Properties

Label 819.1.dp.a
Level 819819
Weight 11
Character orbit 819.dp
Analytic conductor 0.4090.409
Analytic rank 00
Dimension 44
Projective image S4S_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,1,Mod(737,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.737");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 819=32713 819 = 3^{2} \cdot 7 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 819.dp (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4087342453460.408734245346
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.223587.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β2q4+(β2+1)q7+β2q13+(β3+β1)q14+(β2+1)q16+(β3β1)q17q19+(β21)q25+β3q98+O(q100) q + \beta_1 q^{2} + \beta_{2} q^{4} + ( - \beta_{2} + 1) q^{7} + \beta_{2} q^{13} + ( - \beta_{3} + \beta_1) q^{14} + ( - \beta_{2} + 1) q^{16} + (\beta_{3} - \beta_1) q^{17} - q^{19} + (\beta_{2} - 1) q^{25}+ \cdots - \beta_{3} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+2q7+2q13+2q164q192q25+4q288q34+2q37+2q432q492q528q584q61+4q64+2q732q76+4q918q94+2q97+O(q100) 4 q + 2 q^{4} + 2 q^{7} + 2 q^{13} + 2 q^{16} - 4 q^{19} - 2 q^{25} + 4 q^{28} - 8 q^{34} + 2 q^{37} + 2 q^{43} - 2 q^{49} - 2 q^{52} - 8 q^{58} - 4 q^{61} + 4 q^{64} + 2 q^{73} - 2 q^{76} + 4 q^{91} - 8 q^{94}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/819Z)×\left(\mathbb{Z}/819\mathbb{Z}\right)^\times.

nn 9292 379379 703703
χ(n)\chi(n) 1-1 1+β2-1 + \beta_{2} β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
737.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i 0 0.500000 0.866025i 0 0 0.500000 + 0.866025i 0 0 0
737.2 1.22474 0.707107i 0 0.500000 0.866025i 0 0 0.500000 + 0.866025i 0 0 0
809.1 −1.22474 0.707107i 0 0.500000 + 0.866025i 0 0 0.500000 0.866025i 0 0 0
809.2 1.22474 + 0.707107i 0 0.500000 + 0.866025i 0 0 0.500000 0.866025i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
91.g even 3 1 inner
273.bm odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.1.dp.a yes 4
3.b odd 2 1 inner 819.1.dp.a yes 4
7.c even 3 1 819.1.bj.a 4
13.c even 3 1 819.1.bj.a 4
21.h odd 6 1 819.1.bj.a 4
39.i odd 6 1 819.1.bj.a 4
91.g even 3 1 inner 819.1.dp.a yes 4
273.bm odd 6 1 inner 819.1.dp.a yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
819.1.bj.a 4 7.c even 3 1
819.1.bj.a 4 13.c even 3 1
819.1.bj.a 4 21.h odd 6 1
819.1.bj.a 4 39.i odd 6 1
819.1.dp.a yes 4 1.a even 1 1 trivial
819.1.dp.a yes 4 3.b odd 2 1 inner
819.1.dp.a yes 4 91.g even 3 1 inner
819.1.dp.a yes 4 273.bm odd 6 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(819,[χ])S_{1}^{\mathrm{new}}(819, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
1717 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
1919 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
4747 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
6161 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
7373 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
show more
show less