\) 0 0
\(475\) −5362.45 12254.6i −0.517991 1.18375i
\(476\) −2697.30 −0.259728
\(477\) 0 0
\(478\) 9623.15i 0.920822i
\(479\) −3142.86 −0.299793 −0.149897 0.988702i \(-0.547894\pi\)
−0.149897 + 0.988702i \(0.547894\pi\)
\(480\) 0 0
\(481\) 343.540 0.0325656
\(482\) 9006.31i 0.851092i
\(483\) 0 0
\(484\) 3374.71 0.316934
\(485\) −5373.19 + 8216.33i −0.503059 + 0.769246i
\(486\) 0 0
\(487\) 16790.6i 1.56233i 0.624323 + 0.781167i \(0.285375\pi\)
−0.624323 + 0.781167i \(0.714625\pi\)
\(488\) 5945.96i 0.551560i
\(489\) 0 0
\(490\) −1319.30 + 2017.39i −0.121632 + 0.185993i
\(491\) −2638.80 −0.242541 −0.121270 0.992620i \(-0.538697\pi\)
−0.121270 + 0.992620i \(0.538697\pi\)
\(492\) 0 0
\(493\) 7394.34i 0.675506i
\(494\) −1514.08 −0.137898
\(495\) 0 0
\(496\) 1544.57 0.139825
\(497\) 14272.0i 1.28810i
\(498\) 0 0
\(499\) 6907.72 0.619704 0.309852 0.950785i \(-0.399721\pi\)
0.309852 + 0.950785i \(0.399721\pi\)
\(500\) −927.430 + 5512.70i −0.0829519 + 0.493071i
\(501\) 0 0
\(502\) 3318.65i 0.295057i
\(503\) 14516.8i 1.28683i 0.765519 + 0.643413i \(0.222482\pi\)
−0.765519 + 0.643413i \(0.777518\pi\)
\(504\) 0 0
\(505\) −5768.27 3772.24i −0.508287 0.332401i
\(506\) 5192.54 0.456199
\(507\) 0 0
\(508\) 5247.06i 0.458269i
\(509\) −16442.8 −1.43186 −0.715929 0.698173i \(-0.753997\pi\)
−0.715929 + 0.698173i \(0.753997\pi\)
\(510\) 0 0
\(511\) −3511.59 −0.303999
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −10225.0 −0.877441
\(515\) −10133.8 + 15495.9i −0.867082 + 1.32589i
\(516\) 0 0
\(517\) 4478.85i 0.381005i
\(518\) 1489.50i 0.126341i
\(519\) 0 0
\(520\) 529.563 + 346.315i 0.0446594 + 0.0292056i
\(521\) −8210.59 −0.690427 −0.345213 0.938524i \(-0.612193\pi\)
−0.345213 + 0.938524i \(0.612193\pi\)
\(522\) 0 0
\(523\) 19135.0i 1.59984i −0.600108 0.799919i \(-0.704876\pi\)
0.600108 0.799919i \(-0.295124\pi\)
\(524\) −1540.73 −0.128448
\(525\) 0 0
\(526\) −9519.06 −0.789070
\(527\) 4244.62i 0.350851i
\(528\) 0 0
\(529\) −1664.94 −0.136840
\(530\) 11129.3 + 7278.14i 0.912121 + 0.596495i
\(531\) 0 0
\(532\) 6564.66i 0.534989i
\(533\) 1775.84i 0.144315i
\(534\) 0 0
\(535\) −10640.2 + 16270.3i −0.859844 + 1.31482i
\(536\) 6027.47 0.485722
\(537\) 0 0
\(538\) 12586.7i 1.00864i
\(539\) 2379.73 0.190171
\(540\) 0 0
\(541\) 16141.8 1.28279 0.641395 0.767211i \(-0.278356\pi\)
0.641395 + 0.767211i \(0.278356\pi\)
\(542\) 8825.53i 0.699426i
\(543\) 0 0
\(544\) −1407.02 −0.110892
\(545\) 12624.6 + 8256.06i 0.992257 + 0.648900i
\(546\) 0 0
\(547\) 14220.2i 1.11154i 0.831337 + 0.555768i \(0.187576\pi\)
−0.831337 + 0.555768i \(0.812424\pi\)
\(548\) 5907.44i 0.460499i
\(549\) 0 0
\(550\) 5055.97 2212.42i 0.391977 0.171524i
\(551\) −17996.3 −1.39141
\(552\) 0 0
\(553\) 7152.45i 0.550005i
\(554\) 10901.0 0.835989
\(555\) 0 0
\(556\) 4984.85 0.380224
\(557\) 13464.3i 1.02424i −0.858914 0.512119i \(-0.828861\pi\)
0.858914 0.512119i \(-0.171139\pi\)
\(558\) 0 0
\(559\) 1127.11 0.0852802
\(560\) 1501.53 2296.04i 0.113306 0.173260i
\(561\) 0 0
\(562\) 16453.3i 1.23494i
\(563\) 19033.2i 1.42479i 0.701781 + 0.712393i \(0.252388\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(564\) 0 0
\(565\) 8089.43 12369.8i 0.602345 0.921068i
\(566\) −4700.49 −0.349075
\(567\) 0 0
\(568\) 7444.85i 0.549963i
\(569\) 5997.95 0.441911 0.220955 0.975284i \(-0.429082\pi\)
0.220955 + 0.975284i \(0.429082\pi\)
\(570\) 0 0
\(571\) 3153.17 0.231097 0.115548 0.993302i \(-0.463137\pi\)
0.115548 + 0.993302i \(0.463137\pi\)
\(572\) 624.676i 0.0456626i
\(573\) 0 0
\(574\) 7699.56 0.559884
\(575\) −13468.1 + 5893.47i −0.976801 + 0.427434i
\(576\) 0 0
\(577\) 25188.8i 1.81737i −0.417481 0.908686i \(-0.637087\pi\)
0.417481 0.908686i \(-0.362913\pi\)
\(578\) 5959.39i 0.428854i
\(579\) 0 0
\(580\) 6294.34 + 4116.27i 0.450618 + 0.294688i
\(581\) 3197.08 0.228291
\(582\) 0 0
\(583\) 13128.2i 0.932611i
\(584\) −1831.79 −0.129794
\(585\) 0 0
\(586\) −8121.80 −0.572540
\(587\) 8516.07i 0.598800i 0.954128 + 0.299400i \(0.0967865\pi\)
−0.954128 + 0.299400i \(0.903213\pi\)
\(588\) 0 0
\(589\) −10330.5 −0.722685
\(590\) −2262.88 + 3460.26i −0.157901 + 0.241452i
\(591\) 0 0
\(592\) 776.982i 0.0539421i
\(593\) 11235.8i 0.778078i −0.921221 0.389039i \(-0.872807\pi\)
0.921221 0.389039i \(-0.127193\pi\)
\(594\) 0 0
\(595\) −6309.72 4126.33i −0.434745 0.284308i
\(596\) −12273.8 −0.843545
\(597\) 0 0
\(598\) 1664.02i 0.113790i
\(599\) 9840.08 0.671210 0.335605 0.942003i \(-0.391059\pi\)
0.335605 + 0.942003i \(0.391059\pi\)
\(600\) 0 0
\(601\) −2244.19 −0.152317 −0.0761584 0.997096i \(-0.524265\pi\)
−0.0761584 + 0.997096i \(0.524265\pi\)
\(602\) 4886.84i 0.330852i
\(603\) 0 0
\(604\) −13332.5 −0.898164
\(605\) 7894.37 + 5162.64i 0.530499 + 0.346927i
\(606\) 0 0
\(607\) 25483.2i 1.70400i −0.523538 0.852002i \(-0.675388\pi\)
0.523538 0.852002i \(-0.324612\pi\)
\(608\) 3424.39i 0.228417i
\(609\) 0 0
\(610\) 9096.14 13909.2i 0.603758 0.923227i
\(611\) 1435.31 0.0950349
\(612\) 0 0
\(613\) 1326.50i 0.0874007i −0.999045 0.0437004i \(-0.986085\pi\)
0.999045 0.0437004i \(-0.0139147\pi\)
\(614\) 6738.81 0.442926
\(615\) 0 0
\(616\) −2708.43 −0.177152
\(617\) 18518.0i 1.20828i 0.796880 + 0.604138i \(0.206482\pi\)
−0.796880 + 0.604138i \(0.793518\pi\)
\(618\) 0 0
\(619\) 11665.5 0.757473 0.378736 0.925505i \(-0.376359\pi\)
0.378736 + 0.925505i \(0.376359\pi\)
\(620\) 3613.18 + 2362.89i 0.234047 + 0.153058i
\(621\) 0 0
\(622\) 4554.64i 0.293608i
\(623\) 7427.04i 0.477622i
\(624\) 0 0
\(625\) −10602.9 + 11476.9i −0.678583 + 0.734524i
\(626\) 4951.12 0.316113
\(627\) 0 0
\(628\) 5514.51i 0.350403i
\(629\) −2135.21 −0.135352
\(630\) 0 0
\(631\) −30284.6 −1.91063 −0.955317 0.295583i \(-0.904486\pi\)
−0.955317 + 0.295583i \(0.904486\pi\)
\(632\) 3731.01i 0.234828i
\(633\) 0 0
\(634\) −16417.6 −1.02843
\(635\) −8026.96 + 12274.3i −0.501638 + 0.767072i
\(636\) 0 0
\(637\) 762.614i 0.0474346i
\(638\) 7424.84i 0.460740i
\(639\) 0 0
\(640\) 783.259 1197.71i 0.0483766 0.0739744i
\(641\) 15593.6 0.960856 0.480428 0.877034i \(-0.340481\pi\)
0.480428 + 0.877034i \(0.340481\pi\)
\(642\) 0 0
\(643\) 15898.1i 0.975052i −0.873108 0.487526i \(-0.837899\pi\)
0.873108 0.487526i \(-0.162101\pi\)
\(644\) 7214.73 0.441460
\(645\) 0 0
\(646\) 9410.52 0.573145
\(647\) 8147.23i 0.495055i −0.968881 0.247528i \(-0.920382\pi\)
0.968881 0.247528i \(-0.0796181\pi\)
\(648\) 0 0
\(649\) 4081.74 0.246876
\(650\) 708.999 + 1620.25i 0.0427835 + 0.0977716i
\(651\) 0 0
\(652\) 1031.16i 0.0619374i
\(653\) 14735.9i 0.883096i 0.897238 + 0.441548i \(0.145571\pi\)
−0.897238 + 0.441548i \(0.854429\pi\)
\(654\) 0 0
\(655\) −3604.18 2357.01i −0.215003 0.140604i
\(656\) 4016.40 0.239046
\(657\) 0 0
\(658\) 6223.11i 0.368696i
\(659\) −25732.7 −1.52110 −0.760548 0.649282i \(-0.775070\pi\)
−0.760548 + 0.649282i \(0.775070\pi\)
\(660\) 0 0
\(661\) −31073.4 −1.82847 −0.914234 0.405187i \(-0.867206\pi\)
−0.914234 + 0.405187i \(0.867206\pi\)
\(662\) 13404.0i 0.786948i
\(663\) 0 0
\(664\) 1667.72 0.0974703
\(665\) −10042.6 + 15356.5i −0.585618 + 0.895490i
\(666\) 0 0
\(667\) 19778.4i 1.14816i
\(668\) 9118.08i 0.528128i
\(669\) 0 0
\(670\) 14099.9 + 9220.84i 0.813026 + 0.531690i
\(671\) −16407.4 −0.943967
\(672\) 0 0
\(673\) 10636.5i 0.609220i 0.952477 + 0.304610i \(0.0985262\pi\)
−0.952477 + 0.304610i \(0.901474\pi\)
\(674\) −21285.5 −1.21645
\(675\) 0 0
\(676\) −8587.81 −0.488610
\(677\) 29438.9i 1.67124i −0.549307 0.835621i \(-0.685108\pi\)
0.549307 0.835621i \(-0.314892\pi\)
\(678\) 0 0
\(679\) 13466.5 0.761116
\(680\) −3291.41 2152.46i −0.185617 0.121387i
\(681\) 0 0
\(682\) 4262.13i 0.239304i
\(683\) 13446.6i 0.753323i −0.926351 0.376661i \(-0.877072\pi\)
0.926351 0.376661i \(-0.122928\pi\)
\(684\) 0 0
\(685\) 9037.22 13819.1i 0.504079 0.770806i
\(686\) 13827.1 0.769567
\(687\) 0 0
\(688\) 2549.17i 0.141259i
\(689\) 4207.09 0.232623
\(690\) 0 0
\(691\) −26140.7 −1.43913 −0.719564 0.694426i \(-0.755658\pi\)
−0.719564 + 0.694426i \(0.755658\pi\)
\(692\) 10771.8i 0.591737i
\(693\) 0 0
\(694\) −7531.67 −0.411957
\(695\) 11660.9 + 7625.83i 0.636437 + 0.416207i
\(696\) 0 0
\(697\) 11037.4i 0.599817i
\(698\) 9328.21i 0.505843i
\(699\) 0 0
\(700\) 7024.98 3074.03i 0.379313 0.165982i
\(701\) 706.817 0.0380829 0.0190414 0.999819i \(-0.493939\pi\)
0.0190414 + 0.999819i \(0.493939\pi\)
\(702\) 0 0
\(703\) 5196.66i 0.278799i
\(704\) −1412.82 −0.0756361
\(705\) 0 0
\(706\) 1154.00 0.0615175
\(707\) 9454.17i 0.502915i
\(708\) 0 0
\(709\) −27882.0 −1.47691 −0.738455 0.674302i \(-0.764444\pi\)
−0.738455 + 0.674302i \(0.764444\pi\)
\(710\) 11389.1 17415.5i 0.602009 0.920554i
\(711\) 0 0
\(712\) 3874.25i 0.203923i
\(713\) 11353.5i 0.596343i
\(714\) 0 0
\(715\) 955.630 1461.29i 0.0499840 0.0764323i
\(716\) 5038.10 0.262965
\(717\) 0 0
\(718\) 21508.5i 1.11795i
\(719\) −28953.3 −1.50178 −0.750888 0.660429i \(-0.770374\pi\)
−0.750888 + 0.660429i \(0.770374\pi\)
\(720\) 0 0
\(721\) 25397.7 1.31187
\(722\) 9185.21i 0.473460i
\(723\) 0 0
\(724\) −1351.83 −0.0693926
\(725\) 8427.11 + 19258.2i 0.431690 + 0.986525i
\(726\) 0 0
\(727\) 36050.9i 1.83914i 0.392926 + 0.919570i \(0.371463\pi\)
−0.392926 + 0.919570i \(0.628537\pi\)
\(728\) 867.950i 0.0441873i
\(729\) 0 0
\(730\) −4285.06 2802.27i −0.217256 0.142078i
\(731\) −7005.35 −0.354449
\(732\) 0 0
\(733\) 32024.9i 1.61373i 0.590733 + 0.806867i \(0.298839\pi\)
−0.590733 + 0.806867i \(0.701161\pi\)
\(734\) 19260.4 0.968546
\(735\) 0 0
\(736\) 3763.50 0.188484
\(737\) 16632.4i 0.831290i
\(738\) 0 0
\(739\) 4853.58 0.241599 0.120800 0.992677i \(-0.461454\pi\)
0.120800 + 0.992677i \(0.461454\pi\)
\(740\) 1188.63 1817.57i 0.0590471 0.0902910i
\(741\) 0 0
\(742\) 18240.8i 0.902481i
\(743\) 26375.1i 1.30230i 0.758949 + 0.651150i \(0.225713\pi\)
−0.758949 + 0.651150i \(0.774287\pi\)
\(744\) 0 0
\(745\) −28711.7 18776.4i −1.41197 0.923376i
\(746\) 26401.6 1.29575
\(747\) 0 0
\(748\) 3882.57i 0.189787i
\(749\) 26667.0 1.30092
\(750\) 0 0
\(751\) −6479.28 −0.314823 −0.157412 0.987533i \(-0.550315\pi\)
−0.157412 + 0.987533i \(0.550315\pi\)
\(752\) 3246.22i 0.157417i
\(753\) 0 0
\(754\) 2379.39 0.114923
\(755\) −31188.3 20396.1i −1.50339 0.983163i
\(756\) 0 0
\(757\) 34618.7i 1.66214i −0.556169 0.831069i \(-0.687729\pi\)
0.556169 0.831069i \(-0.312271\pi\)
\(758\) 13163.6i 0.630769i
\(759\) 0 0
\(760\) −5238.64 + 8010.59i −0.250033 + 0.382335i
\(761\) 33438.9 1.59285 0.796425 0.604737i \(-0.206722\pi\)
0.796425 + 0.604737i \(0.206722\pi\)
\(762\) 0 0
\(763\) 20691.7i 0.981769i
\(764\) −11237.1 −0.532127
\(765\) 0 0
\(766\) −16766.4 −0.790853
\(767\) 1308.05i 0.0615787i
\(768\) 0 0
\(769\) 7469.80 0.350283 0.175142 0.984543i \(-0.443962\pi\)
0.175142 + 0.984543i \(0.443962\pi\)
\(770\) −6335.75 4143.36i −0.296526 0.193917i
\(771\) 0 0
\(772\) 13991.9i 0.652303i
\(773\) 3658.78i 0.170242i −0.996371 0.0851212i \(-0.972872\pi\)
0.996371 0.0851212i \(-0.0271277\pi\)
\(774\) 0 0
\(775\) 4837.47 + 11054.9i 0.224216 + 0.512392i
\(776\) 7024.68 0.324963
\(777\) 0 0
\(778\) 444.789i 0.0204967i
\(779\) −26862.8 −1.23550
\(780\) 0 0
\(781\) −20543.5 −0.941234
\(782\) 10342.4i 0.472946i
\(783\) 0 0
\(784\) 1724.80 0.0785714
\(785\) −8436.10 + 12899.9i −0.383564 + 0.586521i
\(786\) 0 0
\(787\) 40483.7i 1.83366i −0.399283 0.916828i \(-0.630741\pi\)
0.399283 0.916828i \(-0.369259\pi\)
\(788\) 15738.3i 0.711490i
\(789\) 0 0
\(790\) 5707.70 8727.85i 0.257052 0.393067i
\(791\) −20274.1 −0.911333
\(792\) 0 0
\(793\) 5257.97i 0.235455i
\(794\) 15404.2 0.688506
\(795\) 0 0
\(796\) 5680.06 0.252920
\(797\) 30644.1i 1.36194i −0.732310 0.680971i \(-0.761558\pi\)
0.732310 0.680971i \(-0.238442\pi\)
\(798\) 0 0
\(799\) −8920.90 −0.394992
\(800\) 3664.51 1603.54i 0.161950 0.0708671i
\(801\) 0 0
\(802\) 5662.16i 0.249299i
\(803\) 5054.68i 0.222137i
\(804\) 0 0
\(805\) 16877.2 + 11037.1i 0.738937 + 0.483239i
\(806\) 1365.86 0.0596901
\(807\) 0 0
\(808\) 4931.68i 0.214723i
\(809\) 35800.6 1.55585 0.777924 0.628358i \(-0.216273\pi\)
0.777924 + 0.628358i \(0.216273\pi\)
\(810\) 0 0
\(811\) −39786.3 −1.72267 −0.861336 0.508036i \(-0.830372\pi\)
−0.861336 + 0.508036i \(0.830372\pi\)
\(812\) 10316.4i 0.445855i
\(813\) 0 0
\(814\) −2144.02 −0.0923193
\(815\) 1577.46 2412.16i 0.0677990 0.103674i
\(816\) 0 0
\(817\) 17049.5i 0.730095i
\(818\) 643.515i 0.0275061i
\(819\) 0 0
\(820\) 9395.47 + 6144.30i 0.400127 + 0.261669i
\(821\) −24472.6 −1.04032 −0.520158 0.854070i \(-0.674127\pi\)
−0.520158 + 0.854070i \(0.674127\pi\)
\(822\) 0 0
\(823\) 17746.4i 0.751641i −0.926692 0.375821i \(-0.877361\pi\)
0.926692 0.375821i \(-0.122639\pi\)
\(824\) 13248.5 0.560112
\(825\) 0 0
\(826\) 5671.34 0.238900
\(827\) 39143.8i 1.64591i −0.568110 0.822953i \(-0.692325\pi\)
0.568110 0.822953i \(-0.307675\pi\)
\(828\) 0 0
\(829\) 47622.1 1.99516 0.997578 0.0695580i \(-0.0221589\pi\)
0.997578 + 0.0695580i \(0.0221589\pi\)
\(830\) 3901.27 + 2551.29i 0.163151 + 0.106695i
\(831\) 0 0
\(832\) 452.758i 0.0188661i
\(833\) 4739.90i 0.197152i
\(834\) 0 0
\(835\) −13948.9 + 21329.7i −0.578108 + 0.884006i
\(836\) 9449.34 0.390924
\(837\) 0 0
\(838\) 14918.1i 0.614959i
\(839\) −11444.1 −0.470913 −0.235456 0.971885i \(-0.575658\pi\)
−0.235456 + 0.971885i \(0.575658\pi\)
\(840\) 0 0
\(841\) 3892.20 0.159588
\(842\) 12631.7i 0.517004i
\(843\) 0 0
\(844\) −6716.54 −0.273925
\(845\) −20089.3 13137.7i −0.817860 0.534851i
\(846\) 0 0
\(847\) 12938.8i 0.524892i
\(848\) 9515.14i 0.385320i
\(849\) 0 0
\(850\) −4406.67 10070.4i −0.177820 0.406367i
\(851\) 5711.27 0.230058
\(852\) 0 0
\(853\) 18442.6i 0.740283i −0.928975 0.370142i \(-0.879309\pi\)
0.928975 0.370142i \(-0.120691\pi\)
\(854\) −22797.2 −0.913470
\(855\) 0 0
\(856\) 13910.6 0.555436
\(857\) 4761.51i 0.189790i −0.995487 0.0948949i \(-0.969748\pi\)
0.995487 0.0948949i \(-0.0302515\pi\)
\(858\) 0 0
\(859\) 49730.8 1.97531 0.987655 0.156643i \(-0.0500673\pi\)
0.987655 + 0.156643i \(0.0500673\pi\)
\(860\) 3899.73 5963.22i 0.154628 0.236447i
\(861\) 0 0
\(862\) 23612.6i 0.933004i
\(863\) 29555.7i 1.16580i 0.812544 + 0.582900i \(0.198082\pi\)
−0.812544 + 0.582900i \(0.801918\pi\)
\(864\) 0 0
\(865\) 16478.7 25198.2i 0.647737 0.990479i
\(866\) −19106.3 −0.749721
\(867\) 0 0
\(868\) 5921.99i 0.231573i
\(869\) −10295.4 −0.401897
\(870\) 0 0
\(871\) 5330.05 0.207350
\(872\) 10793.6i 0.419172i
\(873\) 0 0
\(874\) −25171.2 −0.974176
\(875\) 21136.0 + 3555.82i 0.816603 + 0.137381i
\(876\) 0 0
\(877\) 31861.1i 1.22677i −0.789785 0.613383i \(-0.789808\pi\)
0.789785 0.613383i \(-0.210192\pi\)
\(878\) 3911.04i 0.150332i
\(879\) 0 0
\(880\) −3304.99 2161.34i −0.126603 0.0827941i
\(881\) 6124.16 0.234198 0.117099 0.993120i \(-0.462641\pi\)
0.117099 + 0.993120i \(0.462641\pi\)
\(882\) 0 0
\(883\) 17206.8i 0.655780i 0.944716 + 0.327890i \(0.106338\pi\)
−0.944716 + 0.327890i \(0.893662\pi\)
\(884\) −1244.22 −0.0473389
\(885\) 0 0
\(886\) 10013.2 0.379683
\(887\) 2765.97i 0.104704i −0.998629 0.0523519i \(-0.983328\pi\)
0.998629 0.0523519i \(-0.0166717\pi\)
\(888\) 0 0
\(889\) 20117.5 0.758965
\(890\) −5926.83 + 9062.93i −0.223222 + 0.341337i
\(891\) 0 0
\(892\) 13945.2i 0.523451i
\(893\) 21711.6i 0.813607i
\(894\) 0 0
\(895\) 11785.5 + 7707.30i 0.440163 + 0.287851i
\(896\) −1963.04 −0.0731925
\(897\) 0 0
\(898\) 9757.15i 0.362584i
\(899\) 16234.4 0.602279
\(900\) 0 0
\(901\) −26148.4 −0.966849
\(902\) 11083.0i 0.409115i
\(903\) 0 0
\(904\) −10575.8 −0.389099
\(905\) −3162.30 2068.03i −0.116153 0.0759597i
\(906\) 0 0
\(907\) 21624.1i 0.791640i −0.918328 0.395820i \(-0.870460\pi\)
0.918328 0.395820i \(-0.129540\pi\)
\(908\) 15118.3i 0.552553i
\(909\) 0 0
\(910\) 1327.79 2030.37i 0.0483691 0.0739629i
\(911\) −14608.6 −0.531290 −0.265645 0.964071i \(-0.585585\pi\)
−0.265645 + 0.964071i \(0.585585\pi\)
\(912\) 0 0
\(913\) 4601.96i 0.166816i
\(914\) 29581.8 1.07055
\(915\) 0 0
\(916\) 4270.17 0.154029
\(917\) 5907.24i 0.212731i
\(918\) 0 0
\(919\) 9860.22 0.353927 0.176963 0.984217i \(-0.443373\pi\)
0.176963 + 0.984217i \(0.443373\pi\)
\(920\) 8803.85 + 5757.40i 0.315494 + 0.206322i
\(921\) 0 0
\(922\) 18256.9i 0.652126i
\(923\) 6583.43i 0.234774i
\(924\) 0 0
\(925\) 5561.05 2433.44i 0.197672 0.0864984i
\(926\) 31731.7 1.12610
\(927\) 0 0
\(928\) 5381.45i 0.190361i
\(929\) −5685.81 −0.200802 −0.100401 0.994947i \(-0.532013\pi\)
−0.100401 + 0.994947i \(0.532013\pi\)
\(930\) 0 0
\(931\) −11535.9 −0.406095
\(932\) 3278.92i 0.115241i
\(933\) 0 0
\(934\) −22992.4 −0.805497
\(935\) −5939.56 + 9082.39i −0.207748 + 0.317675i
\(936\) 0 0
\(937\) 15841.5i 0.552316i 0.961112 + 0.276158i \(0.0890613\pi\)
−0.961112 + 0.276158i \(0.910939\pi\)
\(938\) 23109.7i 0.804433i
\(939\) 0 0
\(940\) 4966.08 7593.81i 0.172315 0.263492i
\(941\) 51898.1 1.79791 0.898954 0.438043i \(-0.144328\pi\)
0.898954 + 0.438043i \(0.144328\pi\)
\(942\) 0 0
\(943\) 29522.9i 1.01951i
\(944\) 2958.40 0.102000
\(945\) 0 0
\(946\) −7034.25 −0.241758
\(947\) 10163.2i 0.348742i −0.984680 0.174371i \(-0.944211\pi\)
0.984680 0.174371i \(-0.0557892\pi\)
\(948\) 0 0
\(949\) −1619.84 −0.0554080
\(950\) −24509.2 + 10724.9i −0.837036 + 0.366275i
\(951\) 0 0
\(952\) 5394.60i 0.183655i
\(953\) 3728.55i 0.126736i −0.997990 0.0633680i \(-0.979816\pi\)
0.997990 0.0633680i \(-0.0201842\pi\)
\(954\) 0 0
\(955\) −26286.7 17190.6i −0.890699 0.582485i
\(956\) 19246.3 0.651119
\(957\) 0 0
\(958\) 6285.72i 0.211986i
\(959\) −22649.5 −0.762659
\(960\) 0 0
\(961\) −20471.8 −0.687182
\(962\) 687.080i 0.0230274i
\(963\) 0 0
\(964\) −18012.6 −0.601813
\(965\) 21404.8 32730.8i 0.714035 1.09186i
\(966\) 0 0
\(967\) 520.743i 0.0173174i −0.999963 0.00865872i \(-0.997244\pi\)
0.999963 0.00865872i \(-0.00275619\pi\)
\(968\) 6749.42i 0.224106i
\(969\) 0 0
\(970\) 16432.7 + 10746.4i 0.543939 + 0.355717i
\(971\) 20023.8 0.661787 0.330893 0.943668i \(-0.392650\pi\)
0.330893 + 0.943668i \(0.392650\pi\)
\(972\) 0 0
\(973\) 19112.2i 0.629711i
\(974\) 33581.3 1.10474
\(975\) 0 0
\(976\) −11891.9 −0.390012
\(977\) 38502.3i 1.26080i −0.776272 0.630398i \(-0.782892\pi\)
0.776272 0.630398i \(-0.217108\pi\)
\(978\) 0 0
\(979\) 10690.7 0.349005
\(980\) 4034.78 + 2638.60i 0.131517 + 0.0860072i
\(981\) 0 0
\(982\) 5277.61i 0.171502i
\(983\) 8713.22i 0.282715i −0.989959 0.141357i \(-0.954853\pi\)
0.989959 0.141357i \(-0.0451466\pi\)
\(984\) 0 0
\(985\) −24076.5 + 36816.3i −0.778824 + 1.19093i
\(986\) −14788.7 −0.477655
\(987\) 0 0
\(988\) 3028.16i 0.0975088i
\(989\) 18737.9 0.602458
\(990\) 0 0
\(991\) −9655.88 −0.309515 −0.154757 0.987953i \(-0.549460\pi\)
−0.154757 + 0.987953i \(0.549460\pi\)
\(992\) 3089.15i 0.0988715i
\(993\) 0 0
\(994\) −28544.0 −0.910825
\(995\) 13287.2 + 8689.36i 0.423350 + 0.276856i
\(996\) 0 0
\(997\) 26015.6i 0.826401i 0.910640 + 0.413201i \(0.135589\pi\)
−0.910640 + 0.413201i \(0.864411\pi\)
\(998\) 13815.4i 0.438197i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.c.b.649.1 yes 10
3.2 odd 2 810.4.c.a.649.10 yes 10
5.4 even 2 inner 810.4.c.b.649.6 yes 10
15.14 odd 2 810.4.c.a.649.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.4.c.a.649.5 10 15.14 odd 2
810.4.c.a.649.10 yes 10 3.2 odd 2
810.4.c.b.649.1 yes 10 1.1 even 1 trivial
810.4.c.b.649.6 yes 10 5.4 even 2 inner