Properties

Label 810.4.e.bf
Level $810$
Weight $4$
Character orbit 810.e
Analytic conductor $47.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_1 + 2) q^{2} - 4 \beta_1 q^{4} + 5 \beta_1 q^{5} + (\beta_{3} - \beta_{2} - 13 \beta_1 + 13) q^{7} - 8 q^{8} + 10 q^{10} + ( - 11 \beta_{3} + 11 \beta_{2} + \cdots - 18) q^{11} + ( - 2 \beta_{2} + 10 \beta_1) q^{13}+ \cdots + ( - 52 \beta_{3} + 342) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 10 q^{5} + 26 q^{7} - 32 q^{8} + 40 q^{10} - 36 q^{11} + 20 q^{13} - 52 q^{14} - 32 q^{16} + 180 q^{17} - 76 q^{19} + 40 q^{20} + 72 q^{22} - 120 q^{23} - 50 q^{25} + 80 q^{26}+ \cdots + 1368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{3} + \zeta_{12} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i 2.50000 4.33013i 0 5.63397 + 9.75833i −8.00000 0 10.0000
271.2 1.00000 + 1.73205i 0 −2.00000 + 3.46410i 2.50000 4.33013i 0 7.36603 + 12.7583i −8.00000 0 10.0000
541.1 1.00000 1.73205i 0 −2.00000 3.46410i 2.50000 + 4.33013i 0 5.63397 9.75833i −8.00000 0 10.0000
541.2 1.00000 1.73205i 0 −2.00000 3.46410i 2.50000 + 4.33013i 0 7.36603 12.7583i −8.00000 0 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.4.e.bf 4
3.b odd 2 1 810.4.e.bb 4
9.c even 3 1 810.4.a.g 2
9.c even 3 1 inner 810.4.e.bf 4
9.d odd 6 1 810.4.a.m yes 2
9.d odd 6 1 810.4.e.bb 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
810.4.a.g 2 9.c even 3 1
810.4.a.m yes 2 9.d odd 6 1
810.4.e.bb 4 3.b odd 2 1
810.4.e.bb 4 9.d odd 6 1
810.4.e.bf 4 1.a even 1 1 trivial
810.4.e.bf 4 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(810, [\chi])\):

\( T_{7}^{4} - 26T_{7}^{3} + 510T_{7}^{2} - 4316T_{7} + 27556 \) Copy content Toggle raw display
\( T_{11}^{4} + 36T_{11}^{3} + 1335T_{11}^{2} - 1404T_{11} + 1521 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 26 T^{3} + \cdots + 27556 \) Copy content Toggle raw display
$11$ \( T^{4} + 36 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
$13$ \( T^{4} - 20 T^{3} + \cdots + 7744 \) Copy content Toggle raw display
$17$ \( (T^{2} - 90 T - 6402)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 38 T - 407)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 120 T^{3} + \cdots + 4613904 \) Copy content Toggle raw display
$29$ \( T^{4} + 324 T^{3} + \cdots + 545736321 \) Copy content Toggle raw display
$31$ \( T^{4} - 38 T^{3} + \cdots + 1190281 \) Copy content Toggle raw display
$37$ \( (T^{2} + 146 T - 82394)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 252 T^{3} + \cdots + 158986881 \) Copy content Toggle raw display
$43$ \( T^{4} - 422 T^{3} + \cdots + 569013316 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 3169464804 \) Copy content Toggle raw display
$53$ \( (T^{2} + 162 T + 5694)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 148492310409 \) Copy content Toggle raw display
$61$ \( T^{4} - 368 T^{3} + \cdots + 160985344 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 67083072016 \) Copy content Toggle raw display
$71$ \( (T^{2} - 240 T - 189963)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 710 T - 87842)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 4186090000 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 915056775396 \) Copy content Toggle raw display
$89$ \( (T^{2} - 1248 T + 387189)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 379286003044 \) Copy content Toggle raw display
show more
show less