Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [819,2,Mod(64,819)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(819, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("819.64");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 819.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.265727878144.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 273) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
− | 2.60520i | 0 | −4.78706 | 3.78706i | 0 | − | 1.00000i | 7.26084i | 0 | 9.86604 | ||||||||||||||||||||||||||||||||||||||||
64.2 | − | 2.54814i | 0 | −4.49301 | − | 3.49301i | 0 | 1.00000i | 6.35254i | 0 | −8.90068 | |||||||||||||||||||||||||||||||||||||||||
64.3 | − | 1.29051i | 0 | 0.334573 | 1.33457i | 0 | 1.00000i | − | 3.01280i | 0 | 1.72229 | |||||||||||||||||||||||||||||||||||||||||
64.4 | − | 0.233455i | 0 | 1.94550 | − | 2.94550i | 0 | − | 1.00000i | − | 0.921097i | 0 | −0.687642 | |||||||||||||||||||||||||||||||||||||||
64.5 | 0.233455i | 0 | 1.94550 | 2.94550i | 0 | 1.00000i | 0.921097i | 0 | −0.687642 | |||||||||||||||||||||||||||||||||||||||||||
64.6 | 1.29051i | 0 | 0.334573 | − | 1.33457i | 0 | − | 1.00000i | 3.01280i | 0 | 1.72229 | |||||||||||||||||||||||||||||||||||||||||
64.7 | 2.54814i | 0 | −4.49301 | 3.49301i | 0 | − | 1.00000i | − | 6.35254i | 0 | −8.90068 | |||||||||||||||||||||||||||||||||||||||||
64.8 | 2.60520i | 0 | −4.78706 | − | 3.78706i | 0 | 1.00000i | − | 7.26084i | 0 | 9.86604 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 819.2.c.d | 8 | |
3.b | odd | 2 | 1 | 273.2.c.c | ✓ | 8 | |
12.b | even | 2 | 1 | 4368.2.h.q | 8 | ||
13.b | even | 2 | 1 | inner | 819.2.c.d | 8 | |
21.c | even | 2 | 1 | 1911.2.c.l | 8 | ||
39.d | odd | 2 | 1 | 273.2.c.c | ✓ | 8 | |
39.f | even | 4 | 1 | 3549.2.a.v | 4 | ||
39.f | even | 4 | 1 | 3549.2.a.x | 4 | ||
156.h | even | 2 | 1 | 4368.2.h.q | 8 | ||
273.g | even | 2 | 1 | 1911.2.c.l | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
273.2.c.c | ✓ | 8 | 3.b | odd | 2 | 1 | |
273.2.c.c | ✓ | 8 | 39.d | odd | 2 | 1 | |
819.2.c.d | 8 | 1.a | even | 1 | 1 | trivial | |
819.2.c.d | 8 | 13.b | even | 2 | 1 | inner | |
1911.2.c.l | 8 | 21.c | even | 2 | 1 | ||
1911.2.c.l | 8 | 273.g | even | 2 | 1 | ||
3549.2.a.v | 4 | 39.f | even | 4 | 1 | ||
3549.2.a.x | 4 | 39.f | even | 4 | 1 | ||
4368.2.h.q | 8 | 12.b | even | 2 | 1 | ||
4368.2.h.q | 8 | 156.h | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .