L(s) = 1 | − 2.54i·2-s − 4.49·4-s − 3.49i·5-s + i·7-s + 6.35i·8-s − 8.90·10-s + 0.708i·11-s + (−3.25 − 1.54i)13-s + 2.54·14-s + 7.20·16-s − 7.09·17-s − 0.311i·19-s + 15.6i·20-s + 1.80·22-s + 7.88·23-s + ⋯ |
L(s) = 1 | − 1.80i·2-s − 2.24·4-s − 1.56i·5-s + 0.377i·7-s + 2.24i·8-s − 2.81·10-s + 0.213i·11-s + (−0.903 − 0.429i)13-s + 0.681·14-s + 1.80·16-s − 1.72·17-s − 0.0714i·19-s + 3.50i·20-s + 0.384·22-s + 1.64·23-s + ⋯ |
Λ(s)=(=(819s/2ΓC(s)L(s)(0.429−0.903i)Λ(2−s)
Λ(s)=(=(819s/2ΓC(s+1/2)L(s)(0.429−0.903i)Λ(1−s)
Degree: |
2 |
Conductor: |
819
= 32⋅7⋅13
|
Sign: |
0.429−0.903i
|
Analytic conductor: |
6.53974 |
Root analytic conductor: |
2.55729 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ819(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 819, ( :1/2), 0.429−0.903i)
|
Particular Values
L(1) |
≈ |
0.455557+0.287835i |
L(21) |
≈ |
0.455557+0.287835i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−iT |
| 13 | 1+(3.25+1.54i)T |
good | 2 | 1+2.54iT−2T2 |
| 5 | 1+3.49iT−5T2 |
| 11 | 1−0.708iT−11T2 |
| 17 | 1+7.09T+17T2 |
| 19 | 1+0.311iT−19T2 |
| 23 | 1−7.88T+23T2 |
| 29 | 1+5.29T+29T2 |
| 31 | 1−7.29iT−31T2 |
| 37 | 1−1.41iT−37T2 |
| 41 | 1+11.8iT−41T2 |
| 43 | 1+3.29T+43T2 |
| 47 | 1+6.11iT−47T2 |
| 53 | 1−3.72T+53T2 |
| 59 | 1−2.19iT−59T2 |
| 61 | 1−2.51T+61T2 |
| 67 | 1+9.17iT−67T2 |
| 71 | 1+0.708iT−71T2 |
| 73 | 1−5.21iT−73T2 |
| 79 | 1+2.78T+79T2 |
| 83 | 1−6.11iT−83T2 |
| 89 | 1+11.1iT−89T2 |
| 97 | 1+7.79iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.534335490034554833608576896603, −8.902809328496816531641531379651, −8.555664576226750169366970345842, −7.07613454291346259561961764125, −5.24194871744925229990154578699, −4.90873530851084913430746204464, −3.91373746713489989598581501150, −2.60736575609690931551559552239, −1.61312846008968396303495662732, −0.26434130634099849361488727571,
2.62566912790042944580214907855, 4.00059757513308880187187222175, 4.90762006489605681850315338799, 6.08744969766922910747544874051, 6.79739606727227822574197868169, 7.18950193366055775808636631738, 8.002808330528769329267706802437, 9.120424566650464029709399687286, 9.745606533213831873449132776533, 10.89416218357201781469201790348