Properties

Label 819.2.c.d
Level 819819
Weight 22
Character orbit 819.c
Analytic conductor 6.5406.540
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(64,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 819=32713 819 = 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 819.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.539747925546.53974792554
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.265727878144.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+15x6+67x4+77x2+4 x^{8} + 15x^{6} + 67x^{4} + 77x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β22)q4+(β7β3)q5+β3q7+(β5β32β1)q8+(β63β4+1)q10+(β5+β3+β1)q11+β1q98+O(q100) q + \beta_1 q^{2} + (\beta_{2} - 2) q^{4} + (\beta_{7} - \beta_{3}) q^{5} + \beta_{3} q^{7} + (\beta_{5} - \beta_{3} - 2 \beta_1) q^{8} + ( - \beta_{6} - 3 \beta_{4} + 1) q^{10} + (\beta_{5} + \beta_{3} + \beta_1) q^{11}+ \cdots - \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q14q4+4q106q13+2q14+34q1620q1724q22+6q2334q2528q26+18q29+6q3536q388q40+34q438q49+18q52+10q53++78q95+O(q100) 8 q - 14 q^{4} + 4 q^{10} - 6 q^{13} + 2 q^{14} + 34 q^{16} - 20 q^{17} - 24 q^{22} + 6 q^{23} - 34 q^{25} - 28 q^{26} + 18 q^{29} + 6 q^{35} - 36 q^{38} - 8 q^{40} + 34 q^{43} - 8 q^{49} + 18 q^{52} + 10 q^{53}+ \cdots + 78 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+15x6+67x4+77x2+4 x^{8} + 15x^{6} + 67x^{4} + 77x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2+4 \nu^{2} + 4 Copy content Toggle raw display
β3\beta_{3}== (ν5+8ν3+9ν)/2 ( \nu^{5} + 8\nu^{3} + 9\nu ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν6+8ν4+9ν2)/2 ( \nu^{6} + 8\nu^{4} + 9\nu^{2} ) / 2 Copy content Toggle raw display
β5\beta_{5}== (ν5+10ν3+21ν)/2 ( \nu^{5} + 10\nu^{3} + 21\nu ) / 2 Copy content Toggle raw display
β6\beta_{6}== (ν6+10ν4+23ν2+6)/2 ( \nu^{6} + 10\nu^{4} + 23\nu^{2} + 6 ) / 2 Copy content Toggle raw display
β7\beta_{7}== (ν7+12ν5+41ν3+36ν)/2 ( \nu^{7} + 12\nu^{5} + 41\nu^{3} + 36\nu ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β24 \beta_{2} - 4 Copy content Toggle raw display
ν3\nu^{3}== β5β36β1 \beta_{5} - \beta_{3} - 6\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β6β47β2+25 \beta_{6} - \beta_{4} - 7\beta_{2} + 25 Copy content Toggle raw display
ν5\nu^{5}== 8β5+10β3+39β1 -8\beta_{5} + 10\beta_{3} + 39\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 8β6+10β4+47β2164 -8\beta_{6} + 10\beta_{4} + 47\beta_{2} - 164 Copy content Toggle raw display
ν7\nu^{7}== 2β7+55β579β3258β1 2\beta_{7} + 55\beta_{5} - 79\beta_{3} - 258\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/819Z)×\left(\mathbb{Z}/819\mathbb{Z}\right)^\times.

nn 9292 379379 703703
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
64.1
2.60520i
2.54814i
1.29051i
0.233455i
0.233455i
1.29051i
2.54814i
2.60520i
2.60520i 0 −4.78706 3.78706i 0 1.00000i 7.26084i 0 9.86604
64.2 2.54814i 0 −4.49301 3.49301i 0 1.00000i 6.35254i 0 −8.90068
64.3 1.29051i 0 0.334573 1.33457i 0 1.00000i 3.01280i 0 1.72229
64.4 0.233455i 0 1.94550 2.94550i 0 1.00000i 0.921097i 0 −0.687642
64.5 0.233455i 0 1.94550 2.94550i 0 1.00000i 0.921097i 0 −0.687642
64.6 1.29051i 0 0.334573 1.33457i 0 1.00000i 3.01280i 0 1.72229
64.7 2.54814i 0 −4.49301 3.49301i 0 1.00000i 6.35254i 0 −8.90068
64.8 2.60520i 0 −4.78706 3.78706i 0 1.00000i 7.26084i 0 9.86604
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.c.d 8
3.b odd 2 1 273.2.c.c 8
12.b even 2 1 4368.2.h.q 8
13.b even 2 1 inner 819.2.c.d 8
21.c even 2 1 1911.2.c.l 8
39.d odd 2 1 273.2.c.c 8
39.f even 4 1 3549.2.a.v 4
39.f even 4 1 3549.2.a.x 4
156.h even 2 1 4368.2.h.q 8
273.g even 2 1 1911.2.c.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.c.c 8 3.b odd 2 1
273.2.c.c 8 39.d odd 2 1
819.2.c.d 8 1.a even 1 1 trivial
819.2.c.d 8 13.b even 2 1 inner
1911.2.c.l 8 21.c even 2 1
1911.2.c.l 8 273.g even 2 1
3549.2.a.v 4 39.f even 4 1
3549.2.a.x 4 39.f even 4 1
4368.2.h.q 8 12.b even 2 1
4368.2.h.q 8 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28+15T26+67T24+77T22+4 T_{2}^{8} + 15T_{2}^{6} + 67T_{2}^{4} + 77T_{2}^{2} + 4 acting on S2new(819,[χ])S_{2}^{\mathrm{new}}(819, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+15T6++4 T^{8} + 15 T^{6} + \cdots + 4 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8+37T6++2704 T^{8} + 37 T^{6} + \cdots + 2704 Copy content Toggle raw display
77 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
1111 T8+44T6++1024 T^{8} + 44 T^{6} + \cdots + 1024 Copy content Toggle raw display
1313 T8+6T7++28561 T^{8} + 6 T^{7} + \cdots + 28561 Copy content Toggle raw display
1717 (T4+10T3+160)2 (T^{4} + 10 T^{3} + \cdots - 160)^{2} Copy content Toggle raw display
1919 T8+97T6++1024 T^{8} + 97 T^{6} + \cdots + 1024 Copy content Toggle raw display
2323 (T43T3++1352)2 (T^{4} - 3 T^{3} + \cdots + 1352)^{2} Copy content Toggle raw display
2929 (T49T3+440)2 (T^{4} - 9 T^{3} + \cdots - 440)^{2} Copy content Toggle raw display
3131 T8+89T6++4096 T^{8} + 89 T^{6} + \cdots + 4096 Copy content Toggle raw display
3737 T8+176T6++262144 T^{8} + 176 T^{6} + \cdots + 262144 Copy content Toggle raw display
4141 T8+248T6++1784896 T^{8} + 248 T^{6} + \cdots + 1784896 Copy content Toggle raw display
4343 (T417T3+896)2 (T^{4} - 17 T^{3} + \cdots - 896)^{2} Copy content Toggle raw display
4747 T8+241T6++6739216 T^{8} + 241 T^{6} + \cdots + 6739216 Copy content Toggle raw display
5353 (T45T3++712)2 (T^{4} - 5 T^{3} + \cdots + 712)^{2} Copy content Toggle raw display
5959 T8+248T6++1364224 T^{8} + 248 T^{6} + \cdots + 1364224 Copy content Toggle raw display
6161 (T4+10T3++320)2 (T^{4} + 10 T^{3} + \cdots + 320)^{2} Copy content Toggle raw display
6767 T8+452T6++66064384 T^{8} + 452 T^{6} + \cdots + 66064384 Copy content Toggle raw display
7171 T8+44T6++1024 T^{8} + 44 T^{6} + \cdots + 1024 Copy content Toggle raw display
7373 T8+305T6++5234944 T^{8} + 305 T^{6} + \cdots + 5234944 Copy content Toggle raw display
7979 (T4+T332T2+80)2 (T^{4} + T^{3} - 32 T^{2} + \cdots - 80)^{2} Copy content Toggle raw display
8383 T8+241T6++6739216 T^{8} + 241 T^{6} + \cdots + 6739216 Copy content Toggle raw display
8989 T8+253T6++150544 T^{8} + 253 T^{6} + \cdots + 150544 Copy content Toggle raw display
9797 T8+553T6++82882816 T^{8} + 553 T^{6} + \cdots + 82882816 Copy content Toggle raw display
show more
show less