L(s) = 1 | + (1 + 1.73i)2-s + (−1.99 + 3.46i)4-s + (2.5 − 4.33i)5-s + (5.63 + 9.75i)7-s − 7.99·8-s + 10·10-s + (0.526 + 0.911i)11-s + (6.73 − 11.6i)13-s + (−11.2 + 19.5i)14-s + (−8 − 13.8i)16-s + 136.·17-s − 46.7·19-s + (10 + 17.3i)20-s + (−1.05 + 1.82i)22-s + (−10.9 + 18.9i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (0.304 + 0.526i)7-s − 0.353·8-s + 0.316·10-s + (0.0144 + 0.0249i)11-s + (0.143 − 0.248i)13-s + (−0.215 + 0.372i)14-s + (−0.125 − 0.216i)16-s + 1.95·17-s − 0.564·19-s + (0.111 + 0.193i)20-s + (−0.0102 + 0.0176i)22-s + (−0.0992 + 0.171i)23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)(0.342−0.939i)Λ(4−s)
Λ(s)=(=(810s/2ΓC(s+3/2)L(s)(0.342−0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
0.342−0.939i
|
Analytic conductor: |
47.7915 |
Root analytic conductor: |
6.91314 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :3/2), 0.342−0.939i)
|
Particular Values
L(2) |
≈ |
2.705461964 |
L(21) |
≈ |
2.705461964 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1−1.73i)T |
| 3 | 1 |
| 5 | 1+(−2.5+4.33i)T |
good | 7 | 1+(−5.63−9.75i)T+(−171.5+297.i)T2 |
| 11 | 1+(−0.526−0.911i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+(−6.73+11.6i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1−136.T+4.91e3T2 |
| 19 | 1+46.7T+6.85e3T2 |
| 23 | 1+(10.9−18.9i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(54.1+93.7i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(−28.5+49.4i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1−223.T+5.06e4T2 |
| 41 | 1+(34.4−59.6i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(−177.−307.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−241.−417.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+110.T+1.48e5T2 |
| 59 | 1+(328.−569.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−19.2−33.3i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−339.+587.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−572.T+3.57e5T2 |
| 73 | 1−107.T+3.89e5T2 |
| 79 | 1+(−51.8−89.8i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+(−472.−818.i)T+(−2.85e5+4.95e5i)T2 |
| 89 | 1−577.T+7.04e5T2 |
| 97 | 1+(−593.−1.02e3i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.797658348908456489723316657561, −9.146351126453074516938748310039, −8.031935986624637377054366089741, −7.69911736930723468538336659327, −6.27093864395003992146646451887, −5.69100925684587731457847474122, −4.82923205793568458789127031290, −3.75211657987601716501074565985, −2.53501693111668176642457709162, −1.03195142390989393358185957079,
0.803313199201397178641016285336, 1.97015919960354392415525750369, 3.21627577360421039985220404794, 4.04559945472064871810612492962, 5.17964717221696286301883367144, 6.02150774584011956563649394421, 7.09900721521468538457229585937, 7.961340776269900822644769749401, 9.020278646394158419741481294573, 9.981627042960495391791376225582