Properties

Label 2-90e2-1.1-c1-0-33
Degree $2$
Conductor $8100$
Sign $1$
Analytic cond. $64.6788$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 3·11-s + 4·13-s + 5·19-s − 6·23-s + 9·29-s + 5·31-s − 2·37-s + 9·41-s + 10·43-s − 6·47-s + 9·49-s − 12·53-s − 9·59-s − 10·61-s − 2·67-s − 3·71-s + 4·73-s − 12·77-s − 4·79-s + 6·83-s + 9·89-s + 16·91-s − 2·97-s + 15·101-s + 10·103-s + 6·107-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.904·11-s + 1.10·13-s + 1.14·19-s − 1.25·23-s + 1.67·29-s + 0.898·31-s − 0.328·37-s + 1.40·41-s + 1.52·43-s − 0.875·47-s + 9/7·49-s − 1.64·53-s − 1.17·59-s − 1.28·61-s − 0.244·67-s − 0.356·71-s + 0.468·73-s − 1.36·77-s − 0.450·79-s + 0.658·83-s + 0.953·89-s + 1.67·91-s − 0.203·97-s + 1.49·101-s + 0.985·103-s + 0.580·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(64.6788\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.736771232\)
\(L(\frac12)\) \(\approx\) \(2.736771232\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88262337731851311870417921589, −7.43465328810569102022993245115, −6.19813444562153059945956727549, −5.87078922534867975245864646985, −4.74850511007640324073209228514, −4.63150019637301685883305003179, −3.47040373748277996725817328454, −2.63796469638981412639676185280, −1.68310464171848719416573350918, −0.873605524273080761158972550445, 0.873605524273080761158972550445, 1.68310464171848719416573350918, 2.63796469638981412639676185280, 3.47040373748277996725817328454, 4.63150019637301685883305003179, 4.74850511007640324073209228514, 5.87078922534867975245864646985, 6.19813444562153059945956727549, 7.43465328810569102022993245115, 7.88262337731851311870417921589

Graph of the $Z$-function along the critical line