L(s) = 1 | + (−1.08 + 1.87i)2-s + (−1.34 − 2.33i)4-s + (−0.758 + 1.31i)5-s + (1.40 + 2.24i)7-s + 1.51·8-s + (−1.64 − 2.84i)10-s + (2.04 + 3.54i)11-s − 13-s + (−5.73 + 0.208i)14-s + (1.05 − 1.82i)16-s + (2.48 + 4.29i)17-s + (1.19 − 2.07i)19-s + 4.09·20-s − 8.87·22-s + (−1.28 + 2.23i)23-s + ⋯ |
L(s) = 1 | + (−0.766 + 1.32i)2-s + (−0.674 − 1.16i)4-s + (−0.339 + 0.587i)5-s + (0.531 + 0.847i)7-s + 0.536·8-s + (−0.519 − 0.900i)10-s + (0.617 + 1.06i)11-s − 0.277·13-s + (−1.53 + 0.0558i)14-s + (0.263 − 0.457i)16-s + (0.601 + 1.04i)17-s + (0.275 − 0.476i)19-s + 0.915·20-s − 1.89·22-s + (−0.268 + 0.465i)23-s + ⋯ |
Λ(s)=(=(819s/2ΓC(s)L(s)(−0.811+0.583i)Λ(2−s)
Λ(s)=(=(819s/2ΓC(s+1/2)L(s)(−0.811+0.583i)Λ(1−s)
Degree: |
2 |
Conductor: |
819
= 32⋅7⋅13
|
Sign: |
−0.811+0.583i
|
Analytic conductor: |
6.53974 |
Root analytic conductor: |
2.55729 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ819(352,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 819, ( :1/2), −0.811+0.583i)
|
Particular Values
L(1) |
≈ |
0.242362−0.752203i |
L(21) |
≈ |
0.242362−0.752203i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−1.40−2.24i)T |
| 13 | 1+T |
good | 2 | 1+(1.08−1.87i)T+(−1−1.73i)T2 |
| 5 | 1+(0.758−1.31i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−2.04−3.54i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.48−4.29i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.19+2.07i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.28−2.23i)T+(−11.5−19.9i)T2 |
| 29 | 1+5.68T+29T2 |
| 31 | 1+(−0.182−0.316i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−1.96+3.39i)T+(−18.5−32.0i)T2 |
| 41 | 1+1.34T+41T2 |
| 43 | 1+8.47T+43T2 |
| 47 | 1+(−2.16+3.75i)T+(−23.5−40.7i)T2 |
| 53 | 1+(5.08+8.79i)T+(−26.5+45.8i)T2 |
| 59 | 1+(5.50+9.53i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.83−11.8i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−5.44−9.42i)T+(−33.5+58.0i)T2 |
| 71 | 1+6.18T+71T2 |
| 73 | 1+(2.58+4.47i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−6.47+11.2i)T+(−39.5−68.4i)T2 |
| 83 | 1−11.7T+83T2 |
| 89 | 1+(−1.87+3.25i)T+(−44.5−77.0i)T2 |
| 97 | 1−17.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45484237743963118672867437381, −9.542841780667818587179941041785, −8.961101805039957791268109692954, −7.983154238727736162014244855274, −7.41686936029645408271463845273, −6.63157149228354777281799745510, −5.73568517054149149519000986377, −4.85929904131032808346299642667, −3.42832496978347353650243201080, −1.81723509901332654573551577768,
0.54116257578783712287751903744, 1.49056538207339677389803185395, 3.02003423736657260186756874123, 3.90646597278875259110835963972, 4.92954147562423869787209198217, 6.25455277370097968501399159156, 7.61746907557387241084124659996, 8.234173699034294064787847631094, 9.092084607678206712749825660903, 9.783603010237384320619974203234