L(s) = 1 | + (−1.22 + 0.707i)2-s + (0.499 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)13-s + (−1.22 − 0.707i)14-s + (0.499 + 0.866i)16-s + (1.22 + 0.707i)17-s − 19-s + (−0.5 − 0.866i)25-s + 1.41i·26-s + 0.999·28-s + (1.22 + 0.707i)29-s + (−1.22 − 0.707i)32-s − 2·34-s + (0.5 + 0.866i)37-s + (1.22 − 0.707i)38-s + ⋯ |
L(s) = 1 | + (−1.22 + 0.707i)2-s + (0.499 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)13-s + (−1.22 − 0.707i)14-s + (0.499 + 0.866i)16-s + (1.22 + 0.707i)17-s − 19-s + (−0.5 − 0.866i)25-s + 1.41i·26-s + 0.999·28-s + (1.22 + 0.707i)29-s + (−1.22 − 0.707i)32-s − 2·34-s + (0.5 + 0.866i)37-s + (1.22 − 0.707i)38-s + ⋯ |
Λ(s)=(=(819s/2ΓC(s)L(s)(0.292−0.956i)Λ(1−s)
Λ(s)=(=(819s/2ΓC(s)L(s)(0.292−0.956i)Λ(1−s)
Degree: |
2 |
Conductor: |
819
= 32⋅7⋅13
|
Sign: |
0.292−0.956i
|
Analytic conductor: |
0.408734 |
Root analytic conductor: |
0.639323 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ819(737,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 819, ( :0), 0.292−0.956i)
|
Particular Values
L(21) |
≈ |
0.5678384715 |
L(21) |
≈ |
0.5678384715 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.5−0.866i)T |
| 13 | 1+(−0.5+0.866i)T |
good | 2 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1−T2 |
| 17 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 19 | 1+T+T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(1.22+0.707i)T+(0.5+0.866i)T2 |
| 61 | 1+T+T2 |
| 67 | 1+T2 |
| 71 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36247024347703626352060084349, −9.659282789827569869731818830895, −8.556562843152410987362575159360, −8.302974289659342366863397177415, −7.51745066233653330189657502677, −6.25042921208385036725756078879, −5.81231028199544160500070765772, −4.42832239049009941130756945918, −2.97311759380696937168707192460, −1.37575471875064336708491984616,
1.06917634820741495441891704281, 2.24123307679474711885116250259, 3.64338929166389499606101001987, 4.73628458157619094341009409536, 6.00101326702660964681364144657, 7.28343010092336858430678635223, 7.83077786264992390561945847343, 8.798200116192005834031617153845, 9.435499615580445384153977048047, 10.38095783077850320202194470846