Properties

Label 819.1.dp.a
Level $819$
Weight $1$
Character orbit 819.dp
Analytic conductor $0.409$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,1,Mod(737,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.737");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 819.dp (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.408734245346\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.223587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{2} q^{4} + ( - \beta_{2} + 1) q^{7} + \beta_{2} q^{13} + ( - \beta_{3} + \beta_1) q^{14} + ( - \beta_{2} + 1) q^{16} + (\beta_{3} - \beta_1) q^{17} - q^{19} + (\beta_{2} - 1) q^{25}+ \cdots - \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{7} + 2 q^{13} + 2 q^{16} - 4 q^{19} - 2 q^{25} + 4 q^{28} - 8 q^{34} + 2 q^{37} + 2 q^{43} - 2 q^{49} - 2 q^{52} - 8 q^{58} - 4 q^{61} + 4 q^{64} + 2 q^{73} - 2 q^{76} + 4 q^{91} - 8 q^{94}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(-1\) \(-1 + \beta_{2}\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
737.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i 0 0.500000 0.866025i 0 0 0.500000 + 0.866025i 0 0 0
737.2 1.22474 0.707107i 0 0.500000 0.866025i 0 0 0.500000 + 0.866025i 0 0 0
809.1 −1.22474 0.707107i 0 0.500000 + 0.866025i 0 0 0.500000 0.866025i 0 0 0
809.2 1.22474 + 0.707107i 0 0.500000 + 0.866025i 0 0 0.500000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
91.g even 3 1 inner
273.bm odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.1.dp.a yes 4
3.b odd 2 1 inner 819.1.dp.a yes 4
7.c even 3 1 819.1.bj.a 4
13.c even 3 1 819.1.bj.a 4
21.h odd 6 1 819.1.bj.a 4
39.i odd 6 1 819.1.bj.a 4
91.g even 3 1 inner 819.1.dp.a yes 4
273.bm odd 6 1 inner 819.1.dp.a yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
819.1.bj.a 4 7.c even 3 1
819.1.bj.a 4 13.c even 3 1
819.1.bj.a 4 21.h odd 6 1
819.1.bj.a 4 39.i odd 6 1
819.1.dp.a yes 4 1.a even 1 1 trivial
819.1.dp.a yes 4 3.b odd 2 1 inner
819.1.dp.a yes 4 91.g even 3 1 inner
819.1.dp.a yes 4 273.bm odd 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(819, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$61$ \( (T + 1)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$73$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
show more
show less