Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [819,1,Mod(737,819)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(819, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 2, 4]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("819.737");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 819.dp (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 4.2.223587.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
737.1 |
|
−1.22474 | + | 0.707107i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 0 | ||||||||||||||||||||||||
737.2 | 1.22474 | − | 0.707107i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 0 | |||||||||||||||||||||||||
809.1 | −1.22474 | − | 0.707107i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 0 | |||||||||||||||||||||||||
809.2 | 1.22474 | + | 0.707107i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
91.g | even | 3 | 1 | inner |
273.bm | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 819.1.dp.a | yes | 4 |
3.b | odd | 2 | 1 | inner | 819.1.dp.a | yes | 4 |
7.c | even | 3 | 1 | 819.1.bj.a | ✓ | 4 | |
13.c | even | 3 | 1 | 819.1.bj.a | ✓ | 4 | |
21.h | odd | 6 | 1 | 819.1.bj.a | ✓ | 4 | |
39.i | odd | 6 | 1 | 819.1.bj.a | ✓ | 4 | |
91.g | even | 3 | 1 | inner | 819.1.dp.a | yes | 4 |
273.bm | odd | 6 | 1 | inner | 819.1.dp.a | yes | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
819.1.bj.a | ✓ | 4 | 7.c | even | 3 | 1 | |
819.1.bj.a | ✓ | 4 | 13.c | even | 3 | 1 | |
819.1.bj.a | ✓ | 4 | 21.h | odd | 6 | 1 | |
819.1.bj.a | ✓ | 4 | 39.i | odd | 6 | 1 | |
819.1.dp.a | yes | 4 | 1.a | even | 1 | 1 | trivial |
819.1.dp.a | yes | 4 | 3.b | odd | 2 | 1 | inner |
819.1.dp.a | yes | 4 | 91.g | even | 3 | 1 | inner |
819.1.dp.a | yes | 4 | 273.bm | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace .