Properties

Label 810.4.e.s
Level $810$
Weight $4$
Character orbit 810.e
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} - 4 \zeta_{6} q^{4} - 5 \zeta_{6} q^{5} + ( - 22 \zeta_{6} + 22) q^{7} - 8 q^{8} - 10 q^{10} + (12 \zeta_{6} - 12) q^{11} - 38 \zeta_{6} q^{13} - 44 \zeta_{6} q^{14} + (16 \zeta_{6} - 16) q^{16} + \cdots - 282 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} - 5 q^{5} + 22 q^{7} - 16 q^{8} - 20 q^{10} - 12 q^{11} - 38 q^{13} - 44 q^{14} - 16 q^{16} + 210 q^{17} - 314 q^{19} - 20 q^{20} + 24 q^{22} - 117 q^{23} - 25 q^{25} - 152 q^{26}+ \cdots - 564 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i −2.50000 + 4.33013i 0 11.0000 + 19.0526i −8.00000 0 −10.0000
541.1 1.00000 1.73205i 0 −2.00000 3.46410i −2.50000 4.33013i 0 11.0000 19.0526i −8.00000 0 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.4.e.s 2
3.b odd 2 1 810.4.e.k 2
9.c even 3 1 270.4.a.c 1
9.c even 3 1 inner 810.4.e.s 2
9.d odd 6 1 270.4.a.g yes 1
9.d odd 6 1 810.4.e.k 2
36.f odd 6 1 2160.4.a.r 1
36.h even 6 1 2160.4.a.i 1
45.h odd 6 1 1350.4.a.l 1
45.j even 6 1 1350.4.a.z 1
45.k odd 12 2 1350.4.c.l 2
45.l even 12 2 1350.4.c.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.a.c 1 9.c even 3 1
270.4.a.g yes 1 9.d odd 6 1
810.4.e.k 2 3.b odd 2 1
810.4.e.k 2 9.d odd 6 1
810.4.e.s 2 1.a even 1 1 trivial
810.4.e.s 2 9.c even 3 1 inner
1350.4.a.l 1 45.h odd 6 1
1350.4.a.z 1 45.j even 6 1
1350.4.c.i 2 45.l even 12 2
1350.4.c.l 2 45.k odd 12 2
2160.4.a.i 1 36.h even 6 1
2160.4.a.r 1 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(810, [\chi])\):

\( T_{7}^{2} - 22T_{7} + 484 \) Copy content Toggle raw display
\( T_{11}^{2} + 12T_{11} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 22T + 484 \) Copy content Toggle raw display
$11$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$13$ \( T^{2} + 38T + 1444 \) Copy content Toggle raw display
$17$ \( (T - 105)^{2} \) Copy content Toggle raw display
$19$ \( (T + 157)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 117T + 13689 \) Copy content Toggle raw display
$29$ \( T^{2} - 66T + 4356 \) Copy content Toggle raw display
$31$ \( T^{2} - 25T + 625 \) Copy content Toggle raw display
$37$ \( (T - 314)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 504T + 254016 \) Copy content Toggle raw display
$43$ \( T^{2} + 380T + 144400 \) Copy content Toggle raw display
$47$ \( T^{2} + 252T + 63504 \) Copy content Toggle raw display
$53$ \( (T + 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 318T + 101124 \) Copy content Toggle raw display
$61$ \( T^{2} + 293T + 85849 \) Copy content Toggle raw display
$67$ \( T^{2} - 322T + 103684 \) Copy content Toggle raw display
$71$ \( (T - 120)^{2} \) Copy content Toggle raw display
$73$ \( (T - 44)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 917T + 840889 \) Copy content Toggle raw display
$83$ \( T^{2} - 309T + 95481 \) Copy content Toggle raw display
$89$ \( (T + 1272)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1328 T + 1763584 \) Copy content Toggle raw display
show more
show less