L(s) = 1 | + 2·2-s − 5·5-s + 22·7-s − 8·8-s − 10·10-s − 12·11-s − 38·13-s + 44·14-s − 16·16-s + 210·17-s − 314·19-s − 24·22-s − 117·23-s − 76·26-s + 66·29-s + 25·31-s + 420·34-s − 110·35-s + 628·37-s − 628·38-s + 40·40-s − 504·41-s − 380·43-s − 234·46-s − 252·47-s + 343·49-s − 6·53-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.447·5-s + 1.18·7-s − 0.353·8-s − 0.316·10-s − 0.328·11-s − 0.810·13-s + 0.839·14-s − 1/4·16-s + 2.99·17-s − 3.79·19-s − 0.232·22-s − 1.06·23-s − 0.573·26-s + 0.422·29-s + 0.144·31-s + 2.11·34-s − 0.531·35-s + 2.79·37-s − 2.68·38-s + 0.158·40-s − 1.91·41-s − 1.34·43-s − 0.750·46-s − 0.782·47-s + 49-s − 0.0155·53-s + ⋯ |
Λ(s)=(=(656100s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(656100s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
656100
= 22⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
2284.03 |
Root analytic conductor: |
6.91314 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 656100, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.206791499 |
L(21) |
≈ |
1.206791499 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+p2T2 |
| 3 | | 1 |
| 5 | C2 | 1+pT+p2T2 |
good | 7 | C22 | 1−22T+141T2−22p3T3+p6T4 |
| 11 | C22 | 1+12T−1187T2+12p3T3+p6T4 |
| 13 | C22 | 1+38T−753T2+38p3T3+p6T4 |
| 17 | C2 | (1−105T+p3T2)2 |
| 19 | C2 | (1+157T+p3T2)2 |
| 23 | C22 | 1+117T+1522T2+117p3T3+p6T4 |
| 29 | C22 | 1−66T−20033T2−66p3T3+p6T4 |
| 31 | C22 | 1−25T−29166T2−25p3T3+p6T4 |
| 37 | C2 | (1−314T+p3T2)2 |
| 41 | C22 | 1+504T+185095T2+504p3T3+p6T4 |
| 43 | C22 | 1+380T+64893T2+380p3T3+p6T4 |
| 47 | C22 | 1+252T−40319T2+252p3T3+p6T4 |
| 53 | C2 | (1+3T+p3T2)2 |
| 59 | C22 | 1+318T−104255T2+318p3T3+p6T4 |
| 61 | C22 | 1+293T−141132T2+293p3T3+p6T4 |
| 67 | C22 | 1−322T−197079T2−322p3T3+p6T4 |
| 71 | C2 | (1−120T+p3T2)2 |
| 73 | C2 | (1−44T+p3T2)2 |
| 79 | C22 | 1+917T+347850T2+917p3T3+p6T4 |
| 83 | C22 | 1−309T−476306T2−309p3T3+p6T4 |
| 89 | C2 | (1+1272T+p3T2)2 |
| 97 | C22 | 1+1328T+850911T2+1328p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32310079850714570134728317618, −9.640718110465372155674447483974, −9.402801795636124185785972389093, −8.381840690799742040192029065252, −8.293600106156569565133511348856, −7.938781105939453653378450494171, −7.87710416146303603393738228835, −6.82207966331381536559996766244, −6.68837252113636130259731759208, −5.98568793503900486178271469123, −5.55392083307626242918396739615, −5.17848193674032324778745052750, −4.56634914606467185600025818664, −4.17988434281970642206530107805, −3.97282039075007971402284918646, −3.02315604666529819145753193727, −2.66115128845323111753177665246, −1.84761429409608250972532611833, −1.37078257396740041879656305229, −0.25570659414586468780190549490,
0.25570659414586468780190549490, 1.37078257396740041879656305229, 1.84761429409608250972532611833, 2.66115128845323111753177665246, 3.02315604666529819145753193727, 3.97282039075007971402284918646, 4.17988434281970642206530107805, 4.56634914606467185600025818664, 5.17848193674032324778745052750, 5.55392083307626242918396739615, 5.98568793503900486178271469123, 6.68837252113636130259731759208, 6.82207966331381536559996766244, 7.87710416146303603393738228835, 7.938781105939453653378450494171, 8.293600106156569565133511348856, 8.381840690799742040192029065252, 9.402801795636124185785972389093, 9.640718110465372155674447483974, 10.32310079850714570134728317618