Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [819,2,Mod(235,819)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(819, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("819.235");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 819.j (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
235.1 |
|
−1.08393 | − | 1.87742i | 0 | −1.34981 | + | 2.33795i | −0.758349 | − | 1.31350i | 0 | 1.40545 | − | 2.24159i | 1.51670 | 0 | −1.64400 | + | 2.84748i | ||||||||||||||||||||||||||||||||||||||||||||
235.2 | −0.830794 | − | 1.43898i | 0 | −0.380438 | + | 0.658939i | 1.02946 | + | 1.78307i | 0 | 1.85185 | + | 1.88962i | −2.05891 | 0 | 1.71053 | − | 2.96273i | |||||||||||||||||||||||||||||||||||||||||||||
235.3 | −0.367252 | − | 0.636099i | 0 | 0.730252 | − | 1.26483i | 1.27088 | + | 2.20122i | 0 | −2.25729 | − | 1.38008i | −2.54175 | 0 | 0.933463 | − | 1.61680i | |||||||||||||||||||||||||||||||||||||||||||||
235.4 | 0.367252 | + | 0.636099i | 0 | 0.730252 | − | 1.26483i | −1.27088 | − | 2.20122i | 0 | −2.25729 | − | 1.38008i | 2.54175 | 0 | 0.933463 | − | 1.61680i | |||||||||||||||||||||||||||||||||||||||||||||
235.5 | 0.830794 | + | 1.43898i | 0 | −0.380438 | + | 0.658939i | −1.02946 | − | 1.78307i | 0 | 1.85185 | + | 1.88962i | 2.05891 | 0 | 1.71053 | − | 2.96273i | |||||||||||||||||||||||||||||||||||||||||||||
235.6 | 1.08393 | + | 1.87742i | 0 | −1.34981 | + | 2.33795i | 0.758349 | + | 1.31350i | 0 | 1.40545 | − | 2.24159i | −1.51670 | 0 | −1.64400 | + | 2.84748i | |||||||||||||||||||||||||||||||||||||||||||||
352.1 | −1.08393 | + | 1.87742i | 0 | −1.34981 | − | 2.33795i | −0.758349 | + | 1.31350i | 0 | 1.40545 | + | 2.24159i | 1.51670 | 0 | −1.64400 | − | 2.84748i | |||||||||||||||||||||||||||||||||||||||||||||
352.2 | −0.830794 | + | 1.43898i | 0 | −0.380438 | − | 0.658939i | 1.02946 | − | 1.78307i | 0 | 1.85185 | − | 1.88962i | −2.05891 | 0 | 1.71053 | + | 2.96273i | |||||||||||||||||||||||||||||||||||||||||||||
352.3 | −0.367252 | + | 0.636099i | 0 | 0.730252 | + | 1.26483i | 1.27088 | − | 2.20122i | 0 | −2.25729 | + | 1.38008i | −2.54175 | 0 | 0.933463 | + | 1.61680i | |||||||||||||||||||||||||||||||||||||||||||||
352.4 | 0.367252 | − | 0.636099i | 0 | 0.730252 | + | 1.26483i | −1.27088 | + | 2.20122i | 0 | −2.25729 | + | 1.38008i | 2.54175 | 0 | 0.933463 | + | 1.61680i | |||||||||||||||||||||||||||||||||||||||||||||
352.5 | 0.830794 | − | 1.43898i | 0 | −0.380438 | − | 0.658939i | −1.02946 | + | 1.78307i | 0 | 1.85185 | − | 1.88962i | 2.05891 | 0 | 1.71053 | + | 2.96273i | |||||||||||||||||||||||||||||||||||||||||||||
352.6 | 1.08393 | − | 1.87742i | 0 | −1.34981 | − | 2.33795i | 0.758349 | − | 1.31350i | 0 | 1.40545 | + | 2.24159i | −1.51670 | 0 | −1.64400 | − | 2.84748i | |||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 819.2.j.i | ✓ | 12 |
3.b | odd | 2 | 1 | inner | 819.2.j.i | ✓ | 12 |
7.c | even | 3 | 1 | inner | 819.2.j.i | ✓ | 12 |
7.c | even | 3 | 1 | 5733.2.a.bs | 6 | ||
7.d | odd | 6 | 1 | 5733.2.a.bt | 6 | ||
21.g | even | 6 | 1 | 5733.2.a.bt | 6 | ||
21.h | odd | 6 | 1 | inner | 819.2.j.i | ✓ | 12 |
21.h | odd | 6 | 1 | 5733.2.a.bs | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
819.2.j.i | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
819.2.j.i | ✓ | 12 | 3.b | odd | 2 | 1 | inner |
819.2.j.i | ✓ | 12 | 7.c | even | 3 | 1 | inner |
819.2.j.i | ✓ | 12 | 21.h | odd | 6 | 1 | inner |
5733.2.a.bs | 6 | 7.c | even | 3 | 1 | ||
5733.2.a.bs | 6 | 21.h | odd | 6 | 1 | ||
5733.2.a.bt | 6 | 7.d | odd | 6 | 1 | ||
5733.2.a.bt | 6 | 21.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .