L(s) = 1 | + 6·3-s + 6·5-s + 8·7-s + 27·9-s − 66·11-s − 2·13-s + 36·15-s − 34·17-s + 26·19-s + 48·21-s + 198·23-s + 65·25-s + 108·27-s + 444·29-s − 532·31-s − 396·33-s + 48·35-s + 88·37-s − 12·39-s + 570·41-s + 182·43-s + 162·45-s − 420·47-s − 350·49-s − 204·51-s − 300·53-s − 396·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.536·5-s + 0.431·7-s + 9-s − 1.80·11-s − 0.0426·13-s + 0.619·15-s − 0.485·17-s + 0.313·19-s + 0.498·21-s + 1.79·23-s + 0.519·25-s + 0.769·27-s + 2.84·29-s − 3.08·31-s − 2.08·33-s + 0.231·35-s + 0.391·37-s − 0.0492·39-s + 2.17·41-s + 0.645·43-s + 0.536·45-s − 1.30·47-s − 1.02·49-s − 0.560·51-s − 0.777·53-s − 0.970·55-s + ⋯ |
Λ(s)=(=(665856s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(665856s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
665856
= 28⋅32⋅172
|
Sign: |
1
|
Analytic conductor: |
2317.99 |
Root analytic conductor: |
6.93870 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 665856, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
5.475923130 |
L(21) |
≈ |
5.475923130 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 17 | C1 | (1+pT)2 |
good | 5 | D4 | 1−6T−29T2−6p3T3+p6T4 |
| 7 | D4 | 1−8T+414T2−8p3T3+p6T4 |
| 11 | D4 | 1+6pT+3463T2+6p4T3+p6T4 |
| 13 | D4 | 1+2T+3243T2+2p3T3+p6T4 |
| 19 | D4 | 1−26T+9279T2−26p3T3+p6T4 |
| 23 | D4 | 1−198T+33847T2−198p3T3+p6T4 |
| 29 | D4 | 1−444T+93454T2−444p3T3+p6T4 |
| 31 | D4 | 1+532T+129186T2+532p3T3+p6T4 |
| 37 | D4 | 1−88T+29514T2−88p3T3+p6T4 |
| 41 | D4 | 1−570T+195739T2−570p3T3+p6T4 |
| 43 | D4 | 1−182T+162687T2−182p3T3+p6T4 |
| 47 | D4 | 1+420T+249154T2+420p3T3+p6T4 |
| 53 | D4 | 1+300T+43486T2+300p3T3+p6T4 |
| 59 | D4 | 1+444T+294154T2+444p3T3+p6T4 |
| 61 | D4 | 1−400T+55914T2−400p3T3+p6T4 |
| 67 | D4 | 1−968T+742470T2−968p3T3+p6T4 |
| 71 | D4 | 1−1848T+1513150T2−1848p3T3+p6T4 |
| 73 | D4 | 1−868T+963798T2−868p3T3+p6T4 |
| 79 | C2 | (1+254T+p3T2)2 |
| 83 | D4 | 1+12pT+1388986T2+12p4T3+p6T4 |
| 89 | D4 | 1+288T+287602T2+288p3T3+p6T4 |
| 97 | D4 | 1−1024T+2038818T2−1024p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.867524621875145021490405161122, −9.539530189297787365130959988724, −9.326575235248236713787547450084, −8.739430480933774683682437742660, −8.241935812489843689771078972203, −8.164718355711679463740583704887, −7.38884366348938379196404866598, −7.37288929107470924224065553371, −6.59691323272191981227127743911, −6.32012573332259333555707296740, −5.30913339743556374694414010919, −5.24024795078398242309622300718, −4.77636126636573459393378003116, −4.19365471440703557549245284298, −3.38273514131425903126774830768, −3.00730320549634443764432716870, −2.44495371971793750953314431637, −2.14136375086305265634130521952, −1.25786358721961424135900693925, −0.59541988677432637702061280445,
0.59541988677432637702061280445, 1.25786358721961424135900693925, 2.14136375086305265634130521952, 2.44495371971793750953314431637, 3.00730320549634443764432716870, 3.38273514131425903126774830768, 4.19365471440703557549245284298, 4.77636126636573459393378003116, 5.24024795078398242309622300718, 5.30913339743556374694414010919, 6.32012573332259333555707296740, 6.59691323272191981227127743911, 7.37288929107470924224065553371, 7.38884366348938379196404866598, 8.164718355711679463740583704887, 8.241935812489843689771078972203, 8.739430480933774683682437742660, 9.326575235248236713787547450084, 9.539530189297787365130959988724, 9.867524621875145021490405161122