L(s) = 1 | + (−1.22 + 0.707i)2-s + (0.499 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)13-s + (−1.22 − 0.707i)14-s + (0.499 + 0.866i)16-s + (1.22 + 0.707i)17-s − 19-s + (−0.5 − 0.866i)25-s + 1.41i·26-s + 0.999·28-s + (1.22 + 0.707i)29-s + (−1.22 − 0.707i)32-s − 2·34-s + (0.5 + 0.866i)37-s + (1.22 − 0.707i)38-s + ⋯ |
L(s) = 1 | + (−1.22 + 0.707i)2-s + (0.499 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)13-s + (−1.22 − 0.707i)14-s + (0.499 + 0.866i)16-s + (1.22 + 0.707i)17-s − 19-s + (−0.5 − 0.866i)25-s + 1.41i·26-s + 0.999·28-s + (1.22 + 0.707i)29-s + (−1.22 − 0.707i)32-s − 2·34-s + (0.5 + 0.866i)37-s + (1.22 − 0.707i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5678384715\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5678384715\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36247024347703626352060084349, −9.659282789827569869731818830895, −8.556562843152410987362575159360, −8.302974289659342366863397177415, −7.51745066233653330189657502677, −6.25042921208385036725756078879, −5.81231028199544160500070765772, −4.42832239049009941130756945918, −2.97311759380696937168707192460, −1.37575471875064336708491984616,
1.06917634820741495441891704281, 2.24123307679474711885116250259, 3.64338929166389499606101001987, 4.73628458157619094341009409536, 6.00101326702660964681364144657, 7.28343010092336858430678635223, 7.83077786264992390561945847343, 8.798200116192005834031617153845, 9.435499615580445384153977048047, 10.38095783077850320202194470846