Properties

Label 816.4.a.o.1.1
Level $816$
Weight $4$
Character 816.1
Self dual yes
Analytic conductor $48.146$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,4,Mod(1,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1455585647\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 816.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -13.9706 q^{5} -12.9706 q^{7} +9.00000 q^{9} -49.9706 q^{11} +32.9411 q^{13} -41.9117 q^{15} -17.0000 q^{17} -54.8823 q^{19} -38.9117 q^{21} +82.0294 q^{23} +70.1766 q^{25} +27.0000 q^{27} +289.882 q^{29} -232.059 q^{31} -149.912 q^{33} +181.206 q^{35} -227.529 q^{37} +98.8234 q^{39} +437.735 q^{41} +158.882 q^{43} -125.735 q^{45} -159.088 q^{47} -174.765 q^{49} -51.0000 q^{51} +376.087 q^{53} +698.117 q^{55} -164.647 q^{57} +185.294 q^{59} +861.852 q^{61} -116.735 q^{63} -460.206 q^{65} +178.530 q^{67} +246.088 q^{69} +1161.59 q^{71} +383.088 q^{73} +210.530 q^{75} +648.146 q^{77} -254.000 q^{79} +81.0000 q^{81} -447.088 q^{83} +237.500 q^{85} +869.647 q^{87} -1213.15 q^{89} -427.265 q^{91} -696.177 q^{93} +766.736 q^{95} +291.383 q^{97} -449.735 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 6 q^{5} + 8 q^{7} + 18 q^{9} - 66 q^{11} - 2 q^{13} + 18 q^{15} - 34 q^{17} + 26 q^{19} + 24 q^{21} + 198 q^{23} + 344 q^{25} + 54 q^{27} + 444 q^{29} - 532 q^{31} - 198 q^{33} + 600 q^{35}+ \cdots - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) −13.9706 −1.24957 −0.624783 0.780799i \(-0.714812\pi\)
−0.624783 + 0.780799i \(0.714812\pi\)
\(6\) 0 0
\(7\) −12.9706 −0.700345 −0.350172 0.936685i \(-0.613877\pi\)
−0.350172 + 0.936685i \(0.613877\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −49.9706 −1.36970 −0.684850 0.728684i \(-0.740132\pi\)
−0.684850 + 0.728684i \(0.740132\pi\)
\(12\) 0 0
\(13\) 32.9411 0.702786 0.351393 0.936228i \(-0.385708\pi\)
0.351393 + 0.936228i \(0.385708\pi\)
\(14\) 0 0
\(15\) −41.9117 −0.721437
\(16\) 0 0
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) −54.8823 −0.662676 −0.331338 0.943512i \(-0.607500\pi\)
−0.331338 + 0.943512i \(0.607500\pi\)
\(20\) 0 0
\(21\) −38.9117 −0.404344
\(22\) 0 0
\(23\) 82.0294 0.743666 0.371833 0.928300i \(-0.378729\pi\)
0.371833 + 0.928300i \(0.378729\pi\)
\(24\) 0 0
\(25\) 70.1766 0.561413
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 289.882 1.85620 0.928100 0.372332i \(-0.121442\pi\)
0.928100 + 0.372332i \(0.121442\pi\)
\(30\) 0 0
\(31\) −232.059 −1.34448 −0.672242 0.740331i \(-0.734669\pi\)
−0.672242 + 0.740331i \(0.734669\pi\)
\(32\) 0 0
\(33\) −149.912 −0.790796
\(34\) 0 0
\(35\) 181.206 0.875126
\(36\) 0 0
\(37\) −227.529 −1.01096 −0.505480 0.862838i \(-0.668685\pi\)
−0.505480 + 0.862838i \(0.668685\pi\)
\(38\) 0 0
\(39\) 98.8234 0.405754
\(40\) 0 0
\(41\) 437.735 1.66738 0.833692 0.552230i \(-0.186223\pi\)
0.833692 + 0.552230i \(0.186223\pi\)
\(42\) 0 0
\(43\) 158.882 0.563472 0.281736 0.959492i \(-0.409090\pi\)
0.281736 + 0.959492i \(0.409090\pi\)
\(44\) 0 0
\(45\) −125.735 −0.416522
\(46\) 0 0
\(47\) −159.088 −0.493732 −0.246866 0.969050i \(-0.579401\pi\)
−0.246866 + 0.969050i \(0.579401\pi\)
\(48\) 0 0
\(49\) −174.765 −0.509517
\(50\) 0 0
\(51\) −51.0000 −0.140028
\(52\) 0 0
\(53\) 376.087 0.974709 0.487355 0.873204i \(-0.337962\pi\)
0.487355 + 0.873204i \(0.337962\pi\)
\(54\) 0 0
\(55\) 698.117 1.71153
\(56\) 0 0
\(57\) −164.647 −0.382596
\(58\) 0 0
\(59\) 185.294 0.408867 0.204434 0.978880i \(-0.434465\pi\)
0.204434 + 0.978880i \(0.434465\pi\)
\(60\) 0 0
\(61\) 861.852 1.80900 0.904499 0.426477i \(-0.140245\pi\)
0.904499 + 0.426477i \(0.140245\pi\)
\(62\) 0 0
\(63\) −116.735 −0.233448
\(64\) 0 0
\(65\) −460.206 −0.878177
\(66\) 0 0
\(67\) 178.530 0.325536 0.162768 0.986664i \(-0.447958\pi\)
0.162768 + 0.986664i \(0.447958\pi\)
\(68\) 0 0
\(69\) 246.088 0.429356
\(70\) 0 0
\(71\) 1161.59 1.94162 0.970811 0.239847i \(-0.0770973\pi\)
0.970811 + 0.239847i \(0.0770973\pi\)
\(72\) 0 0
\(73\) 383.088 0.614207 0.307103 0.951676i \(-0.400640\pi\)
0.307103 + 0.951676i \(0.400640\pi\)
\(74\) 0 0
\(75\) 210.530 0.324132
\(76\) 0 0
\(77\) 648.146 0.959261
\(78\) 0 0
\(79\) −254.000 −0.361737 −0.180869 0.983507i \(-0.557891\pi\)
−0.180869 + 0.983507i \(0.557891\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −447.088 −0.591257 −0.295628 0.955303i \(-0.595529\pi\)
−0.295628 + 0.955303i \(0.595529\pi\)
\(84\) 0 0
\(85\) 237.500 0.303064
\(86\) 0 0
\(87\) 869.647 1.07168
\(88\) 0 0
\(89\) −1213.15 −1.44487 −0.722433 0.691440i \(-0.756976\pi\)
−0.722433 + 0.691440i \(0.756976\pi\)
\(90\) 0 0
\(91\) −427.265 −0.492193
\(92\) 0 0
\(93\) −696.177 −0.776238
\(94\) 0 0
\(95\) 766.736 0.828057
\(96\) 0 0
\(97\) 291.383 0.305004 0.152502 0.988303i \(-0.451267\pi\)
0.152502 + 0.988303i \(0.451267\pi\)
\(98\) 0 0
\(99\) −449.735 −0.456566
\(100\) 0 0
\(101\) 1568.53 1.54529 0.772645 0.634838i \(-0.218933\pi\)
0.772645 + 0.634838i \(0.218933\pi\)
\(102\) 0 0
\(103\) −412.647 −0.394750 −0.197375 0.980328i \(-0.563242\pi\)
−0.197375 + 0.980328i \(0.563242\pi\)
\(104\) 0 0
\(105\) 543.618 0.505254
\(106\) 0 0
\(107\) 239.382 0.216280 0.108140 0.994136i \(-0.465511\pi\)
0.108140 + 0.994136i \(0.465511\pi\)
\(108\) 0 0
\(109\) −759.647 −0.667532 −0.333766 0.942656i \(-0.608319\pi\)
−0.333766 + 0.942656i \(0.608319\pi\)
\(110\) 0 0
\(111\) −682.587 −0.583678
\(112\) 0 0
\(113\) −292.383 −0.243408 −0.121704 0.992566i \(-0.538836\pi\)
−0.121704 + 0.992566i \(0.538836\pi\)
\(114\) 0 0
\(115\) −1146.00 −0.929259
\(116\) 0 0
\(117\) 296.470 0.234262
\(118\) 0 0
\(119\) 220.500 0.169859
\(120\) 0 0
\(121\) 1166.06 0.876076
\(122\) 0 0
\(123\) 1313.21 0.962664
\(124\) 0 0
\(125\) 765.913 0.548043
\(126\) 0 0
\(127\) 2646.41 1.84906 0.924531 0.381107i \(-0.124457\pi\)
0.924531 + 0.381107i \(0.124457\pi\)
\(128\) 0 0
\(129\) 476.647 0.325321
\(130\) 0 0
\(131\) 1964.15 1.30999 0.654994 0.755634i \(-0.272671\pi\)
0.654994 + 0.755634i \(0.272671\pi\)
\(132\) 0 0
\(133\) 711.854 0.464102
\(134\) 0 0
\(135\) −377.205 −0.240479
\(136\) 0 0
\(137\) −2083.15 −1.29909 −0.649544 0.760324i \(-0.725040\pi\)
−0.649544 + 0.760324i \(0.725040\pi\)
\(138\) 0 0
\(139\) −1715.73 −1.04695 −0.523477 0.852040i \(-0.675365\pi\)
−0.523477 + 0.852040i \(0.675365\pi\)
\(140\) 0 0
\(141\) −477.265 −0.285056
\(142\) 0 0
\(143\) −1646.09 −0.962606
\(144\) 0 0
\(145\) −4049.82 −2.31944
\(146\) 0 0
\(147\) −524.294 −0.294170
\(148\) 0 0
\(149\) −1679.62 −0.923487 −0.461743 0.887014i \(-0.652776\pi\)
−0.461743 + 0.887014i \(0.652776\pi\)
\(150\) 0 0
\(151\) −644.353 −0.347263 −0.173632 0.984811i \(-0.555550\pi\)
−0.173632 + 0.984811i \(0.555550\pi\)
\(152\) 0 0
\(153\) −153.000 −0.0808452
\(154\) 0 0
\(155\) 3241.99 1.68002
\(156\) 0 0
\(157\) 2130.53 1.08302 0.541512 0.840693i \(-0.317852\pi\)
0.541512 + 0.840693i \(0.317852\pi\)
\(158\) 0 0
\(159\) 1128.26 0.562749
\(160\) 0 0
\(161\) −1063.97 −0.520822
\(162\) 0 0
\(163\) −3582.41 −1.72145 −0.860724 0.509072i \(-0.829989\pi\)
−0.860724 + 0.509072i \(0.829989\pi\)
\(164\) 0 0
\(165\) 2094.35 0.988151
\(166\) 0 0
\(167\) 1861.79 0.862694 0.431347 0.902186i \(-0.358038\pi\)
0.431347 + 0.902186i \(0.358038\pi\)
\(168\) 0 0
\(169\) −1111.88 −0.506091
\(170\) 0 0
\(171\) −493.940 −0.220892
\(172\) 0 0
\(173\) 2612.50 1.14812 0.574059 0.818814i \(-0.305368\pi\)
0.574059 + 0.818814i \(0.305368\pi\)
\(174\) 0 0
\(175\) −910.230 −0.393183
\(176\) 0 0
\(177\) 555.881 0.236060
\(178\) 0 0
\(179\) −126.646 −0.0528824 −0.0264412 0.999650i \(-0.508417\pi\)
−0.0264412 + 0.999650i \(0.508417\pi\)
\(180\) 0 0
\(181\) 1783.26 0.732314 0.366157 0.930553i \(-0.380673\pi\)
0.366157 + 0.930553i \(0.380673\pi\)
\(182\) 0 0
\(183\) 2585.56 1.04443
\(184\) 0 0
\(185\) 3178.71 1.26326
\(186\) 0 0
\(187\) 849.500 0.332201
\(188\) 0 0
\(189\) −350.205 −0.134781
\(190\) 0 0
\(191\) −2144.44 −0.812388 −0.406194 0.913787i \(-0.633144\pi\)
−0.406194 + 0.913787i \(0.633144\pi\)
\(192\) 0 0
\(193\) 3205.82 1.19565 0.597823 0.801628i \(-0.296032\pi\)
0.597823 + 0.801628i \(0.296032\pi\)
\(194\) 0 0
\(195\) −1380.62 −0.507016
\(196\) 0 0
\(197\) 2768.32 1.00119 0.500596 0.865681i \(-0.333114\pi\)
0.500596 + 0.865681i \(0.333114\pi\)
\(198\) 0 0
\(199\) 712.792 0.253912 0.126956 0.991908i \(-0.459479\pi\)
0.126956 + 0.991908i \(0.459479\pi\)
\(200\) 0 0
\(201\) 535.590 0.187948
\(202\) 0 0
\(203\) −3759.94 −1.29998
\(204\) 0 0
\(205\) −6115.41 −2.08350
\(206\) 0 0
\(207\) 738.265 0.247889
\(208\) 0 0
\(209\) 2742.50 0.907667
\(210\) 0 0
\(211\) −787.591 −0.256967 −0.128483 0.991712i \(-0.541011\pi\)
−0.128483 + 0.991712i \(0.541011\pi\)
\(212\) 0 0
\(213\) 3484.76 1.12100
\(214\) 0 0
\(215\) −2219.67 −0.704096
\(216\) 0 0
\(217\) 3009.93 0.941602
\(218\) 0 0
\(219\) 1149.26 0.354612
\(220\) 0 0
\(221\) −559.999 −0.170451
\(222\) 0 0
\(223\) 2926.53 0.878811 0.439405 0.898289i \(-0.355189\pi\)
0.439405 + 0.898289i \(0.355189\pi\)
\(224\) 0 0
\(225\) 631.590 0.187138
\(226\) 0 0
\(227\) 6212.03 1.81633 0.908164 0.418614i \(-0.137484\pi\)
0.908164 + 0.418614i \(0.137484\pi\)
\(228\) 0 0
\(229\) −4516.35 −1.30327 −0.651635 0.758533i \(-0.725916\pi\)
−0.651635 + 0.758533i \(0.725916\pi\)
\(230\) 0 0
\(231\) 1944.44 0.553830
\(232\) 0 0
\(233\) 3547.26 0.997376 0.498688 0.866782i \(-0.333815\pi\)
0.498688 + 0.866782i \(0.333815\pi\)
\(234\) 0 0
\(235\) 2222.55 0.616951
\(236\) 0 0
\(237\) −762.000 −0.208849
\(238\) 0 0
\(239\) −726.969 −0.196752 −0.0983760 0.995149i \(-0.531365\pi\)
−0.0983760 + 0.995149i \(0.531365\pi\)
\(240\) 0 0
\(241\) 1689.67 0.451623 0.225812 0.974171i \(-0.427497\pi\)
0.225812 + 0.974171i \(0.427497\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 2441.56 0.636675
\(246\) 0 0
\(247\) −1807.88 −0.465720
\(248\) 0 0
\(249\) −1341.26 −0.341362
\(250\) 0 0
\(251\) −911.707 −0.229269 −0.114634 0.993408i \(-0.536570\pi\)
−0.114634 + 0.993408i \(0.536570\pi\)
\(252\) 0 0
\(253\) −4099.06 −1.01860
\(254\) 0 0
\(255\) 712.499 0.174974
\(256\) 0 0
\(257\) −3123.56 −0.758141 −0.379070 0.925368i \(-0.623756\pi\)
−0.379070 + 0.925368i \(0.623756\pi\)
\(258\) 0 0
\(259\) 2951.18 0.708021
\(260\) 0 0
\(261\) 2608.94 0.618733
\(262\) 0 0
\(263\) −137.288 −0.0321884 −0.0160942 0.999870i \(-0.505123\pi\)
−0.0160942 + 0.999870i \(0.505123\pi\)
\(264\) 0 0
\(265\) −5254.15 −1.21796
\(266\) 0 0
\(267\) −3639.44 −0.834194
\(268\) 0 0
\(269\) −2030.26 −0.460175 −0.230087 0.973170i \(-0.573901\pi\)
−0.230087 + 0.973170i \(0.573901\pi\)
\(270\) 0 0
\(271\) 1187.23 0.266123 0.133061 0.991108i \(-0.457519\pi\)
0.133061 + 0.991108i \(0.457519\pi\)
\(272\) 0 0
\(273\) −1281.79 −0.284168
\(274\) 0 0
\(275\) −3506.77 −0.768967
\(276\) 0 0
\(277\) 3027.91 0.656786 0.328393 0.944541i \(-0.393493\pi\)
0.328393 + 0.944541i \(0.393493\pi\)
\(278\) 0 0
\(279\) −2088.53 −0.448161
\(280\) 0 0
\(281\) −5519.90 −1.17185 −0.585925 0.810365i \(-0.699269\pi\)
−0.585925 + 0.810365i \(0.699269\pi\)
\(282\) 0 0
\(283\) 5888.17 1.23680 0.618402 0.785862i \(-0.287780\pi\)
0.618402 + 0.785862i \(0.287780\pi\)
\(284\) 0 0
\(285\) 2300.21 0.478079
\(286\) 0 0
\(287\) −5677.67 −1.16774
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 874.148 0.176094
\(292\) 0 0
\(293\) −2873.06 −0.572852 −0.286426 0.958102i \(-0.592467\pi\)
−0.286426 + 0.958102i \(0.592467\pi\)
\(294\) 0 0
\(295\) −2588.65 −0.510906
\(296\) 0 0
\(297\) −1349.21 −0.263599
\(298\) 0 0
\(299\) 2702.14 0.522638
\(300\) 0 0
\(301\) −2060.79 −0.394625
\(302\) 0 0
\(303\) 4705.58 0.892174
\(304\) 0 0
\(305\) −12040.6 −2.26046
\(306\) 0 0
\(307\) −318.234 −0.0591614 −0.0295807 0.999562i \(-0.509417\pi\)
−0.0295807 + 0.999562i \(0.509417\pi\)
\(308\) 0 0
\(309\) −1237.94 −0.227909
\(310\) 0 0
\(311\) 1940.05 0.353731 0.176866 0.984235i \(-0.443404\pi\)
0.176866 + 0.984235i \(0.443404\pi\)
\(312\) 0 0
\(313\) −5487.84 −0.991026 −0.495513 0.868600i \(-0.665020\pi\)
−0.495513 + 0.868600i \(0.665020\pi\)
\(314\) 0 0
\(315\) 1630.85 0.291709
\(316\) 0 0
\(317\) 1337.29 0.236940 0.118470 0.992958i \(-0.462201\pi\)
0.118470 + 0.992958i \(0.462201\pi\)
\(318\) 0 0
\(319\) −14485.6 −2.54243
\(320\) 0 0
\(321\) 718.145 0.124869
\(322\) 0 0
\(323\) 932.998 0.160723
\(324\) 0 0
\(325\) 2311.70 0.394553
\(326\) 0 0
\(327\) −2278.94 −0.385400
\(328\) 0 0
\(329\) 2063.46 0.345783
\(330\) 0 0
\(331\) 4826.46 0.801470 0.400735 0.916194i \(-0.368755\pi\)
0.400735 + 0.916194i \(0.368755\pi\)
\(332\) 0 0
\(333\) −2047.76 −0.336987
\(334\) 0 0
\(335\) −2494.16 −0.406778
\(336\) 0 0
\(337\) −8265.21 −1.33601 −0.668004 0.744158i \(-0.732851\pi\)
−0.668004 + 0.744158i \(0.732851\pi\)
\(338\) 0 0
\(339\) −877.148 −0.140531
\(340\) 0 0
\(341\) 11596.1 1.84154
\(342\) 0 0
\(343\) 6715.70 1.05718
\(344\) 0 0
\(345\) −3437.99 −0.536508
\(346\) 0 0
\(347\) −5841.35 −0.903688 −0.451844 0.892097i \(-0.649234\pi\)
−0.451844 + 0.892097i \(0.649234\pi\)
\(348\) 0 0
\(349\) −3873.11 −0.594048 −0.297024 0.954870i \(-0.595994\pi\)
−0.297024 + 0.954870i \(0.595994\pi\)
\(350\) 0 0
\(351\) 889.410 0.135251
\(352\) 0 0
\(353\) 4020.29 0.606171 0.303085 0.952963i \(-0.401983\pi\)
0.303085 + 0.952963i \(0.401983\pi\)
\(354\) 0 0
\(355\) −16228.0 −2.42618
\(356\) 0 0
\(357\) 661.499 0.0980679
\(358\) 0 0
\(359\) 2272.06 0.334024 0.167012 0.985955i \(-0.446588\pi\)
0.167012 + 0.985955i \(0.446588\pi\)
\(360\) 0 0
\(361\) −3846.94 −0.560860
\(362\) 0 0
\(363\) 3498.17 0.505803
\(364\) 0 0
\(365\) −5351.96 −0.767491
\(366\) 0 0
\(367\) −7353.58 −1.04592 −0.522962 0.852356i \(-0.675173\pi\)
−0.522962 + 0.852356i \(0.675173\pi\)
\(368\) 0 0
\(369\) 3939.62 0.555795
\(370\) 0 0
\(371\) −4878.07 −0.682632
\(372\) 0 0
\(373\) 320.701 0.0445182 0.0222591 0.999752i \(-0.492914\pi\)
0.0222591 + 0.999752i \(0.492914\pi\)
\(374\) 0 0
\(375\) 2297.74 0.316413
\(376\) 0 0
\(377\) 9549.05 1.30451
\(378\) 0 0
\(379\) 700.903 0.0949946 0.0474973 0.998871i \(-0.484875\pi\)
0.0474973 + 0.998871i \(0.484875\pi\)
\(380\) 0 0
\(381\) 7939.23 1.06756
\(382\) 0 0
\(383\) −8217.97 −1.09639 −0.548196 0.836350i \(-0.684685\pi\)
−0.548196 + 0.836350i \(0.684685\pi\)
\(384\) 0 0
\(385\) −9054.97 −1.19866
\(386\) 0 0
\(387\) 1429.94 0.187824
\(388\) 0 0
\(389\) −3800.59 −0.495366 −0.247683 0.968841i \(-0.579669\pi\)
−0.247683 + 0.968841i \(0.579669\pi\)
\(390\) 0 0
\(391\) −1394.50 −0.180366
\(392\) 0 0
\(393\) 5892.44 0.756322
\(394\) 0 0
\(395\) 3548.52 0.452014
\(396\) 0 0
\(397\) −5955.38 −0.752876 −0.376438 0.926442i \(-0.622851\pi\)
−0.376438 + 0.926442i \(0.622851\pi\)
\(398\) 0 0
\(399\) 2135.56 0.267949
\(400\) 0 0
\(401\) 581.967 0.0724739 0.0362370 0.999343i \(-0.488463\pi\)
0.0362370 + 0.999343i \(0.488463\pi\)
\(402\) 0 0
\(403\) −7644.28 −0.944885
\(404\) 0 0
\(405\) −1131.62 −0.138841
\(406\) 0 0
\(407\) 11369.8 1.38471
\(408\) 0 0
\(409\) −11357.7 −1.37311 −0.686555 0.727078i \(-0.740878\pi\)
−0.686555 + 0.727078i \(0.740878\pi\)
\(410\) 0 0
\(411\) −6249.44 −0.750029
\(412\) 0 0
\(413\) −2403.36 −0.286348
\(414\) 0 0
\(415\) 6246.08 0.738814
\(416\) 0 0
\(417\) −5147.20 −0.604459
\(418\) 0 0
\(419\) 20.9420 0.00244173 0.00122086 0.999999i \(-0.499611\pi\)
0.00122086 + 0.999999i \(0.499611\pi\)
\(420\) 0 0
\(421\) 4455.28 0.515765 0.257882 0.966176i \(-0.416975\pi\)
0.257882 + 0.966176i \(0.416975\pi\)
\(422\) 0 0
\(423\) −1431.79 −0.164577
\(424\) 0 0
\(425\) −1193.00 −0.136163
\(426\) 0 0
\(427\) −11178.7 −1.26692
\(428\) 0 0
\(429\) −4938.26 −0.555761
\(430\) 0 0
\(431\) 2410.99 0.269451 0.134725 0.990883i \(-0.456985\pi\)
0.134725 + 0.990883i \(0.456985\pi\)
\(432\) 0 0
\(433\) −1653.71 −0.183539 −0.0917693 0.995780i \(-0.529252\pi\)
−0.0917693 + 0.995780i \(0.529252\pi\)
\(434\) 0 0
\(435\) −12149.5 −1.33913
\(436\) 0 0
\(437\) −4501.96 −0.492810
\(438\) 0 0
\(439\) −14852.5 −1.61474 −0.807371 0.590044i \(-0.799110\pi\)
−0.807371 + 0.590044i \(0.799110\pi\)
\(440\) 0 0
\(441\) −1572.88 −0.169839
\(442\) 0 0
\(443\) 5393.26 0.578423 0.289212 0.957265i \(-0.406607\pi\)
0.289212 + 0.957265i \(0.406607\pi\)
\(444\) 0 0
\(445\) 16948.3 1.80546
\(446\) 0 0
\(447\) −5038.85 −0.533175
\(448\) 0 0
\(449\) 6144.82 0.645862 0.322931 0.946422i \(-0.395332\pi\)
0.322931 + 0.946422i \(0.395332\pi\)
\(450\) 0 0
\(451\) −21873.9 −2.28381
\(452\) 0 0
\(453\) −1933.06 −0.200492
\(454\) 0 0
\(455\) 5969.13 0.615027
\(456\) 0 0
\(457\) 6041.18 0.618369 0.309184 0.951002i \(-0.399944\pi\)
0.309184 + 0.951002i \(0.399944\pi\)
\(458\) 0 0
\(459\) −459.000 −0.0466760
\(460\) 0 0
\(461\) 13829.8 1.39722 0.698610 0.715503i \(-0.253802\pi\)
0.698610 + 0.715503i \(0.253802\pi\)
\(462\) 0 0
\(463\) −12585.3 −1.26326 −0.631629 0.775271i \(-0.717613\pi\)
−0.631629 + 0.775271i \(0.717613\pi\)
\(464\) 0 0
\(465\) 9725.98 0.969960
\(466\) 0 0
\(467\) 6561.91 0.650212 0.325106 0.945678i \(-0.394600\pi\)
0.325106 + 0.945678i \(0.394600\pi\)
\(468\) 0 0
\(469\) −2315.63 −0.227987
\(470\) 0 0
\(471\) 6391.59 0.625284
\(472\) 0 0
\(473\) −7939.44 −0.771788
\(474\) 0 0
\(475\) −3851.45 −0.372035
\(476\) 0 0
\(477\) 3384.79 0.324903
\(478\) 0 0
\(479\) 16609.4 1.58435 0.792175 0.610294i \(-0.208949\pi\)
0.792175 + 0.610294i \(0.208949\pi\)
\(480\) 0 0
\(481\) −7495.06 −0.710489
\(482\) 0 0
\(483\) −3191.90 −0.300697
\(484\) 0 0
\(485\) −4070.78 −0.381123
\(486\) 0 0
\(487\) 7999.46 0.744333 0.372166 0.928166i \(-0.378615\pi\)
0.372166 + 0.928166i \(0.378615\pi\)
\(488\) 0 0
\(489\) −10747.2 −0.993879
\(490\) 0 0
\(491\) 11669.1 1.07255 0.536274 0.844044i \(-0.319831\pi\)
0.536274 + 0.844044i \(0.319831\pi\)
\(492\) 0 0
\(493\) −4928.00 −0.450194
\(494\) 0 0
\(495\) 6283.05 0.570509
\(496\) 0 0
\(497\) −15066.4 −1.35980
\(498\) 0 0
\(499\) 20896.2 1.87464 0.937319 0.348473i \(-0.113300\pi\)
0.937319 + 0.348473i \(0.113300\pi\)
\(500\) 0 0
\(501\) 5585.38 0.498077
\(502\) 0 0
\(503\) −17429.1 −1.54498 −0.772490 0.635028i \(-0.780989\pi\)
−0.772490 + 0.635028i \(0.780989\pi\)
\(504\) 0 0
\(505\) −21913.2 −1.93094
\(506\) 0 0
\(507\) −3335.65 −0.292192
\(508\) 0 0
\(509\) 1020.29 0.0888481 0.0444240 0.999013i \(-0.485855\pi\)
0.0444240 + 0.999013i \(0.485855\pi\)
\(510\) 0 0
\(511\) −4968.87 −0.430156
\(512\) 0 0
\(513\) −1481.82 −0.127532
\(514\) 0 0
\(515\) 5764.91 0.493266
\(516\) 0 0
\(517\) 7949.73 0.676265
\(518\) 0 0
\(519\) 7837.49 0.662866
\(520\) 0 0
\(521\) −5281.92 −0.444155 −0.222078 0.975029i \(-0.571284\pi\)
−0.222078 + 0.975029i \(0.571284\pi\)
\(522\) 0 0
\(523\) 15906.1 1.32988 0.664938 0.746898i \(-0.268458\pi\)
0.664938 + 0.746898i \(0.268458\pi\)
\(524\) 0 0
\(525\) −2730.69 −0.227004
\(526\) 0 0
\(527\) 3945.00 0.326085
\(528\) 0 0
\(529\) −5438.17 −0.446961
\(530\) 0 0
\(531\) 1667.64 0.136289
\(532\) 0 0
\(533\) 14419.5 1.17181
\(534\) 0 0
\(535\) −3344.30 −0.270255
\(536\) 0 0
\(537\) −379.938 −0.0305317
\(538\) 0 0
\(539\) 8733.08 0.697886
\(540\) 0 0
\(541\) 21923.7 1.74228 0.871139 0.491036i \(-0.163382\pi\)
0.871139 + 0.491036i \(0.163382\pi\)
\(542\) 0 0
\(543\) 5349.79 0.422802
\(544\) 0 0
\(545\) 10612.7 0.834124
\(546\) 0 0
\(547\) −4960.74 −0.387762 −0.193881 0.981025i \(-0.562108\pi\)
−0.193881 + 0.981025i \(0.562108\pi\)
\(548\) 0 0
\(549\) 7756.67 0.602999
\(550\) 0 0
\(551\) −15909.4 −1.23006
\(552\) 0 0
\(553\) 3294.52 0.253341
\(554\) 0 0
\(555\) 9536.12 0.729344
\(556\) 0 0
\(557\) 22404.1 1.70429 0.852146 0.523305i \(-0.175301\pi\)
0.852146 + 0.523305i \(0.175301\pi\)
\(558\) 0 0
\(559\) 5233.76 0.396001
\(560\) 0 0
\(561\) 2548.50 0.191796
\(562\) 0 0
\(563\) 17361.5 1.29965 0.649824 0.760085i \(-0.274843\pi\)
0.649824 + 0.760085i \(0.274843\pi\)
\(564\) 0 0
\(565\) 4084.75 0.304154
\(566\) 0 0
\(567\) −1050.62 −0.0778161
\(568\) 0 0
\(569\) 1980.78 0.145938 0.0729690 0.997334i \(-0.476753\pi\)
0.0729690 + 0.997334i \(0.476753\pi\)
\(570\) 0 0
\(571\) 19164.5 1.40457 0.702284 0.711897i \(-0.252164\pi\)
0.702284 + 0.711897i \(0.252164\pi\)
\(572\) 0 0
\(573\) −6433.31 −0.469032
\(574\) 0 0
\(575\) 5756.55 0.417504
\(576\) 0 0
\(577\) 8729.71 0.629848 0.314924 0.949117i \(-0.398021\pi\)
0.314924 + 0.949117i \(0.398021\pi\)
\(578\) 0 0
\(579\) 9617.45 0.690307
\(580\) 0 0
\(581\) 5798.99 0.414084
\(582\) 0 0
\(583\) −18793.3 −1.33506
\(584\) 0 0
\(585\) −4141.85 −0.292726
\(586\) 0 0
\(587\) −2927.87 −0.205871 −0.102935 0.994688i \(-0.532823\pi\)
−0.102935 + 0.994688i \(0.532823\pi\)
\(588\) 0 0
\(589\) 12735.9 0.890958
\(590\) 0 0
\(591\) 8304.97 0.578039
\(592\) 0 0
\(593\) 2154.97 0.149231 0.0746157 0.997212i \(-0.476227\pi\)
0.0746157 + 0.997212i \(0.476227\pi\)
\(594\) 0 0
\(595\) −3080.50 −0.212249
\(596\) 0 0
\(597\) 2138.38 0.146596
\(598\) 0 0
\(599\) −7065.12 −0.481925 −0.240963 0.970534i \(-0.577463\pi\)
−0.240963 + 0.970534i \(0.577463\pi\)
\(600\) 0 0
\(601\) 10656.5 0.723272 0.361636 0.932319i \(-0.382218\pi\)
0.361636 + 0.932319i \(0.382218\pi\)
\(602\) 0 0
\(603\) 1606.77 0.108512
\(604\) 0 0
\(605\) −16290.5 −1.09471
\(606\) 0 0
\(607\) −82.8667 −0.00554111 −0.00277056 0.999996i \(-0.500882\pi\)
−0.00277056 + 0.999996i \(0.500882\pi\)
\(608\) 0 0
\(609\) −11279.8 −0.750543
\(610\) 0 0
\(611\) −5240.55 −0.346988
\(612\) 0 0
\(613\) −15588.4 −1.02710 −0.513549 0.858060i \(-0.671670\pi\)
−0.513549 + 0.858060i \(0.671670\pi\)
\(614\) 0 0
\(615\) −18346.2 −1.20291
\(616\) 0 0
\(617\) −4430.58 −0.289090 −0.144545 0.989498i \(-0.546172\pi\)
−0.144545 + 0.989498i \(0.546172\pi\)
\(618\) 0 0
\(619\) −3111.78 −0.202056 −0.101028 0.994884i \(-0.532213\pi\)
−0.101028 + 0.994884i \(0.532213\pi\)
\(620\) 0 0
\(621\) 2214.79 0.143119
\(622\) 0 0
\(623\) 15735.2 1.01190
\(624\) 0 0
\(625\) −19472.3 −1.24623
\(626\) 0 0
\(627\) 8227.49 0.524042
\(628\) 0 0
\(629\) 3867.99 0.245194
\(630\) 0 0
\(631\) 14808.2 0.934236 0.467118 0.884195i \(-0.345292\pi\)
0.467118 + 0.884195i \(0.345292\pi\)
\(632\) 0 0
\(633\) −2362.77 −0.148360
\(634\) 0 0
\(635\) −36971.8 −2.31052
\(636\) 0 0
\(637\) −5756.94 −0.358082
\(638\) 0 0
\(639\) 10454.3 0.647207
\(640\) 0 0
\(641\) −9233.91 −0.568982 −0.284491 0.958679i \(-0.591825\pi\)
−0.284491 + 0.958679i \(0.591825\pi\)
\(642\) 0 0
\(643\) −11712.7 −0.718355 −0.359177 0.933269i \(-0.616943\pi\)
−0.359177 + 0.933269i \(0.616943\pi\)
\(644\) 0 0
\(645\) −6659.02 −0.406510
\(646\) 0 0
\(647\) 12099.6 0.735216 0.367608 0.929981i \(-0.380177\pi\)
0.367608 + 0.929981i \(0.380177\pi\)
\(648\) 0 0
\(649\) −9259.22 −0.560025
\(650\) 0 0
\(651\) 9029.80 0.543634
\(652\) 0 0
\(653\) −8335.37 −0.499523 −0.249761 0.968307i \(-0.580352\pi\)
−0.249761 + 0.968307i \(0.580352\pi\)
\(654\) 0 0
\(655\) −27440.2 −1.63691
\(656\) 0 0
\(657\) 3447.79 0.204736
\(658\) 0 0
\(659\) −7751.68 −0.458213 −0.229107 0.973401i \(-0.573580\pi\)
−0.229107 + 0.973401i \(0.573580\pi\)
\(660\) 0 0
\(661\) 13808.0 0.812510 0.406255 0.913760i \(-0.366834\pi\)
0.406255 + 0.913760i \(0.366834\pi\)
\(662\) 0 0
\(663\) −1680.00 −0.0984098
\(664\) 0 0
\(665\) −9945.00 −0.579925
\(666\) 0 0
\(667\) 23778.9 1.38039
\(668\) 0 0
\(669\) 8779.58 0.507382
\(670\) 0 0
\(671\) −43067.2 −2.47778
\(672\) 0 0
\(673\) −8406.44 −0.481493 −0.240746 0.970588i \(-0.577392\pi\)
−0.240746 + 0.970588i \(0.577392\pi\)
\(674\) 0 0
\(675\) 1894.77 0.108044
\(676\) 0 0
\(677\) −19257.9 −1.09327 −0.546633 0.837372i \(-0.684091\pi\)
−0.546633 + 0.837372i \(0.684091\pi\)
\(678\) 0 0
\(679\) −3779.40 −0.213608
\(680\) 0 0
\(681\) 18636.1 1.04866
\(682\) 0 0
\(683\) 3451.93 0.193388 0.0966942 0.995314i \(-0.469173\pi\)
0.0966942 + 0.995314i \(0.469173\pi\)
\(684\) 0 0
\(685\) 29102.7 1.62330
\(686\) 0 0
\(687\) −13549.0 −0.752443
\(688\) 0 0
\(689\) 12388.7 0.685012
\(690\) 0 0
\(691\) 26090.5 1.43637 0.718184 0.695853i \(-0.244974\pi\)
0.718184 + 0.695853i \(0.244974\pi\)
\(692\) 0 0
\(693\) 5833.32 0.319754
\(694\) 0 0
\(695\) 23969.8 1.30824
\(696\) 0 0
\(697\) −7441.50 −0.404400
\(698\) 0 0
\(699\) 10641.8 0.575835
\(700\) 0 0
\(701\) 22283.9 1.20064 0.600321 0.799759i \(-0.295039\pi\)
0.600321 + 0.799759i \(0.295039\pi\)
\(702\) 0 0
\(703\) 12487.3 0.669940
\(704\) 0 0
\(705\) 6667.66 0.356197
\(706\) 0 0
\(707\) −20344.7 −1.08224
\(708\) 0 0
\(709\) −4561.83 −0.241640 −0.120820 0.992674i \(-0.538552\pi\)
−0.120820 + 0.992674i \(0.538552\pi\)
\(710\) 0 0
\(711\) −2286.00 −0.120579
\(712\) 0 0
\(713\) −19035.7 −0.999847
\(714\) 0 0
\(715\) 22996.8 1.20284
\(716\) 0 0
\(717\) −2180.91 −0.113595
\(718\) 0 0
\(719\) −12458.7 −0.646218 −0.323109 0.946362i \(-0.604728\pi\)
−0.323109 + 0.946362i \(0.604728\pi\)
\(720\) 0 0
\(721\) 5352.26 0.276461
\(722\) 0 0
\(723\) 5069.01 0.260745
\(724\) 0 0
\(725\) 20343.0 1.04209
\(726\) 0 0
\(727\) −19361.4 −0.987721 −0.493860 0.869541i \(-0.664415\pi\)
−0.493860 + 0.869541i \(0.664415\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −2701.00 −0.136662
\(732\) 0 0
\(733\) 21638.4 1.09036 0.545180 0.838319i \(-0.316461\pi\)
0.545180 + 0.838319i \(0.316461\pi\)
\(734\) 0 0
\(735\) 7324.68 0.367585
\(736\) 0 0
\(737\) −8921.24 −0.445886
\(738\) 0 0
\(739\) 33520.7 1.66858 0.834290 0.551326i \(-0.185878\pi\)
0.834290 + 0.551326i \(0.185878\pi\)
\(740\) 0 0
\(741\) −5423.65 −0.268884
\(742\) 0 0
\(743\) 28486.4 1.40655 0.703274 0.710919i \(-0.251721\pi\)
0.703274 + 0.710919i \(0.251721\pi\)
\(744\) 0 0
\(745\) 23465.2 1.15396
\(746\) 0 0
\(747\) −4023.79 −0.197086
\(748\) 0 0
\(749\) −3104.92 −0.151470
\(750\) 0 0
\(751\) 29427.4 1.42985 0.714927 0.699199i \(-0.246460\pi\)
0.714927 + 0.699199i \(0.246460\pi\)
\(752\) 0 0
\(753\) −2735.12 −0.132368
\(754\) 0 0
\(755\) 9001.98 0.433928
\(756\) 0 0
\(757\) 30790.8 1.47835 0.739174 0.673514i \(-0.235216\pi\)
0.739174 + 0.673514i \(0.235216\pi\)
\(758\) 0 0
\(759\) −12297.2 −0.588088
\(760\) 0 0
\(761\) −17677.5 −0.842062 −0.421031 0.907046i \(-0.638332\pi\)
−0.421031 + 0.907046i \(0.638332\pi\)
\(762\) 0 0
\(763\) 9853.05 0.467502
\(764\) 0 0
\(765\) 2137.50 0.101021
\(766\) 0 0
\(767\) 6103.78 0.287346
\(768\) 0 0
\(769\) 6309.56 0.295876 0.147938 0.988997i \(-0.452736\pi\)
0.147938 + 0.988997i \(0.452736\pi\)
\(770\) 0 0
\(771\) −9370.67 −0.437713
\(772\) 0 0
\(773\) 10323.3 0.480343 0.240171 0.970731i \(-0.422796\pi\)
0.240171 + 0.970731i \(0.422796\pi\)
\(774\) 0 0
\(775\) −16285.1 −0.754811
\(776\) 0 0
\(777\) 8853.54 0.408776
\(778\) 0 0
\(779\) −24023.9 −1.10494
\(780\) 0 0
\(781\) −58045.2 −2.65944
\(782\) 0 0
\(783\) 7826.82 0.357226
\(784\) 0 0
\(785\) −29764.7 −1.35331
\(786\) 0 0
\(787\) −11118.3 −0.503589 −0.251795 0.967781i \(-0.581021\pi\)
−0.251795 + 0.967781i \(0.581021\pi\)
\(788\) 0 0
\(789\) −411.865 −0.0185840
\(790\) 0 0
\(791\) 3792.37 0.170469
\(792\) 0 0
\(793\) 28390.4 1.27134
\(794\) 0 0
\(795\) −15762.5 −0.703191
\(796\) 0 0
\(797\) 32556.2 1.44692 0.723462 0.690364i \(-0.242550\pi\)
0.723462 + 0.690364i \(0.242550\pi\)
\(798\) 0 0
\(799\) 2704.50 0.119748
\(800\) 0 0
\(801\) −10918.3 −0.481622
\(802\) 0 0
\(803\) −19143.1 −0.841279
\(804\) 0 0
\(805\) 14864.2 0.650802
\(806\) 0 0
\(807\) −6090.77 −0.265682
\(808\) 0 0
\(809\) 39644.3 1.72289 0.861445 0.507851i \(-0.169560\pi\)
0.861445 + 0.507851i \(0.169560\pi\)
\(810\) 0 0
\(811\) 7839.62 0.339440 0.169720 0.985492i \(-0.445714\pi\)
0.169720 + 0.985492i \(0.445714\pi\)
\(812\) 0 0
\(813\) 3561.70 0.153646
\(814\) 0 0
\(815\) 50048.3 2.15106
\(816\) 0 0
\(817\) −8719.82 −0.373400
\(818\) 0 0
\(819\) −3845.38 −0.164064
\(820\) 0 0
\(821\) 344.345 0.0146379 0.00731895 0.999973i \(-0.497670\pi\)
0.00731895 + 0.999973i \(0.497670\pi\)
\(822\) 0 0
\(823\) 43172.9 1.82857 0.914284 0.405074i \(-0.132754\pi\)
0.914284 + 0.405074i \(0.132754\pi\)
\(824\) 0 0
\(825\) −10520.3 −0.443963
\(826\) 0 0
\(827\) 21158.3 0.889656 0.444828 0.895616i \(-0.353265\pi\)
0.444828 + 0.895616i \(0.353265\pi\)
\(828\) 0 0
\(829\) −10514.0 −0.440490 −0.220245 0.975445i \(-0.570686\pi\)
−0.220245 + 0.975445i \(0.570686\pi\)
\(830\) 0 0
\(831\) 9083.74 0.379195
\(832\) 0 0
\(833\) 2971.00 0.123576
\(834\) 0 0
\(835\) −26010.3 −1.07799
\(836\) 0 0
\(837\) −6265.59 −0.258746
\(838\) 0 0
\(839\) 10036.2 0.412978 0.206489 0.978449i \(-0.433796\pi\)
0.206489 + 0.978449i \(0.433796\pi\)
\(840\) 0 0
\(841\) 59642.7 2.44548
\(842\) 0 0
\(843\) −16559.7 −0.676568
\(844\) 0 0
\(845\) 15533.6 0.632394
\(846\) 0 0
\(847\) −15124.4 −0.613555
\(848\) 0 0
\(849\) 17664.5 0.714069
\(850\) 0 0
\(851\) −18664.1 −0.751817
\(852\) 0 0
\(853\) 9343.14 0.375033 0.187516 0.982261i \(-0.439956\pi\)
0.187516 + 0.982261i \(0.439956\pi\)
\(854\) 0 0
\(855\) 6900.62 0.276019
\(856\) 0 0
\(857\) 25235.0 1.00585 0.502923 0.864331i \(-0.332258\pi\)
0.502923 + 0.864331i \(0.332258\pi\)
\(858\) 0 0
\(859\) 39717.7 1.57759 0.788795 0.614656i \(-0.210705\pi\)
0.788795 + 0.614656i \(0.210705\pi\)
\(860\) 0 0
\(861\) −17033.0 −0.674197
\(862\) 0 0
\(863\) 26812.4 1.05760 0.528798 0.848748i \(-0.322643\pi\)
0.528798 + 0.848748i \(0.322643\pi\)
\(864\) 0 0
\(865\) −36498.0 −1.43465
\(866\) 0 0
\(867\) 867.000 0.0339618
\(868\) 0 0
\(869\) 12692.5 0.495471
\(870\) 0 0
\(871\) 5880.97 0.228782
\(872\) 0 0
\(873\) 2622.44 0.101668
\(874\) 0 0
\(875\) −9934.33 −0.383819
\(876\) 0 0
\(877\) −33850.8 −1.30338 −0.651688 0.758487i \(-0.725939\pi\)
−0.651688 + 0.758487i \(0.725939\pi\)
\(878\) 0 0
\(879\) −8619.17 −0.330736
\(880\) 0 0
\(881\) −19939.4 −0.762514 −0.381257 0.924469i \(-0.624509\pi\)
−0.381257 + 0.924469i \(0.624509\pi\)
\(882\) 0 0
\(883\) −31421.5 −1.19753 −0.598765 0.800925i \(-0.704342\pi\)
−0.598765 + 0.800925i \(0.704342\pi\)
\(884\) 0 0
\(885\) −7765.96 −0.294972
\(886\) 0 0
\(887\) −14713.6 −0.556971 −0.278486 0.960440i \(-0.589832\pi\)
−0.278486 + 0.960440i \(0.589832\pi\)
\(888\) 0 0
\(889\) −34325.4 −1.29498
\(890\) 0 0
\(891\) −4047.62 −0.152189
\(892\) 0 0
\(893\) 8731.12 0.327185
\(894\) 0 0
\(895\) 1769.31 0.0660801
\(896\) 0 0
\(897\) 8106.43 0.301745
\(898\) 0 0
\(899\) −67269.7 −2.49563
\(900\) 0 0
\(901\) −6393.49 −0.236402
\(902\) 0 0
\(903\) −6182.38 −0.227837
\(904\) 0 0
\(905\) −24913.2 −0.915075
\(906\) 0 0
\(907\) −36405.1 −1.33276 −0.666380 0.745612i \(-0.732157\pi\)
−0.666380 + 0.745612i \(0.732157\pi\)
\(908\) 0 0
\(909\) 14116.8 0.515097
\(910\) 0 0
\(911\) −1574.12 −0.0572481 −0.0286241 0.999590i \(-0.509113\pi\)
−0.0286241 + 0.999590i \(0.509113\pi\)
\(912\) 0 0
\(913\) 22341.3 0.809844
\(914\) 0 0
\(915\) −36121.7 −1.30508
\(916\) 0 0
\(917\) −25476.1 −0.917442
\(918\) 0 0
\(919\) −44823.7 −1.60892 −0.804460 0.594007i \(-0.797545\pi\)
−0.804460 + 0.594007i \(0.797545\pi\)
\(920\) 0 0
\(921\) −954.701 −0.0341569
\(922\) 0 0
\(923\) 38264.0 1.36455
\(924\) 0 0
\(925\) −15967.2 −0.567566
\(926\) 0 0
\(927\) −3713.82 −0.131583
\(928\) 0 0
\(929\) −10654.7 −0.376287 −0.188143 0.982142i \(-0.560247\pi\)
−0.188143 + 0.982142i \(0.560247\pi\)
\(930\) 0 0
\(931\) 9591.47 0.337645
\(932\) 0 0
\(933\) 5820.16 0.204227
\(934\) 0 0
\(935\) −11868.0 −0.415107
\(936\) 0 0
\(937\) 46738.5 1.62954 0.814770 0.579784i \(-0.196863\pi\)
0.814770 + 0.579784i \(0.196863\pi\)
\(938\) 0 0
\(939\) −16463.5 −0.572169
\(940\) 0 0
\(941\) −31346.7 −1.08594 −0.542972 0.839751i \(-0.682701\pi\)
−0.542972 + 0.839751i \(0.682701\pi\)
\(942\) 0 0
\(943\) 35907.2 1.23998
\(944\) 0 0
\(945\) 4892.56 0.168418
\(946\) 0 0
\(947\) 18191.9 0.624242 0.312121 0.950042i \(-0.398961\pi\)
0.312121 + 0.950042i \(0.398961\pi\)
\(948\) 0 0
\(949\) 12619.4 0.431656
\(950\) 0 0
\(951\) 4011.88 0.136797
\(952\) 0 0
\(953\) 47969.6 1.63052 0.815261 0.579094i \(-0.196593\pi\)
0.815261 + 0.579094i \(0.196593\pi\)
\(954\) 0 0
\(955\) 29959.0 1.01513
\(956\) 0 0
\(957\) −43456.7 −1.46788
\(958\) 0 0
\(959\) 27019.6 0.909810
\(960\) 0 0
\(961\) 24060.3 0.807637
\(962\) 0 0
\(963\) 2154.44 0.0720932
\(964\) 0 0
\(965\) −44787.1 −1.49404
\(966\) 0 0
\(967\) −51466.6 −1.71154 −0.855768 0.517360i \(-0.826915\pi\)
−0.855768 + 0.517360i \(0.826915\pi\)
\(968\) 0 0
\(969\) 2798.99 0.0927933
\(970\) 0 0
\(971\) 4007.62 0.132452 0.0662259 0.997805i \(-0.478904\pi\)
0.0662259 + 0.997805i \(0.478904\pi\)
\(972\) 0 0
\(973\) 22254.0 0.733229
\(974\) 0 0
\(975\) 6935.09 0.227796
\(976\) 0 0
\(977\) −37362.2 −1.22346 −0.611731 0.791066i \(-0.709526\pi\)
−0.611731 + 0.791066i \(0.709526\pi\)
\(978\) 0 0
\(979\) 60621.6 1.97903
\(980\) 0 0
\(981\) −6836.82 −0.222511
\(982\) 0 0
\(983\) 38659.1 1.25436 0.627179 0.778875i \(-0.284210\pi\)
0.627179 + 0.778875i \(0.284210\pi\)
\(984\) 0 0
\(985\) −38675.0 −1.25106
\(986\) 0 0
\(987\) 6190.39 0.199638
\(988\) 0 0
\(989\) 13033.0 0.419035
\(990\) 0 0
\(991\) −46.8701 −0.00150240 −0.000751200 1.00000i \(-0.500239\pi\)
−0.000751200 1.00000i \(0.500239\pi\)
\(992\) 0 0
\(993\) 14479.4 0.462729
\(994\) 0 0
\(995\) −9958.11 −0.317280
\(996\) 0 0
\(997\) −16913.4 −0.537265 −0.268633 0.963243i \(-0.586572\pi\)
−0.268633 + 0.963243i \(0.586572\pi\)
\(998\) 0 0
\(999\) −6143.28 −0.194559
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.4.a.o.1.1 2
3.2 odd 2 2448.4.a.v.1.2 2
4.3 odd 2 51.4.a.d.1.1 2
12.11 even 2 153.4.a.e.1.2 2
20.19 odd 2 1275.4.a.m.1.2 2
28.27 even 2 2499.4.a.l.1.1 2
68.67 odd 2 867.4.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.d.1.1 2 4.3 odd 2
153.4.a.e.1.2 2 12.11 even 2
816.4.a.o.1.1 2 1.1 even 1 trivial
867.4.a.j.1.1 2 68.67 odd 2
1275.4.a.m.1.2 2 20.19 odd 2
2448.4.a.v.1.2 2 3.2 odd 2
2499.4.a.l.1.1 2 28.27 even 2