Properties

Label 819.2.c.d
Level $819$
Weight $2$
Character orbit 819.c
Analytic conductor $6.540$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(64,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.265727878144.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 15x^{6} + 67x^{4} + 77x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 2) q^{4} + (\beta_{7} - \beta_{3}) q^{5} + \beta_{3} q^{7} + (\beta_{5} - \beta_{3} - 2 \beta_1) q^{8} + ( - \beta_{6} - 3 \beta_{4} + 1) q^{10} + (\beta_{5} + \beta_{3} + \beta_1) q^{11}+ \cdots - \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 14 q^{4} + 4 q^{10} - 6 q^{13} + 2 q^{14} + 34 q^{16} - 20 q^{17} - 24 q^{22} + 6 q^{23} - 34 q^{25} - 28 q^{26} + 18 q^{29} + 6 q^{35} - 36 q^{38} - 8 q^{40} + 34 q^{43} - 8 q^{49} + 18 q^{52} + 10 q^{53}+ \cdots + 78 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 15x^{6} + 67x^{4} + 77x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 8\nu^{3} + 9\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} + 8\nu^{4} + 9\nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} + 10\nu^{3} + 21\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 10\nu^{4} + 23\nu^{2} + 6 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} + 12\nu^{5} + 41\nu^{3} + 36\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - \beta_{3} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} - \beta_{4} - 7\beta_{2} + 25 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{5} + 10\beta_{3} + 39\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -8\beta_{6} + 10\beta_{4} + 47\beta_{2} - 164 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 2\beta_{7} + 55\beta_{5} - 79\beta_{3} - 258\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
2.60520i
2.54814i
1.29051i
0.233455i
0.233455i
1.29051i
2.54814i
2.60520i
2.60520i 0 −4.78706 3.78706i 0 1.00000i 7.26084i 0 9.86604
64.2 2.54814i 0 −4.49301 3.49301i 0 1.00000i 6.35254i 0 −8.90068
64.3 1.29051i 0 0.334573 1.33457i 0 1.00000i 3.01280i 0 1.72229
64.4 0.233455i 0 1.94550 2.94550i 0 1.00000i 0.921097i 0 −0.687642
64.5 0.233455i 0 1.94550 2.94550i 0 1.00000i 0.921097i 0 −0.687642
64.6 1.29051i 0 0.334573 1.33457i 0 1.00000i 3.01280i 0 1.72229
64.7 2.54814i 0 −4.49301 3.49301i 0 1.00000i 6.35254i 0 −8.90068
64.8 2.60520i 0 −4.78706 3.78706i 0 1.00000i 7.26084i 0 9.86604
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.c.d 8
3.b odd 2 1 273.2.c.c 8
12.b even 2 1 4368.2.h.q 8
13.b even 2 1 inner 819.2.c.d 8
21.c even 2 1 1911.2.c.l 8
39.d odd 2 1 273.2.c.c 8
39.f even 4 1 3549.2.a.v 4
39.f even 4 1 3549.2.a.x 4
156.h even 2 1 4368.2.h.q 8
273.g even 2 1 1911.2.c.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.c.c 8 3.b odd 2 1
273.2.c.c 8 39.d odd 2 1
819.2.c.d 8 1.a even 1 1 trivial
819.2.c.d 8 13.b even 2 1 inner
1911.2.c.l 8 21.c even 2 1
1911.2.c.l 8 273.g even 2 1
3549.2.a.v 4 39.f even 4 1
3549.2.a.x 4 39.f even 4 1
4368.2.h.q 8 12.b even 2 1
4368.2.h.q 8 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 15T_{2}^{6} + 67T_{2}^{4} + 77T_{2}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(819, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 15 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 37 T^{6} + \cdots + 2704 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{8} + 44 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$13$ \( T^{8} + 6 T^{7} + \cdots + 28561 \) Copy content Toggle raw display
$17$ \( (T^{4} + 10 T^{3} + \cdots - 160)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 97 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$23$ \( (T^{4} - 3 T^{3} + \cdots + 1352)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 9 T^{3} + \cdots - 440)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 89 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$37$ \( T^{8} + 176 T^{6} + \cdots + 262144 \) Copy content Toggle raw display
$41$ \( T^{8} + 248 T^{6} + \cdots + 1784896 \) Copy content Toggle raw display
$43$ \( (T^{4} - 17 T^{3} + \cdots - 896)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 241 T^{6} + \cdots + 6739216 \) Copy content Toggle raw display
$53$ \( (T^{4} - 5 T^{3} + \cdots + 712)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 248 T^{6} + \cdots + 1364224 \) Copy content Toggle raw display
$61$ \( (T^{4} + 10 T^{3} + \cdots + 320)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 452 T^{6} + \cdots + 66064384 \) Copy content Toggle raw display
$71$ \( T^{8} + 44 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$73$ \( T^{8} + 305 T^{6} + \cdots + 5234944 \) Copy content Toggle raw display
$79$ \( (T^{4} + T^{3} - 32 T^{2} + \cdots - 80)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 241 T^{6} + \cdots + 6739216 \) Copy content Toggle raw display
$89$ \( T^{8} + 253 T^{6} + \cdots + 150544 \) Copy content Toggle raw display
$97$ \( T^{8} + 553 T^{6} + \cdots + 82882816 \) Copy content Toggle raw display
show more
show less