L(s) = 1 | + (−1.08 + 1.87i)2-s + (−1.34 − 2.33i)4-s + (−0.758 + 1.31i)5-s + (1.40 + 2.24i)7-s + 1.51·8-s + (−1.64 − 2.84i)10-s + (2.04 + 3.54i)11-s − 13-s + (−5.73 + 0.208i)14-s + (1.05 − 1.82i)16-s + (2.48 + 4.29i)17-s + (1.19 − 2.07i)19-s + 4.09·20-s − 8.87·22-s + (−1.28 + 2.23i)23-s + ⋯ |
L(s) = 1 | + (−0.766 + 1.32i)2-s + (−0.674 − 1.16i)4-s + (−0.339 + 0.587i)5-s + (0.531 + 0.847i)7-s + 0.536·8-s + (−0.519 − 0.900i)10-s + (0.617 + 1.06i)11-s − 0.277·13-s + (−1.53 + 0.0558i)14-s + (0.263 − 0.457i)16-s + (0.601 + 1.04i)17-s + (0.275 − 0.476i)19-s + 0.915·20-s − 1.89·22-s + (−0.268 + 0.465i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.811 + 0.583i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.811 + 0.583i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.242362 - 0.752203i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.242362 - 0.752203i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-1.40 - 2.24i)T \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (1.08 - 1.87i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.758 - 1.31i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.04 - 3.54i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.48 - 4.29i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.19 + 2.07i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.28 - 2.23i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.68T + 29T^{2} \) |
| 31 | \( 1 + (-0.182 - 0.316i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.96 + 3.39i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 1.34T + 41T^{2} \) |
| 43 | \( 1 + 8.47T + 43T^{2} \) |
| 47 | \( 1 + (-2.16 + 3.75i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.08 + 8.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.50 + 9.53i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.83 - 11.8i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.44 - 9.42i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.18T + 71T^{2} \) |
| 73 | \( 1 + (2.58 + 4.47i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.47 + 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.7T + 83T^{2} \) |
| 89 | \( 1 + (-1.87 + 3.25i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 17.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45484237743963118672867437381, −9.542841780667818587179941041785, −8.961101805039957791268109692954, −7.983154238727736162014244855274, −7.41686936029645408271463845273, −6.63157149228354777281799745510, −5.73568517054149149519000986377, −4.85929904131032808346299642667, −3.42832496978347353650243201080, −1.81723509901332654573551577768,
0.54116257578783712287751903744, 1.49056538207339677389803185395, 3.02003423736657260186756874123, 3.90646597278875259110835963972, 4.92954147562423869787209198217, 6.25455277370097968501399159156, 7.61746907557387241084124659996, 8.234173699034294064787847631094, 9.092084607678206712749825660903, 9.783603010237384320619974203234