Properties

Label 51.4.a.d.1.1
Level $51$
Weight $4$
Character 51.1
Self dual yes
Analytic conductor $3.009$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,4,Mod(1,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 51.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.00909741029\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 51.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.24264 q^{2} -3.00000 q^{3} +10.0000 q^{4} -13.9706 q^{5} +12.7279 q^{6} +12.9706 q^{7} -8.48528 q^{8} +9.00000 q^{9} +59.2721 q^{10} +49.9706 q^{11} -30.0000 q^{12} +32.9411 q^{13} -55.0294 q^{14} +41.9117 q^{15} -44.0000 q^{16} -17.0000 q^{17} -38.1838 q^{18} +54.8823 q^{19} -139.706 q^{20} -38.9117 q^{21} -212.007 q^{22} -82.0294 q^{23} +25.4558 q^{24} +70.1766 q^{25} -139.757 q^{26} -27.0000 q^{27} +129.706 q^{28} +289.882 q^{29} -177.816 q^{30} +232.059 q^{31} +254.558 q^{32} -149.912 q^{33} +72.1249 q^{34} -181.206 q^{35} +90.0000 q^{36} -227.529 q^{37} -232.846 q^{38} -98.8234 q^{39} +118.544 q^{40} +437.735 q^{41} +165.088 q^{42} -158.882 q^{43} +499.706 q^{44} -125.735 q^{45} +348.021 q^{46} +159.088 q^{47} +132.000 q^{48} -174.765 q^{49} -297.734 q^{50} +51.0000 q^{51} +329.411 q^{52} +376.087 q^{53} +114.551 q^{54} -698.117 q^{55} -110.059 q^{56} -164.647 q^{57} -1229.87 q^{58} -185.294 q^{59} +419.117 q^{60} +861.852 q^{61} -984.542 q^{62} +116.735 q^{63} -728.000 q^{64} -460.206 q^{65} +636.021 q^{66} -178.530 q^{67} -170.000 q^{68} +246.088 q^{69} +768.792 q^{70} -1161.59 q^{71} -76.3675 q^{72} +383.088 q^{73} +965.324 q^{74} -210.530 q^{75} +548.823 q^{76} +648.146 q^{77} +419.272 q^{78} +254.000 q^{79} +614.705 q^{80} +81.0000 q^{81} -1857.15 q^{82} +447.088 q^{83} -389.117 q^{84} +237.500 q^{85} +674.080 q^{86} -869.647 q^{87} -424.014 q^{88} -1213.15 q^{89} +533.449 q^{90} +427.265 q^{91} -820.294 q^{92} -696.177 q^{93} -674.955 q^{94} -766.736 q^{95} -763.675 q^{96} +291.383 q^{97} +741.463 q^{98} +449.735 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 20 q^{4} + 6 q^{5} - 8 q^{7} + 18 q^{9} + 144 q^{10} + 66 q^{11} - 60 q^{12} - 2 q^{13} - 144 q^{14} - 18 q^{15} - 88 q^{16} - 34 q^{17} - 26 q^{19} + 60 q^{20} + 24 q^{21} - 144 q^{22}+ \cdots + 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.24264 −1.50000 −0.750000 0.661438i \(-0.769947\pi\)
−0.750000 + 0.661438i \(0.769947\pi\)
\(3\) −3.00000 −0.577350
\(4\) 10.0000 1.25000
\(5\) −13.9706 −1.24957 −0.624783 0.780799i \(-0.714812\pi\)
−0.624783 + 0.780799i \(0.714812\pi\)
\(6\) 12.7279 0.866025
\(7\) 12.9706 0.700345 0.350172 0.936685i \(-0.386123\pi\)
0.350172 + 0.936685i \(0.386123\pi\)
\(8\) −8.48528 −0.375000
\(9\) 9.00000 0.333333
\(10\) 59.2721 1.87435
\(11\) 49.9706 1.36970 0.684850 0.728684i \(-0.259868\pi\)
0.684850 + 0.728684i \(0.259868\pi\)
\(12\) −30.0000 −0.721688
\(13\) 32.9411 0.702786 0.351393 0.936228i \(-0.385708\pi\)
0.351393 + 0.936228i \(0.385708\pi\)
\(14\) −55.0294 −1.05052
\(15\) 41.9117 0.721437
\(16\) −44.0000 −0.687500
\(17\) −17.0000 −0.242536
\(18\) −38.1838 −0.500000
\(19\) 54.8823 0.662676 0.331338 0.943512i \(-0.392500\pi\)
0.331338 + 0.943512i \(0.392500\pi\)
\(20\) −139.706 −1.56196
\(21\) −38.9117 −0.404344
\(22\) −212.007 −2.05455
\(23\) −82.0294 −0.743666 −0.371833 0.928300i \(-0.621271\pi\)
−0.371833 + 0.928300i \(0.621271\pi\)
\(24\) 25.4558 0.216506
\(25\) 70.1766 0.561413
\(26\) −139.757 −1.05418
\(27\) −27.0000 −0.192450
\(28\) 129.706 0.875431
\(29\) 289.882 1.85620 0.928100 0.372332i \(-0.121442\pi\)
0.928100 + 0.372332i \(0.121442\pi\)
\(30\) −177.816 −1.08216
\(31\) 232.059 1.34448 0.672242 0.740331i \(-0.265331\pi\)
0.672242 + 0.740331i \(0.265331\pi\)
\(32\) 254.558 1.40625
\(33\) −149.912 −0.790796
\(34\) 72.1249 0.363803
\(35\) −181.206 −0.875126
\(36\) 90.0000 0.416667
\(37\) −227.529 −1.01096 −0.505480 0.862838i \(-0.668685\pi\)
−0.505480 + 0.862838i \(0.668685\pi\)
\(38\) −232.846 −0.994015
\(39\) −98.8234 −0.405754
\(40\) 118.544 0.468587
\(41\) 437.735 1.66738 0.833692 0.552230i \(-0.186223\pi\)
0.833692 + 0.552230i \(0.186223\pi\)
\(42\) 165.088 0.606516
\(43\) −158.882 −0.563472 −0.281736 0.959492i \(-0.590910\pi\)
−0.281736 + 0.959492i \(0.590910\pi\)
\(44\) 499.706 1.71212
\(45\) −125.735 −0.416522
\(46\) 348.021 1.11550
\(47\) 159.088 0.493732 0.246866 0.969050i \(-0.420599\pi\)
0.246866 + 0.969050i \(0.420599\pi\)
\(48\) 132.000 0.396928
\(49\) −174.765 −0.509517
\(50\) −297.734 −0.842119
\(51\) 51.0000 0.140028
\(52\) 329.411 0.878483
\(53\) 376.087 0.974709 0.487355 0.873204i \(-0.337962\pi\)
0.487355 + 0.873204i \(0.337962\pi\)
\(54\) 114.551 0.288675
\(55\) −698.117 −1.71153
\(56\) −110.059 −0.262629
\(57\) −164.647 −0.382596
\(58\) −1229.87 −2.78430
\(59\) −185.294 −0.408867 −0.204434 0.978880i \(-0.565535\pi\)
−0.204434 + 0.978880i \(0.565535\pi\)
\(60\) 419.117 0.901796
\(61\) 861.852 1.80900 0.904499 0.426477i \(-0.140245\pi\)
0.904499 + 0.426477i \(0.140245\pi\)
\(62\) −984.542 −2.01673
\(63\) 116.735 0.233448
\(64\) −728.000 −1.42188
\(65\) −460.206 −0.878177
\(66\) 636.021 1.18619
\(67\) −178.530 −0.325536 −0.162768 0.986664i \(-0.552042\pi\)
−0.162768 + 0.986664i \(0.552042\pi\)
\(68\) −170.000 −0.303170
\(69\) 246.088 0.429356
\(70\) 768.792 1.31269
\(71\) −1161.59 −1.94162 −0.970811 0.239847i \(-0.922903\pi\)
−0.970811 + 0.239847i \(0.922903\pi\)
\(72\) −76.3675 −0.125000
\(73\) 383.088 0.614207 0.307103 0.951676i \(-0.400640\pi\)
0.307103 + 0.951676i \(0.400640\pi\)
\(74\) 965.324 1.51644
\(75\) −210.530 −0.324132
\(76\) 548.823 0.828346
\(77\) 648.146 0.959261
\(78\) 419.272 0.608631
\(79\) 254.000 0.361737 0.180869 0.983507i \(-0.442109\pi\)
0.180869 + 0.983507i \(0.442109\pi\)
\(80\) 614.705 0.859076
\(81\) 81.0000 0.111111
\(82\) −1857.15 −2.50108
\(83\) 447.088 0.591257 0.295628 0.955303i \(-0.404471\pi\)
0.295628 + 0.955303i \(0.404471\pi\)
\(84\) −389.117 −0.505430
\(85\) 237.500 0.303064
\(86\) 674.080 0.845209
\(87\) −869.647 −1.07168
\(88\) −424.014 −0.513637
\(89\) −1213.15 −1.44487 −0.722433 0.691440i \(-0.756976\pi\)
−0.722433 + 0.691440i \(0.756976\pi\)
\(90\) 533.449 0.624783
\(91\) 427.265 0.492193
\(92\) −820.294 −0.929583
\(93\) −696.177 −0.776238
\(94\) −674.955 −0.740598
\(95\) −766.736 −0.828057
\(96\) −763.675 −0.811899
\(97\) 291.383 0.305004 0.152502 0.988303i \(-0.451267\pi\)
0.152502 + 0.988303i \(0.451267\pi\)
\(98\) 741.463 0.764276
\(99\) 449.735 0.456566
\(100\) 701.766 0.701766
\(101\) 1568.53 1.54529 0.772645 0.634838i \(-0.218933\pi\)
0.772645 + 0.634838i \(0.218933\pi\)
\(102\) −216.375 −0.210042
\(103\) 412.647 0.394750 0.197375 0.980328i \(-0.436758\pi\)
0.197375 + 0.980328i \(0.436758\pi\)
\(104\) −279.515 −0.263545
\(105\) 543.618 0.505254
\(106\) −1595.60 −1.46206
\(107\) −239.382 −0.216280 −0.108140 0.994136i \(-0.534489\pi\)
−0.108140 + 0.994136i \(0.534489\pi\)
\(108\) −270.000 −0.240563
\(109\) −759.647 −0.667532 −0.333766 0.942656i \(-0.608319\pi\)
−0.333766 + 0.942656i \(0.608319\pi\)
\(110\) 2961.86 2.56729
\(111\) 682.587 0.583678
\(112\) −570.705 −0.481487
\(113\) −292.383 −0.243408 −0.121704 0.992566i \(-0.538836\pi\)
−0.121704 + 0.992566i \(0.538836\pi\)
\(114\) 698.537 0.573895
\(115\) 1146.00 0.929259
\(116\) 2898.82 2.32025
\(117\) 296.470 0.234262
\(118\) 786.134 0.613301
\(119\) −220.500 −0.169859
\(120\) −355.632 −0.270539
\(121\) 1166.06 0.876076
\(122\) −3656.53 −2.71350
\(123\) −1313.21 −0.962664
\(124\) 2320.59 1.68061
\(125\) 765.913 0.548043
\(126\) −495.265 −0.350172
\(127\) −2646.41 −1.84906 −0.924531 0.381107i \(-0.875543\pi\)
−0.924531 + 0.381107i \(0.875543\pi\)
\(128\) 1052.17 0.726562
\(129\) 476.647 0.325321
\(130\) 1952.49 1.31727
\(131\) −1964.15 −1.30999 −0.654994 0.755634i \(-0.727329\pi\)
−0.654994 + 0.755634i \(0.727329\pi\)
\(132\) −1499.12 −0.988495
\(133\) 711.854 0.464102
\(134\) 757.438 0.488304
\(135\) 377.205 0.240479
\(136\) 144.250 0.0909509
\(137\) −2083.15 −1.29909 −0.649544 0.760324i \(-0.725040\pi\)
−0.649544 + 0.760324i \(0.725040\pi\)
\(138\) −1044.06 −0.644034
\(139\) 1715.73 1.04695 0.523477 0.852040i \(-0.324635\pi\)
0.523477 + 0.852040i \(0.324635\pi\)
\(140\) −1812.06 −1.09391
\(141\) −477.265 −0.285056
\(142\) 4928.20 2.91243
\(143\) 1646.09 0.962606
\(144\) −396.000 −0.229167
\(145\) −4049.82 −2.31944
\(146\) −1625.31 −0.921310
\(147\) 524.294 0.294170
\(148\) −2275.29 −1.26370
\(149\) −1679.62 −0.923487 −0.461743 0.887014i \(-0.652776\pi\)
−0.461743 + 0.887014i \(0.652776\pi\)
\(150\) 893.203 0.486198
\(151\) 644.353 0.347263 0.173632 0.984811i \(-0.444450\pi\)
0.173632 + 0.984811i \(0.444450\pi\)
\(152\) −465.691 −0.248504
\(153\) −153.000 −0.0808452
\(154\) −2749.85 −1.43889
\(155\) −3241.99 −1.68002
\(156\) −988.234 −0.507192
\(157\) 2130.53 1.08302 0.541512 0.840693i \(-0.317852\pi\)
0.541512 + 0.840693i \(0.317852\pi\)
\(158\) −1077.63 −0.542606
\(159\) −1128.26 −0.562749
\(160\) −3556.32 −1.75720
\(161\) −1063.97 −0.520822
\(162\) −343.654 −0.166667
\(163\) 3582.41 1.72145 0.860724 0.509072i \(-0.170011\pi\)
0.860724 + 0.509072i \(0.170011\pi\)
\(164\) 4377.35 2.08423
\(165\) 2094.35 0.988151
\(166\) −1896.84 −0.886885
\(167\) −1861.79 −0.862694 −0.431347 0.902186i \(-0.641962\pi\)
−0.431347 + 0.902186i \(0.641962\pi\)
\(168\) 330.177 0.151629
\(169\) −1111.88 −0.506091
\(170\) −1007.63 −0.454596
\(171\) 493.940 0.220892
\(172\) −1588.82 −0.704341
\(173\) 2612.50 1.14812 0.574059 0.818814i \(-0.305368\pi\)
0.574059 + 0.818814i \(0.305368\pi\)
\(174\) 3689.60 1.60752
\(175\) 910.230 0.393183
\(176\) −2198.70 −0.941668
\(177\) 555.881 0.236060
\(178\) 5146.94 2.16730
\(179\) 126.646 0.0528824 0.0264412 0.999650i \(-0.491583\pi\)
0.0264412 + 0.999650i \(0.491583\pi\)
\(180\) −1257.35 −0.520652
\(181\) 1783.26 0.732314 0.366157 0.930553i \(-0.380673\pi\)
0.366157 + 0.930553i \(0.380673\pi\)
\(182\) −1812.73 −0.738289
\(183\) −2585.56 −1.04443
\(184\) 696.043 0.278875
\(185\) 3178.71 1.26326
\(186\) 2953.63 1.16436
\(187\) −849.500 −0.332201
\(188\) 1590.88 0.617165
\(189\) −350.205 −0.134781
\(190\) 3252.99 1.24209
\(191\) 2144.44 0.812388 0.406194 0.913787i \(-0.366856\pi\)
0.406194 + 0.913787i \(0.366856\pi\)
\(192\) 2184.00 0.820920
\(193\) 3205.82 1.19565 0.597823 0.801628i \(-0.296032\pi\)
0.597823 + 0.801628i \(0.296032\pi\)
\(194\) −1236.23 −0.457507
\(195\) 1380.62 0.507016
\(196\) −1747.65 −0.636897
\(197\) 2768.32 1.00119 0.500596 0.865681i \(-0.333114\pi\)
0.500596 + 0.865681i \(0.333114\pi\)
\(198\) −1908.06 −0.684850
\(199\) −712.792 −0.253912 −0.126956 0.991908i \(-0.540521\pi\)
−0.126956 + 0.991908i \(0.540521\pi\)
\(200\) −595.468 −0.210530
\(201\) 535.590 0.187948
\(202\) −6654.70 −2.31794
\(203\) 3759.94 1.29998
\(204\) 510.000 0.175035
\(205\) −6115.41 −2.08350
\(206\) −1750.71 −0.592126
\(207\) −738.265 −0.247889
\(208\) −1449.41 −0.483166
\(209\) 2742.50 0.907667
\(210\) −2306.38 −0.757881
\(211\) 787.591 0.256967 0.128483 0.991712i \(-0.458989\pi\)
0.128483 + 0.991712i \(0.458989\pi\)
\(212\) 3760.87 1.21839
\(213\) 3484.76 1.12100
\(214\) 1015.61 0.324419
\(215\) 2219.67 0.704096
\(216\) 229.103 0.0721688
\(217\) 3009.93 0.941602
\(218\) 3222.91 1.00130
\(219\) −1149.26 −0.354612
\(220\) −6981.17 −2.13941
\(221\) −559.999 −0.170451
\(222\) −2895.97 −0.875517
\(223\) −2926.53 −0.878811 −0.439405 0.898289i \(-0.644811\pi\)
−0.439405 + 0.898289i \(0.644811\pi\)
\(224\) 3301.77 0.984860
\(225\) 631.590 0.187138
\(226\) 1240.47 0.365111
\(227\) −6212.03 −1.81633 −0.908164 0.418614i \(-0.862516\pi\)
−0.908164 + 0.418614i \(0.862516\pi\)
\(228\) −1646.47 −0.478246
\(229\) −4516.35 −1.30327 −0.651635 0.758533i \(-0.725916\pi\)
−0.651635 + 0.758533i \(0.725916\pi\)
\(230\) −4862.06 −1.39389
\(231\) −1944.44 −0.553830
\(232\) −2459.73 −0.696075
\(233\) 3547.26 0.997376 0.498688 0.866782i \(-0.333815\pi\)
0.498688 + 0.866782i \(0.333815\pi\)
\(234\) −1257.82 −0.351393
\(235\) −2222.55 −0.616951
\(236\) −1852.94 −0.511084
\(237\) −762.000 −0.208849
\(238\) 935.500 0.254788
\(239\) 726.969 0.196752 0.0983760 0.995149i \(-0.468635\pi\)
0.0983760 + 0.995149i \(0.468635\pi\)
\(240\) −1844.11 −0.495988
\(241\) 1689.67 0.451623 0.225812 0.974171i \(-0.427497\pi\)
0.225812 + 0.974171i \(0.427497\pi\)
\(242\) −4947.16 −1.31411
\(243\) −243.000 −0.0641500
\(244\) 8618.52 2.26125
\(245\) 2441.56 0.636675
\(246\) 5571.46 1.44400
\(247\) 1807.88 0.465720
\(248\) −1969.08 −0.504182
\(249\) −1341.26 −0.341362
\(250\) −3249.50 −0.822065
\(251\) 911.707 0.229269 0.114634 0.993408i \(-0.463430\pi\)
0.114634 + 0.993408i \(0.463430\pi\)
\(252\) 1167.35 0.291810
\(253\) −4099.06 −1.01860
\(254\) 11227.8 2.77359
\(255\) −712.499 −0.174974
\(256\) 1360.00 0.332031
\(257\) −3123.56 −0.758141 −0.379070 0.925368i \(-0.623756\pi\)
−0.379070 + 0.925368i \(0.623756\pi\)
\(258\) −2022.24 −0.487981
\(259\) −2951.18 −0.708021
\(260\) −4602.06 −1.09772
\(261\) 2608.94 0.618733
\(262\) 8333.17 1.96498
\(263\) 137.288 0.0321884 0.0160942 0.999870i \(-0.494877\pi\)
0.0160942 + 0.999870i \(0.494877\pi\)
\(264\) 1272.04 0.296549
\(265\) −5254.15 −1.21796
\(266\) −3020.14 −0.696153
\(267\) 3639.44 0.834194
\(268\) −1785.30 −0.406920
\(269\) −2030.26 −0.460175 −0.230087 0.973170i \(-0.573901\pi\)
−0.230087 + 0.973170i \(0.573901\pi\)
\(270\) −1600.35 −0.360718
\(271\) −1187.23 −0.266123 −0.133061 0.991108i \(-0.542481\pi\)
−0.133061 + 0.991108i \(0.542481\pi\)
\(272\) 748.000 0.166743
\(273\) −1281.79 −0.284168
\(274\) 8838.04 1.94863
\(275\) 3506.77 0.768967
\(276\) 2460.88 0.536695
\(277\) 3027.91 0.656786 0.328393 0.944541i \(-0.393493\pi\)
0.328393 + 0.944541i \(0.393493\pi\)
\(278\) −7279.24 −1.57043
\(279\) 2088.53 0.448161
\(280\) 1537.58 0.328172
\(281\) −5519.90 −1.17185 −0.585925 0.810365i \(-0.699269\pi\)
−0.585925 + 0.810365i \(0.699269\pi\)
\(282\) 2024.86 0.427585
\(283\) −5888.17 −1.23680 −0.618402 0.785862i \(-0.712220\pi\)
−0.618402 + 0.785862i \(0.712220\pi\)
\(284\) −11615.9 −2.42703
\(285\) 2300.21 0.478079
\(286\) −6983.75 −1.44391
\(287\) 5677.67 1.16774
\(288\) 2291.03 0.468750
\(289\) 289.000 0.0588235
\(290\) 17181.9 3.47916
\(291\) −874.148 −0.176094
\(292\) 3830.88 0.767758
\(293\) −2873.06 −0.572852 −0.286426 0.958102i \(-0.592467\pi\)
−0.286426 + 0.958102i \(0.592467\pi\)
\(294\) −2224.39 −0.441255
\(295\) 2588.65 0.510906
\(296\) 1930.65 0.379110
\(297\) −1349.21 −0.263599
\(298\) 7126.01 1.38523
\(299\) −2702.14 −0.522638
\(300\) −2105.30 −0.405165
\(301\) −2060.79 −0.394625
\(302\) −2733.76 −0.520895
\(303\) −4705.58 −0.892174
\(304\) −2414.82 −0.455590
\(305\) −12040.6 −2.26046
\(306\) 649.124 0.121268
\(307\) 318.234 0.0591614 0.0295807 0.999562i \(-0.490583\pi\)
0.0295807 + 0.999562i \(0.490583\pi\)
\(308\) 6481.46 1.19908
\(309\) −1237.94 −0.227909
\(310\) 13754.6 2.52003
\(311\) −1940.05 −0.353731 −0.176866 0.984235i \(-0.556596\pi\)
−0.176866 + 0.984235i \(0.556596\pi\)
\(312\) 838.544 0.152158
\(313\) −5487.84 −0.991026 −0.495513 0.868600i \(-0.665020\pi\)
−0.495513 + 0.868600i \(0.665020\pi\)
\(314\) −9039.07 −1.62454
\(315\) −1630.85 −0.291709
\(316\) 2540.00 0.452171
\(317\) 1337.29 0.236940 0.118470 0.992958i \(-0.462201\pi\)
0.118470 + 0.992958i \(0.462201\pi\)
\(318\) 4786.81 0.844123
\(319\) 14485.6 2.54243
\(320\) 10170.6 1.77673
\(321\) 718.145 0.124869
\(322\) 4514.03 0.781234
\(323\) −932.998 −0.160723
\(324\) 810.000 0.138889
\(325\) 2311.70 0.394553
\(326\) −15198.9 −2.58217
\(327\) 2278.94 0.385400
\(328\) −3714.31 −0.625269
\(329\) 2063.46 0.345783
\(330\) −8885.58 −1.48223
\(331\) −4826.46 −0.801470 −0.400735 0.916194i \(-0.631245\pi\)
−0.400735 + 0.916194i \(0.631245\pi\)
\(332\) 4470.88 0.739071
\(333\) −2047.76 −0.336987
\(334\) 7898.92 1.29404
\(335\) 2494.16 0.406778
\(336\) 1712.11 0.277987
\(337\) −8265.21 −1.33601 −0.668004 0.744158i \(-0.732851\pi\)
−0.668004 + 0.744158i \(0.732851\pi\)
\(338\) 4717.32 0.759137
\(339\) 877.148 0.140531
\(340\) 2375.00 0.378830
\(341\) 11596.1 1.84154
\(342\) −2095.61 −0.331338
\(343\) −6715.70 −1.05718
\(344\) 1348.16 0.211302
\(345\) −3437.99 −0.536508
\(346\) −11083.9 −1.72218
\(347\) 5841.35 0.903688 0.451844 0.892097i \(-0.350766\pi\)
0.451844 + 0.892097i \(0.350766\pi\)
\(348\) −8696.47 −1.33960
\(349\) −3873.11 −0.594048 −0.297024 0.954870i \(-0.595994\pi\)
−0.297024 + 0.954870i \(0.595994\pi\)
\(350\) −3861.78 −0.589774
\(351\) −889.410 −0.135251
\(352\) 12720.4 1.92614
\(353\) 4020.29 0.606171 0.303085 0.952963i \(-0.401983\pi\)
0.303085 + 0.952963i \(0.401983\pi\)
\(354\) −2358.40 −0.354089
\(355\) 16228.0 2.42618
\(356\) −12131.5 −1.80608
\(357\) 661.499 0.0980679
\(358\) −537.313 −0.0793237
\(359\) −2272.06 −0.334024 −0.167012 0.985955i \(-0.553412\pi\)
−0.167012 + 0.985955i \(0.553412\pi\)
\(360\) 1066.90 0.156196
\(361\) −3846.94 −0.560860
\(362\) −7565.75 −1.09847
\(363\) −3498.17 −0.505803
\(364\) 4272.65 0.615241
\(365\) −5351.96 −0.767491
\(366\) 10969.6 1.56664
\(367\) 7353.58 1.04592 0.522962 0.852356i \(-0.324827\pi\)
0.522962 + 0.852356i \(0.324827\pi\)
\(368\) 3609.30 0.511270
\(369\) 3939.62 0.555795
\(370\) −13486.1 −1.89489
\(371\) 4878.07 0.682632
\(372\) −6961.77 −0.970298
\(373\) 320.701 0.0445182 0.0222591 0.999752i \(-0.492914\pi\)
0.0222591 + 0.999752i \(0.492914\pi\)
\(374\) 3604.12 0.498301
\(375\) −2297.74 −0.316413
\(376\) −1349.91 −0.185150
\(377\) 9549.05 1.30451
\(378\) 1485.79 0.202172
\(379\) −700.903 −0.0949946 −0.0474973 0.998871i \(-0.515125\pi\)
−0.0474973 + 0.998871i \(0.515125\pi\)
\(380\) −7667.36 −1.03507
\(381\) 7939.23 1.06756
\(382\) −9098.08 −1.21858
\(383\) 8217.97 1.09639 0.548196 0.836350i \(-0.315315\pi\)
0.548196 + 0.836350i \(0.315315\pi\)
\(384\) −3156.52 −0.419481
\(385\) −9054.97 −1.19866
\(386\) −13601.1 −1.79347
\(387\) −1429.94 −0.187824
\(388\) 2913.83 0.381256
\(389\) −3800.59 −0.495366 −0.247683 0.968841i \(-0.579669\pi\)
−0.247683 + 0.968841i \(0.579669\pi\)
\(390\) −5857.47 −0.760524
\(391\) 1394.50 0.180366
\(392\) 1482.93 0.191069
\(393\) 5892.44 0.756322
\(394\) −11745.0 −1.50179
\(395\) −3548.52 −0.452014
\(396\) 4497.35 0.570708
\(397\) −5955.38 −0.752876 −0.376438 0.926442i \(-0.622851\pi\)
−0.376438 + 0.926442i \(0.622851\pi\)
\(398\) 3024.12 0.380868
\(399\) −2135.56 −0.267949
\(400\) −3087.77 −0.385971
\(401\) 581.967 0.0724739 0.0362370 0.999343i \(-0.488463\pi\)
0.0362370 + 0.999343i \(0.488463\pi\)
\(402\) −2272.31 −0.281922
\(403\) 7644.28 0.944885
\(404\) 15685.3 1.93161
\(405\) −1131.62 −0.138841
\(406\) −15952.1 −1.94997
\(407\) −11369.8 −1.38471
\(408\) −432.749 −0.0525105
\(409\) −11357.7 −1.37311 −0.686555 0.727078i \(-0.740878\pi\)
−0.686555 + 0.727078i \(0.740878\pi\)
\(410\) 25945.5 3.12526
\(411\) 6249.44 0.750029
\(412\) 4126.47 0.493438
\(413\) −2403.36 −0.286348
\(414\) 3132.19 0.371833
\(415\) −6246.08 −0.738814
\(416\) 8385.44 0.988294
\(417\) −5147.20 −0.604459
\(418\) −11635.4 −1.36150
\(419\) −20.9420 −0.00244173 −0.00122086 0.999999i \(-0.500389\pi\)
−0.00122086 + 0.999999i \(0.500389\pi\)
\(420\) 5436.18 0.631568
\(421\) 4455.28 0.515765 0.257882 0.966176i \(-0.416975\pi\)
0.257882 + 0.966176i \(0.416975\pi\)
\(422\) −3341.47 −0.385450
\(423\) 1431.79 0.164577
\(424\) −3191.21 −0.365516
\(425\) −1193.00 −0.136163
\(426\) −14784.6 −1.68149
\(427\) 11178.7 1.26692
\(428\) −2393.82 −0.270349
\(429\) −4938.26 −0.555761
\(430\) −9417.28 −1.05614
\(431\) −2410.99 −0.269451 −0.134725 0.990883i \(-0.543015\pi\)
−0.134725 + 0.990883i \(0.543015\pi\)
\(432\) 1188.00 0.132309
\(433\) −1653.71 −0.183539 −0.0917693 0.995780i \(-0.529252\pi\)
−0.0917693 + 0.995780i \(0.529252\pi\)
\(434\) −12770.1 −1.41240
\(435\) 12149.5 1.33913
\(436\) −7596.47 −0.834415
\(437\) −4501.96 −0.492810
\(438\) 4875.92 0.531919
\(439\) 14852.5 1.61474 0.807371 0.590044i \(-0.200890\pi\)
0.807371 + 0.590044i \(0.200890\pi\)
\(440\) 5923.72 0.641823
\(441\) −1572.88 −0.169839
\(442\) 2375.88 0.255676
\(443\) −5393.26 −0.578423 −0.289212 0.957265i \(-0.593393\pi\)
−0.289212 + 0.957265i \(0.593393\pi\)
\(444\) 6825.87 0.729598
\(445\) 16948.3 1.80546
\(446\) 12416.2 1.31822
\(447\) 5038.85 0.533175
\(448\) −9442.57 −0.995802
\(449\) 6144.82 0.645862 0.322931 0.946422i \(-0.395332\pi\)
0.322931 + 0.946422i \(0.395332\pi\)
\(450\) −2679.61 −0.280706
\(451\) 21873.9 2.28381
\(452\) −2923.83 −0.304259
\(453\) −1933.06 −0.200492
\(454\) 26355.4 2.72449
\(455\) −5969.13 −0.615027
\(456\) 1397.07 0.143474
\(457\) 6041.18 0.618369 0.309184 0.951002i \(-0.399944\pi\)
0.309184 + 0.951002i \(0.399944\pi\)
\(458\) 19161.2 1.95490
\(459\) 459.000 0.0466760
\(460\) 11460.0 1.16157
\(461\) 13829.8 1.39722 0.698610 0.715503i \(-0.253802\pi\)
0.698610 + 0.715503i \(0.253802\pi\)
\(462\) 8249.56 0.830745
\(463\) 12585.3 1.26326 0.631629 0.775271i \(-0.282387\pi\)
0.631629 + 0.775271i \(0.282387\pi\)
\(464\) −12754.8 −1.27614
\(465\) 9725.98 0.969960
\(466\) −15049.7 −1.49606
\(467\) −6561.91 −0.650212 −0.325106 0.945678i \(-0.605400\pi\)
−0.325106 + 0.945678i \(0.605400\pi\)
\(468\) 2964.70 0.292828
\(469\) −2315.63 −0.227987
\(470\) 9429.49 0.925426
\(471\) −6391.59 −0.625284
\(472\) 1572.27 0.153325
\(473\) −7939.44 −0.771788
\(474\) 3232.89 0.313274
\(475\) 3851.45 0.372035
\(476\) −2205.00 −0.212323
\(477\) 3384.79 0.324903
\(478\) −3084.27 −0.295128
\(479\) −16609.4 −1.58435 −0.792175 0.610294i \(-0.791051\pi\)
−0.792175 + 0.610294i \(0.791051\pi\)
\(480\) 10669.0 1.01452
\(481\) −7495.06 −0.710489
\(482\) −7168.66 −0.677435
\(483\) 3191.90 0.300697
\(484\) 11660.6 1.09509
\(485\) −4070.78 −0.381123
\(486\) 1030.96 0.0962250
\(487\) −7999.46 −0.744333 −0.372166 0.928166i \(-0.621385\pi\)
−0.372166 + 0.928166i \(0.621385\pi\)
\(488\) −7313.06 −0.678374
\(489\) −10747.2 −0.993879
\(490\) −10358.7 −0.955013
\(491\) −11669.1 −1.07255 −0.536274 0.844044i \(-0.680169\pi\)
−0.536274 + 0.844044i \(0.680169\pi\)
\(492\) −13132.1 −1.20333
\(493\) −4928.00 −0.450194
\(494\) −7670.20 −0.698580
\(495\) −6283.05 −0.570509
\(496\) −10210.6 −0.924333
\(497\) −15066.4 −1.35980
\(498\) 5690.51 0.512043
\(499\) −20896.2 −1.87464 −0.937319 0.348473i \(-0.886700\pi\)
−0.937319 + 0.348473i \(0.886700\pi\)
\(500\) 7659.13 0.685054
\(501\) 5585.38 0.498077
\(502\) −3868.05 −0.343903
\(503\) 17429.1 1.54498 0.772490 0.635028i \(-0.219011\pi\)
0.772490 + 0.635028i \(0.219011\pi\)
\(504\) −990.530 −0.0875431
\(505\) −21913.2 −1.93094
\(506\) 17390.8 1.52790
\(507\) 3335.65 0.292192
\(508\) −26464.1 −2.31133
\(509\) 1020.29 0.0888481 0.0444240 0.999013i \(-0.485855\pi\)
0.0444240 + 0.999013i \(0.485855\pi\)
\(510\) 3022.88 0.262461
\(511\) 4968.87 0.430156
\(512\) −14187.4 −1.22461
\(513\) −1481.82 −0.127532
\(514\) 13252.1 1.13721
\(515\) −5764.91 −0.493266
\(516\) 4766.47 0.406651
\(517\) 7949.73 0.676265
\(518\) 12520.8 1.06203
\(519\) −7837.49 −0.662866
\(520\) 3904.98 0.329317
\(521\) −5281.92 −0.444155 −0.222078 0.975029i \(-0.571284\pi\)
−0.222078 + 0.975029i \(0.571284\pi\)
\(522\) −11068.8 −0.928100
\(523\) −15906.1 −1.32988 −0.664938 0.746898i \(-0.731542\pi\)
−0.664938 + 0.746898i \(0.731542\pi\)
\(524\) −19641.5 −1.63748
\(525\) −2730.69 −0.227004
\(526\) −582.465 −0.0482827
\(527\) −3945.00 −0.326085
\(528\) 6596.11 0.543672
\(529\) −5438.17 −0.446961
\(530\) 22291.5 1.82694
\(531\) −1667.64 −0.136289
\(532\) 7118.54 0.580127
\(533\) 14419.5 1.17181
\(534\) −15440.8 −1.25129
\(535\) 3344.30 0.270255
\(536\) 1514.88 0.122076
\(537\) −379.938 −0.0305317
\(538\) 8613.66 0.690262
\(539\) −8733.08 −0.697886
\(540\) 3772.05 0.300599
\(541\) 21923.7 1.74228 0.871139 0.491036i \(-0.163382\pi\)
0.871139 + 0.491036i \(0.163382\pi\)
\(542\) 5037.01 0.399184
\(543\) −5349.79 −0.422802
\(544\) −4327.49 −0.341066
\(545\) 10612.7 0.834124
\(546\) 5438.19 0.426251
\(547\) 4960.74 0.387762 0.193881 0.981025i \(-0.437892\pi\)
0.193881 + 0.981025i \(0.437892\pi\)
\(548\) −20831.5 −1.62386
\(549\) 7756.67 0.602999
\(550\) −14877.9 −1.15345
\(551\) 15909.4 1.23006
\(552\) −2088.13 −0.161008
\(553\) 3294.52 0.253341
\(554\) −12846.3 −0.985179
\(555\) −9536.12 −0.729344
\(556\) 17157.3 1.30869
\(557\) 22404.1 1.70429 0.852146 0.523305i \(-0.175301\pi\)
0.852146 + 0.523305i \(0.175301\pi\)
\(558\) −8860.88 −0.672242
\(559\) −5233.76 −0.396001
\(560\) 7973.07 0.601649
\(561\) 2548.50 0.191796
\(562\) 23419.0 1.75778
\(563\) −17361.5 −1.29965 −0.649824 0.760085i \(-0.725157\pi\)
−0.649824 + 0.760085i \(0.725157\pi\)
\(564\) −4772.65 −0.356321
\(565\) 4084.75 0.304154
\(566\) 24981.4 1.85521
\(567\) 1050.62 0.0778161
\(568\) 9856.40 0.728108
\(569\) 1980.78 0.145938 0.0729690 0.997334i \(-0.476753\pi\)
0.0729690 + 0.997334i \(0.476753\pi\)
\(570\) −9758.96 −0.717119
\(571\) −19164.5 −1.40457 −0.702284 0.711897i \(-0.747836\pi\)
−0.702284 + 0.711897i \(0.747836\pi\)
\(572\) 16460.9 1.20326
\(573\) −6433.31 −0.469032
\(574\) −24088.3 −1.75161
\(575\) −5756.55 −0.417504
\(576\) −6552.00 −0.473958
\(577\) 8729.71 0.629848 0.314924 0.949117i \(-0.398021\pi\)
0.314924 + 0.949117i \(0.398021\pi\)
\(578\) −1226.12 −0.0882353
\(579\) −9617.45 −0.690307
\(580\) −40498.2 −2.89930
\(581\) 5798.99 0.414084
\(582\) 3708.70 0.264142
\(583\) 18793.3 1.33506
\(584\) −3250.61 −0.230328
\(585\) −4141.85 −0.292726
\(586\) 12189.3 0.859279
\(587\) 2927.87 0.205871 0.102935 0.994688i \(-0.467177\pi\)
0.102935 + 0.994688i \(0.467177\pi\)
\(588\) 5242.94 0.367713
\(589\) 12735.9 0.890958
\(590\) −10982.7 −0.766359
\(591\) −8304.97 −0.578039
\(592\) 10011.3 0.695035
\(593\) 2154.97 0.149231 0.0746157 0.997212i \(-0.476227\pi\)
0.0746157 + 0.997212i \(0.476227\pi\)
\(594\) 5724.19 0.395398
\(595\) 3080.50 0.212249
\(596\) −16796.2 −1.15436
\(597\) 2138.38 0.146596
\(598\) 11464.2 0.783958
\(599\) 7065.12 0.481925 0.240963 0.970534i \(-0.422537\pi\)
0.240963 + 0.970534i \(0.422537\pi\)
\(600\) 1786.41 0.121549
\(601\) 10656.5 0.723272 0.361636 0.932319i \(-0.382218\pi\)
0.361636 + 0.932319i \(0.382218\pi\)
\(602\) 8743.20 0.591937
\(603\) −1606.77 −0.108512
\(604\) 6443.53 0.434079
\(605\) −16290.5 −1.09471
\(606\) 19964.1 1.33826
\(607\) 82.8667 0.00554111 0.00277056 0.999996i \(-0.499118\pi\)
0.00277056 + 0.999996i \(0.499118\pi\)
\(608\) 13970.7 0.931889
\(609\) −11279.8 −0.750543
\(610\) 51083.8 3.39069
\(611\) 5240.55 0.346988
\(612\) −1530.00 −0.101057
\(613\) −15588.4 −1.02710 −0.513549 0.858060i \(-0.671670\pi\)
−0.513549 + 0.858060i \(0.671670\pi\)
\(614\) −1350.15 −0.0887422
\(615\) 18346.2 1.20291
\(616\) −5499.70 −0.359723
\(617\) −4430.58 −0.289090 −0.144545 0.989498i \(-0.546172\pi\)
−0.144545 + 0.989498i \(0.546172\pi\)
\(618\) 5252.14 0.341864
\(619\) 3111.78 0.202056 0.101028 0.994884i \(-0.467787\pi\)
0.101028 + 0.994884i \(0.467787\pi\)
\(620\) −32419.9 −2.10003
\(621\) 2214.79 0.143119
\(622\) 8230.95 0.530597
\(623\) −15735.2 −1.01190
\(624\) 4348.23 0.278956
\(625\) −19472.3 −1.24623
\(626\) 23282.9 1.48654
\(627\) −8227.49 −0.524042
\(628\) 21305.3 1.35378
\(629\) 3867.99 0.245194
\(630\) 6919.13 0.437563
\(631\) −14808.2 −0.934236 −0.467118 0.884195i \(-0.654708\pi\)
−0.467118 + 0.884195i \(0.654708\pi\)
\(632\) −2155.26 −0.135651
\(633\) −2362.77 −0.148360
\(634\) −5673.66 −0.355410
\(635\) 36971.8 2.31052
\(636\) −11282.6 −0.703436
\(637\) −5756.94 −0.358082
\(638\) −61457.1 −3.81365
\(639\) −10454.3 −0.647207
\(640\) −14699.5 −0.907887
\(641\) −9233.91 −0.568982 −0.284491 0.958679i \(-0.591825\pi\)
−0.284491 + 0.958679i \(0.591825\pi\)
\(642\) −3046.83 −0.187304
\(643\) 11712.7 0.718355 0.359177 0.933269i \(-0.383057\pi\)
0.359177 + 0.933269i \(0.383057\pi\)
\(644\) −10639.7 −0.651028
\(645\) −6659.02 −0.406510
\(646\) 3958.38 0.241084
\(647\) −12099.6 −0.735216 −0.367608 0.929981i \(-0.619823\pi\)
−0.367608 + 0.929981i \(0.619823\pi\)
\(648\) −687.308 −0.0416667
\(649\) −9259.22 −0.560025
\(650\) −9807.70 −0.591830
\(651\) −9029.80 −0.543634
\(652\) 35824.1 2.15181
\(653\) −8335.37 −0.499523 −0.249761 0.968307i \(-0.580352\pi\)
−0.249761 + 0.968307i \(0.580352\pi\)
\(654\) −9668.72 −0.578099
\(655\) 27440.2 1.63691
\(656\) −19260.3 −1.14633
\(657\) 3447.79 0.204736
\(658\) −8754.54 −0.518674
\(659\) 7751.68 0.458213 0.229107 0.973401i \(-0.426420\pi\)
0.229107 + 0.973401i \(0.426420\pi\)
\(660\) 20943.5 1.23519
\(661\) 13808.0 0.812510 0.406255 0.913760i \(-0.366834\pi\)
0.406255 + 0.913760i \(0.366834\pi\)
\(662\) 20476.9 1.20220
\(663\) 1680.00 0.0984098
\(664\) −3793.67 −0.221721
\(665\) −9945.00 −0.579925
\(666\) 8687.91 0.505480
\(667\) −23778.9 −1.38039
\(668\) −18617.9 −1.07837
\(669\) 8779.58 0.507382
\(670\) −10581.8 −0.610167
\(671\) 43067.2 2.47778
\(672\) −9905.30 −0.568609
\(673\) −8406.44 −0.481493 −0.240746 0.970588i \(-0.577392\pi\)
−0.240746 + 0.970588i \(0.577392\pi\)
\(674\) 35066.3 2.00401
\(675\) −1894.77 −0.108044
\(676\) −11118.8 −0.632614
\(677\) −19257.9 −1.09327 −0.546633 0.837372i \(-0.684091\pi\)
−0.546633 + 0.837372i \(0.684091\pi\)
\(678\) −3721.42 −0.210797
\(679\) 3779.40 0.213608
\(680\) −2015.25 −0.113649
\(681\) 18636.1 1.04866
\(682\) −49198.1 −2.76231
\(683\) −3451.93 −0.193388 −0.0966942 0.995314i \(-0.530827\pi\)
−0.0966942 + 0.995314i \(0.530827\pi\)
\(684\) 4939.40 0.276115
\(685\) 29102.7 1.62330
\(686\) 28492.3 1.58577
\(687\) 13549.0 0.752443
\(688\) 6990.82 0.387387
\(689\) 12388.7 0.685012
\(690\) 14586.2 0.804762
\(691\) −26090.5 −1.43637 −0.718184 0.695853i \(-0.755026\pi\)
−0.718184 + 0.695853i \(0.755026\pi\)
\(692\) 26125.0 1.43515
\(693\) 5833.32 0.319754
\(694\) −24782.7 −1.35553
\(695\) −23969.8 −1.30824
\(696\) 7379.20 0.401879
\(697\) −7441.50 −0.404400
\(698\) 16432.2 0.891072
\(699\) −10641.8 −0.575835
\(700\) 9102.30 0.491478
\(701\) 22283.9 1.20064 0.600321 0.799759i \(-0.295039\pi\)
0.600321 + 0.799759i \(0.295039\pi\)
\(702\) 3773.45 0.202877
\(703\) −12487.3 −0.669940
\(704\) −36378.6 −1.94754
\(705\) 6667.66 0.356197
\(706\) −17056.6 −0.909256
\(707\) 20344.7 1.08224
\(708\) 5558.81 0.295074
\(709\) −4561.83 −0.241640 −0.120820 0.992674i \(-0.538552\pi\)
−0.120820 + 0.992674i \(0.538552\pi\)
\(710\) −68849.7 −3.63927
\(711\) 2286.00 0.120579
\(712\) 10293.9 0.541825
\(713\) −19035.7 −0.999847
\(714\) −2806.50 −0.147102
\(715\) −22996.8 −1.20284
\(716\) 1266.46 0.0661031
\(717\) −2180.91 −0.113595
\(718\) 9639.52 0.501036
\(719\) 12458.7 0.646218 0.323109 0.946362i \(-0.395272\pi\)
0.323109 + 0.946362i \(0.395272\pi\)
\(720\) 5532.34 0.286359
\(721\) 5352.26 0.276461
\(722\) 16321.2 0.841290
\(723\) −5069.01 −0.260745
\(724\) 17832.6 0.915393
\(725\) 20343.0 1.04209
\(726\) 14841.5 0.758704
\(727\) 19361.4 0.987721 0.493860 0.869541i \(-0.335585\pi\)
0.493860 + 0.869541i \(0.335585\pi\)
\(728\) −3625.46 −0.184572
\(729\) 729.000 0.0370370
\(730\) 22706.4 1.15124
\(731\) 2701.00 0.136662
\(732\) −25855.6 −1.30553
\(733\) 21638.4 1.09036 0.545180 0.838319i \(-0.316461\pi\)
0.545180 + 0.838319i \(0.316461\pi\)
\(734\) −31198.6 −1.56889
\(735\) −7324.68 −0.367585
\(736\) −20881.3 −1.04578
\(737\) −8921.24 −0.445886
\(738\) −16714.4 −0.833692
\(739\) −33520.7 −1.66858 −0.834290 0.551326i \(-0.814122\pi\)
−0.834290 + 0.551326i \(0.814122\pi\)
\(740\) 31787.1 1.57908
\(741\) −5423.65 −0.268884
\(742\) −20695.9 −1.02395
\(743\) −28486.4 −1.40655 −0.703274 0.710919i \(-0.748279\pi\)
−0.703274 + 0.710919i \(0.748279\pi\)
\(744\) 5907.25 0.291089
\(745\) 23465.2 1.15396
\(746\) −1360.62 −0.0667773
\(747\) 4023.79 0.197086
\(748\) −8495.00 −0.415251
\(749\) −3104.92 −0.151470
\(750\) 9748.49 0.474619
\(751\) −29427.4 −1.42985 −0.714927 0.699199i \(-0.753540\pi\)
−0.714927 + 0.699199i \(0.753540\pi\)
\(752\) −6999.89 −0.339441
\(753\) −2735.12 −0.132368
\(754\) −40513.2 −1.95677
\(755\) −9001.98 −0.433928
\(756\) −3502.05 −0.168477
\(757\) 30790.8 1.47835 0.739174 0.673514i \(-0.235216\pi\)
0.739174 + 0.673514i \(0.235216\pi\)
\(758\) 2973.68 0.142492
\(759\) 12297.2 0.588088
\(760\) 6505.97 0.310522
\(761\) −17677.5 −0.842062 −0.421031 0.907046i \(-0.638332\pi\)
−0.421031 + 0.907046i \(0.638332\pi\)
\(762\) −33683.3 −1.60133
\(763\) −9853.05 −0.467502
\(764\) 21444.4 1.01548
\(765\) 2137.50 0.101021
\(766\) −34865.9 −1.64459
\(767\) −6103.78 −0.287346
\(768\) −4080.00 −0.191698
\(769\) 6309.56 0.295876 0.147938 0.988997i \(-0.452736\pi\)
0.147938 + 0.988997i \(0.452736\pi\)
\(770\) 38417.0 1.79799
\(771\) 9370.67 0.437713
\(772\) 32058.2 1.49456
\(773\) 10323.3 0.480343 0.240171 0.970731i \(-0.422796\pi\)
0.240171 + 0.970731i \(0.422796\pi\)
\(774\) 6066.72 0.281736
\(775\) 16285.1 0.754811
\(776\) −2472.46 −0.114377
\(777\) 8853.54 0.408776
\(778\) 16124.5 0.743049
\(779\) 24023.9 1.10494
\(780\) 13806.2 0.633770
\(781\) −58045.2 −2.65944
\(782\) −5916.36 −0.270548
\(783\) −7826.82 −0.357226
\(784\) 7689.64 0.350293
\(785\) −29764.7 −1.35331
\(786\) −24999.5 −1.13448
\(787\) 11118.3 0.503589 0.251795 0.967781i \(-0.418979\pi\)
0.251795 + 0.967781i \(0.418979\pi\)
\(788\) 27683.2 1.25149
\(789\) −411.865 −0.0185840
\(790\) 15055.1 0.678021
\(791\) −3792.37 −0.170469
\(792\) −3816.13 −0.171212
\(793\) 28390.4 1.27134
\(794\) 25266.5 1.12931
\(795\) 15762.5 0.703191
\(796\) −7127.92 −0.317390
\(797\) 32556.2 1.44692 0.723462 0.690364i \(-0.242550\pi\)
0.723462 + 0.690364i \(0.242550\pi\)
\(798\) 9060.42 0.401924
\(799\) −2704.50 −0.119748
\(800\) 17864.1 0.789487
\(801\) −10918.3 −0.481622
\(802\) −2469.08 −0.108711
\(803\) 19143.1 0.841279
\(804\) 5355.90 0.234935
\(805\) 14864.2 0.650802
\(806\) −32431.9 −1.41733
\(807\) 6090.77 0.265682
\(808\) −13309.4 −0.579484
\(809\) 39644.3 1.72289 0.861445 0.507851i \(-0.169560\pi\)
0.861445 + 0.507851i \(0.169560\pi\)
\(810\) 4801.04 0.208261
\(811\) −7839.62 −0.339440 −0.169720 0.985492i \(-0.554286\pi\)
−0.169720 + 0.985492i \(0.554286\pi\)
\(812\) 37599.4 1.62497
\(813\) 3561.70 0.153646
\(814\) 48237.8 2.07707
\(815\) −50048.3 −2.15106
\(816\) −2244.00 −0.0962693
\(817\) −8719.82 −0.373400
\(818\) 48186.6 2.05967
\(819\) 3845.38 0.164064
\(820\) −61154.1 −2.60438
\(821\) 344.345 0.0146379 0.00731895 0.999973i \(-0.497670\pi\)
0.00731895 + 0.999973i \(0.497670\pi\)
\(822\) −26514.1 −1.12504
\(823\) −43172.9 −1.82857 −0.914284 0.405074i \(-0.867246\pi\)
−0.914284 + 0.405074i \(0.867246\pi\)
\(824\) −3501.42 −0.148031
\(825\) −10520.3 −0.443963
\(826\) 10196.6 0.429522
\(827\) −21158.3 −0.889656 −0.444828 0.895616i \(-0.646735\pi\)
−0.444828 + 0.895616i \(0.646735\pi\)
\(828\) −7382.65 −0.309861
\(829\) −10514.0 −0.440490 −0.220245 0.975445i \(-0.570686\pi\)
−0.220245 + 0.975445i \(0.570686\pi\)
\(830\) 26499.9 1.10822
\(831\) −9083.74 −0.379195
\(832\) −23981.1 −0.999275
\(833\) 2971.00 0.123576
\(834\) 21837.7 0.906689
\(835\) 26010.3 1.07799
\(836\) 27425.0 1.13458
\(837\) −6265.59 −0.258746
\(838\) 88.8493 0.00366259
\(839\) −10036.2 −0.412978 −0.206489 0.978449i \(-0.566204\pi\)
−0.206489 + 0.978449i \(0.566204\pi\)
\(840\) −4612.75 −0.189470
\(841\) 59642.7 2.44548
\(842\) −18902.1 −0.773647
\(843\) 16559.7 0.676568
\(844\) 7875.91 0.321209
\(845\) 15533.6 0.632394
\(846\) −6074.59 −0.246866
\(847\) 15124.4 0.613555
\(848\) −16547.8 −0.670113
\(849\) 17664.5 0.714069
\(850\) 5061.48 0.204244
\(851\) 18664.1 0.751817
\(852\) 34847.6 1.40124
\(853\) 9343.14 0.375033 0.187516 0.982261i \(-0.439956\pi\)
0.187516 + 0.982261i \(0.439956\pi\)
\(854\) −47427.2 −1.90038
\(855\) −6900.62 −0.276019
\(856\) 2031.22 0.0811048
\(857\) 25235.0 1.00585 0.502923 0.864331i \(-0.332258\pi\)
0.502923 + 0.864331i \(0.332258\pi\)
\(858\) 20951.3 0.833641
\(859\) −39717.7 −1.57759 −0.788795 0.614656i \(-0.789295\pi\)
−0.788795 + 0.614656i \(0.789295\pi\)
\(860\) 22196.7 0.880119
\(861\) −17033.0 −0.674197
\(862\) 10229.0 0.404176
\(863\) −26812.4 −1.05760 −0.528798 0.848748i \(-0.677357\pi\)
−0.528798 + 0.848748i \(0.677357\pi\)
\(864\) −6873.08 −0.270633
\(865\) −36498.0 −1.43465
\(866\) 7016.10 0.275308
\(867\) −867.000 −0.0339618
\(868\) 30099.3 1.17700
\(869\) 12692.5 0.495471
\(870\) −51545.8 −2.00870
\(871\) −5880.97 −0.228782
\(872\) 6445.82 0.250324
\(873\) 2622.44 0.101668
\(874\) 19100.2 0.739215
\(875\) 9934.33 0.383819
\(876\) −11492.6 −0.443266
\(877\) −33850.8 −1.30338 −0.651688 0.758487i \(-0.725939\pi\)
−0.651688 + 0.758487i \(0.725939\pi\)
\(878\) −63013.9 −2.42211
\(879\) 8619.17 0.330736
\(880\) 30717.1 1.17668
\(881\) −19939.4 −0.762514 −0.381257 0.924469i \(-0.624509\pi\)
−0.381257 + 0.924469i \(0.624509\pi\)
\(882\) 6673.17 0.254759
\(883\) 31421.5 1.19753 0.598765 0.800925i \(-0.295658\pi\)
0.598765 + 0.800925i \(0.295658\pi\)
\(884\) −5599.99 −0.213063
\(885\) −7765.96 −0.294972
\(886\) 22881.7 0.867635
\(887\) 14713.6 0.556971 0.278486 0.960440i \(-0.410168\pi\)
0.278486 + 0.960440i \(0.410168\pi\)
\(888\) −5791.94 −0.218879
\(889\) −34325.4 −1.29498
\(890\) −71905.7 −2.70818
\(891\) 4047.62 0.152189
\(892\) −29265.3 −1.09851
\(893\) 8731.12 0.327185
\(894\) −21378.0 −0.799763
\(895\) −1769.31 −0.0660801
\(896\) 13647.3 0.508844
\(897\) 8106.43 0.301745
\(898\) −26070.3 −0.968793
\(899\) 67269.7 2.49563
\(900\) 6315.90 0.233922
\(901\) −6393.49 −0.236402
\(902\) −92803.0 −3.42572
\(903\) 6182.38 0.227837
\(904\) 2480.95 0.0912778
\(905\) −24913.2 −0.915075
\(906\) 8201.28 0.300739
\(907\) 36405.1 1.33276 0.666380 0.745612i \(-0.267843\pi\)
0.666380 + 0.745612i \(0.267843\pi\)
\(908\) −62120.3 −2.27041
\(909\) 14116.8 0.515097
\(910\) 25324.9 0.922540
\(911\) 1574.12 0.0572481 0.0286241 0.999590i \(-0.490887\pi\)
0.0286241 + 0.999590i \(0.490887\pi\)
\(912\) 7244.46 0.263035
\(913\) 22341.3 0.809844
\(914\) −25630.6 −0.927553
\(915\) 36121.7 1.30508
\(916\) −45163.5 −1.62909
\(917\) −25476.1 −0.917442
\(918\) −1947.37 −0.0700140
\(919\) 44823.7 1.60892 0.804460 0.594007i \(-0.202455\pi\)
0.804460 + 0.594007i \(0.202455\pi\)
\(920\) −9724.11 −0.348472
\(921\) −954.701 −0.0341569
\(922\) −58674.9 −2.09583
\(923\) −38264.0 −1.36455
\(924\) −19444.4 −0.692287
\(925\) −15967.2 −0.567566
\(926\) −53394.9 −1.89489
\(927\) 3713.82 0.131583
\(928\) 73792.0 2.61028
\(929\) −10654.7 −0.376287 −0.188143 0.982142i \(-0.560247\pi\)
−0.188143 + 0.982142i \(0.560247\pi\)
\(930\) −41263.8 −1.45494
\(931\) −9591.47 −0.337645
\(932\) 35472.6 1.24672
\(933\) 5820.16 0.204227
\(934\) 27839.8 0.975318
\(935\) 11868.0 0.415107
\(936\) −2515.63 −0.0878483
\(937\) 46738.5 1.62954 0.814770 0.579784i \(-0.196863\pi\)
0.814770 + 0.579784i \(0.196863\pi\)
\(938\) 9824.40 0.341981
\(939\) 16463.5 0.572169
\(940\) −22225.5 −0.771188
\(941\) −31346.7 −1.08594 −0.542972 0.839751i \(-0.682701\pi\)
−0.542972 + 0.839751i \(0.682701\pi\)
\(942\) 27117.2 0.937926
\(943\) −35907.2 −1.23998
\(944\) 8152.91 0.281096
\(945\) 4892.56 0.168418
\(946\) 33684.2 1.15768
\(947\) −18191.9 −0.624242 −0.312121 0.950042i \(-0.601039\pi\)
−0.312121 + 0.950042i \(0.601039\pi\)
\(948\) −7620.00 −0.261061
\(949\) 12619.4 0.431656
\(950\) −16340.3 −0.558053
\(951\) −4011.88 −0.136797
\(952\) 1871.00 0.0636969
\(953\) 47969.6 1.63052 0.815261 0.579094i \(-0.196593\pi\)
0.815261 + 0.579094i \(0.196593\pi\)
\(954\) −14360.4 −0.487355
\(955\) −29959.0 −1.01513
\(956\) 7269.69 0.245940
\(957\) −43456.7 −1.46788
\(958\) 70467.8 2.37653
\(959\) −27019.6 −0.909810
\(960\) −30511.7 −1.02579
\(961\) 24060.3 0.807637
\(962\) 31798.9 1.06573
\(963\) −2154.44 −0.0720932
\(964\) 16896.7 0.564529
\(965\) −44787.1 −1.49404
\(966\) −13542.1 −0.451046
\(967\) 51466.6 1.71154 0.855768 0.517360i \(-0.173085\pi\)
0.855768 + 0.517360i \(0.173085\pi\)
\(968\) −9894.32 −0.328528
\(969\) 2798.99 0.0927933
\(970\) 17270.9 0.571684
\(971\) −4007.62 −0.132452 −0.0662259 0.997805i \(-0.521096\pi\)
−0.0662259 + 0.997805i \(0.521096\pi\)
\(972\) −2430.00 −0.0801875
\(973\) 22254.0 0.733229
\(974\) 33938.8 1.11650
\(975\) −6935.09 −0.227796
\(976\) −37921.5 −1.24369
\(977\) −37362.2 −1.22346 −0.611731 0.791066i \(-0.709526\pi\)
−0.611731 + 0.791066i \(0.709526\pi\)
\(978\) 45596.6 1.49082
\(979\) −60621.6 −1.97903
\(980\) 24415.6 0.795844
\(981\) −6836.82 −0.222511
\(982\) 49508.0 1.60882
\(983\) −38659.1 −1.25436 −0.627179 0.778875i \(-0.715790\pi\)
−0.627179 + 0.778875i \(0.715790\pi\)
\(984\) 11142.9 0.360999
\(985\) −38675.0 −1.25106
\(986\) 20907.7 0.675292
\(987\) −6190.39 −0.199638
\(988\) 18078.8 0.582150
\(989\) 13033.0 0.419035
\(990\) 26656.7 0.855764
\(991\) 46.8701 0.00150240 0.000751200 1.00000i \(-0.499761\pi\)
0.000751200 1.00000i \(0.499761\pi\)
\(992\) 59072.5 1.89068
\(993\) 14479.4 0.462729
\(994\) 63921.5 2.03971
\(995\) 9958.11 0.317280
\(996\) −13412.6 −0.426703
\(997\) −16913.4 −0.537265 −0.268633 0.963243i \(-0.586572\pi\)
−0.268633 + 0.963243i \(0.586572\pi\)
\(998\) 88655.2 2.81196
\(999\) 6143.28 0.194559
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.4.a.d.1.1 2
3.2 odd 2 153.4.a.e.1.2 2
4.3 odd 2 816.4.a.o.1.1 2
5.4 even 2 1275.4.a.m.1.2 2
7.6 odd 2 2499.4.a.l.1.1 2
12.11 even 2 2448.4.a.v.1.2 2
17.16 even 2 867.4.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.d.1.1 2 1.1 even 1 trivial
153.4.a.e.1.2 2 3.2 odd 2
816.4.a.o.1.1 2 4.3 odd 2
867.4.a.j.1.1 2 17.16 even 2
1275.4.a.m.1.2 2 5.4 even 2
2448.4.a.v.1.2 2 12.11 even 2
2499.4.a.l.1.1 2 7.6 odd 2