Properties

Label 819.2.j.i
Level 819819
Weight 22
Character orbit 819.j
Analytic conductor 6.5406.540
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(235,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 819=32713 819 = 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 819.j (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.539747925546.53974792554
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+8x10+47x8+122x6+233x4+119x2+49 x^{12} + 8x^{10} + 47x^{8} + 122x^{6} + 233x^{4} + 119x^{2} + 49 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 32 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β6+β1)q2+(β9β51)q4+β10q5+(β7+β5β3++1)q7+(β10β4)q8+(β9+β2)q10++(β11+β10+3β1)q98+O(q100) q + (\beta_{6} + \beta_1) q^{2} + ( - \beta_{9} - \beta_{5} - 1) q^{4} + \beta_{10} q^{5} + (\beta_{7} + \beta_{5} - \beta_{3} + \cdots + 1) q^{7} + ( - \beta_{10} - \beta_{4}) q^{8} + ( - \beta_{9} + \beta_{2}) q^{10}+ \cdots + ( - \beta_{11} + \beta_{10} + \cdots - 3 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q4+4q7+4q1012q13+12q1610q1936q22+4q258q288q31+12q34+10q3726q4080q4322q46+4q52+36q58+2q61++44q97+O(q100) 12 q - 4 q^{4} + 4 q^{7} + 4 q^{10} - 12 q^{13} + 12 q^{16} - 10 q^{19} - 36 q^{22} + 4 q^{25} - 8 q^{28} - 8 q^{31} + 12 q^{34} + 10 q^{37} - 26 q^{40} - 80 q^{43} - 22 q^{46} + 4 q^{52} + 36 q^{58} + 2 q^{61}+ \cdots + 44 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+8x10+47x8+122x6+233x4+119x2+49 x^{12} + 8x^{10} + 47x^{8} + 122x^{6} + 233x^{4} + 119x^{2} + 49 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (157ν104672ν827448ν6110812ν4136072ν269496)/69993 ( -157\nu^{10} - 4672\nu^{8} - 27448\nu^{6} - 110812\nu^{4} - 136072\nu^{2} - 69496 ) / 69993 Copy content Toggle raw display
β3\beta_{3}== (64ν10376ν82209ν61864ν4952ν2+24404)/9999 ( -64\nu^{10} - 376\nu^{8} - 2209\nu^{6} - 1864\nu^{4} - 952\nu^{2} + 24404 ) / 9999 Copy content Toggle raw display
β4\beta_{4}== (64ν11376ν92209ν71864ν5952ν3+34403ν)/9999 ( -64\nu^{11} - 376\nu^{9} - 2209\nu^{7} - 1864\nu^{5} - 952\nu^{3} + 34403\nu ) / 9999 Copy content Toggle raw display
β5\beta_{5}== (799ν10+5944ν8+34921ν6+82015ν4+173119ν2+18424)/69993 ( 799\nu^{10} + 5944\nu^{8} + 34921\nu^{6} + 82015\nu^{4} + 173119\nu^{2} + 18424 ) / 69993 Copy content Toggle raw display
β6\beta_{6}== (799ν11+5944ν9+34921ν7+82015ν5+173119ν3+18424ν)/69993 ( 799\nu^{11} + 5944\nu^{9} + 34921\nu^{7} + 82015\nu^{5} + 173119\nu^{3} + 18424\nu ) / 69993 Copy content Toggle raw display
β7\beta_{7}== (184ν10+1081ν8+5101ν6+5359ν4+2737ν25168)/9999 ( 184\nu^{10} + 1081\nu^{8} + 5101\nu^{6} + 5359\nu^{4} + 2737\nu^{2} - 5168 ) / 9999 Copy content Toggle raw display
β8\beta_{8}== (248ν111457ν97310ν77223ν53689ν3+39571ν)/9999 ( -248\nu^{11} - 1457\nu^{9} - 7310\nu^{7} - 7223\nu^{5} - 3689\nu^{3} + 39571\nu ) / 9999 Copy content Toggle raw display
β9\beta_{9}== (1949ν1015200ν889300ν6232997ν4442700ν2226100)/69993 ( -1949\nu^{10} - 15200\nu^{8} - 89300\nu^{6} - 232997\nu^{4} - 442700\nu^{2} - 226100 ) / 69993 Copy content Toggle raw display
β10\beta_{10}== (916ν117048ν941407ν7105004ν5205273ν3104839ν)/23331 ( -916\nu^{11} - 7048\nu^{9} - 41407\nu^{7} - 105004\nu^{5} - 205273\nu^{3} - 104839\nu ) / 23331 Copy content Toggle raw display
β11\beta_{11}== (415ν113688ν921667ν760832ν5107413ν354859ν)/9999 ( -415\nu^{11} - 3688\nu^{9} - 21667\nu^{7} - 60832\nu^{5} - 107413\nu^{3} - 54859\nu ) / 9999 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β9+3β5+β3 \beta_{9} + 3\beta_{5} + \beta_{3} Copy content Toggle raw display
ν3\nu^{3}== β10+4β6+β4 \beta_{10} + 4\beta_{6} + \beta_{4} Copy content Toggle raw display
ν4\nu^{4}== 5β912β5+β212 -5\beta_{9} - 12\beta_{5} + \beta_{2} - 12 Copy content Toggle raw display
ν5\nu^{5}== β116β1017β617β1 \beta_{11} - 6\beta_{10} - 17\beta_{6} - 17\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 8β723β3+52 -8\beta_{7} - 23\beta_{3} + 52 Copy content Toggle raw display
ν7\nu^{7}== 8β831β4+75β1 8\beta_{8} - 31\beta_{4} + 75\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 106β9+47β7+233β5+106β347β2 106\beta_{9} + 47\beta_{7} + 233\beta_{5} + 106\beta_{3} - 47\beta_{2} Copy content Toggle raw display
ν9\nu^{9}== 47β11+153β1047β8+339β6+153β4 -47\beta_{11} + 153\beta_{10} - 47\beta_{8} + 339\beta_{6} + 153\beta_{4} Copy content Toggle raw display
ν10\nu^{10}== 492β91064β5+247β21064 -492\beta_{9} - 1064\beta_{5} + 247\beta_{2} - 1064 Copy content Toggle raw display
ν11\nu^{11}== 247β11739β101556β61556β1 247\beta_{11} - 739\beta_{10} - 1556\beta_{6} - 1556\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/819Z)×\left(\mathbb{Z}/819\mathbb{Z}\right)^\times.

nn 9292 379379 703703
χ(n)\chi(n) 11 11 β5\beta_{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
235.1
1.08393 1.87742i
0.830794 1.43898i
0.367252 0.636099i
−0.367252 + 0.636099i
−0.830794 + 1.43898i
−1.08393 + 1.87742i
1.08393 + 1.87742i
0.830794 + 1.43898i
0.367252 + 0.636099i
−0.367252 0.636099i
−0.830794 1.43898i
−1.08393 1.87742i
−1.08393 1.87742i 0 −1.34981 + 2.33795i −0.758349 1.31350i 0 1.40545 2.24159i 1.51670 0 −1.64400 + 2.84748i
235.2 −0.830794 1.43898i 0 −0.380438 + 0.658939i 1.02946 + 1.78307i 0 1.85185 + 1.88962i −2.05891 0 1.71053 2.96273i
235.3 −0.367252 0.636099i 0 0.730252 1.26483i 1.27088 + 2.20122i 0 −2.25729 1.38008i −2.54175 0 0.933463 1.61680i
235.4 0.367252 + 0.636099i 0 0.730252 1.26483i −1.27088 2.20122i 0 −2.25729 1.38008i 2.54175 0 0.933463 1.61680i
235.5 0.830794 + 1.43898i 0 −0.380438 + 0.658939i −1.02946 1.78307i 0 1.85185 + 1.88962i 2.05891 0 1.71053 2.96273i
235.6 1.08393 + 1.87742i 0 −1.34981 + 2.33795i 0.758349 + 1.31350i 0 1.40545 2.24159i −1.51670 0 −1.64400 + 2.84748i
352.1 −1.08393 + 1.87742i 0 −1.34981 2.33795i −0.758349 + 1.31350i 0 1.40545 + 2.24159i 1.51670 0 −1.64400 2.84748i
352.2 −0.830794 + 1.43898i 0 −0.380438 0.658939i 1.02946 1.78307i 0 1.85185 1.88962i −2.05891 0 1.71053 + 2.96273i
352.3 −0.367252 + 0.636099i 0 0.730252 + 1.26483i 1.27088 2.20122i 0 −2.25729 + 1.38008i −2.54175 0 0.933463 + 1.61680i
352.4 0.367252 0.636099i 0 0.730252 + 1.26483i −1.27088 + 2.20122i 0 −2.25729 + 1.38008i 2.54175 0 0.933463 + 1.61680i
352.5 0.830794 1.43898i 0 −0.380438 0.658939i −1.02946 + 1.78307i 0 1.85185 1.88962i 2.05891 0 1.71053 + 2.96273i
352.6 1.08393 1.87742i 0 −1.34981 2.33795i 0.758349 1.31350i 0 1.40545 + 2.24159i −1.51670 0 −1.64400 2.84748i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 235.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.j.i 12
3.b odd 2 1 inner 819.2.j.i 12
7.c even 3 1 inner 819.2.j.i 12
7.c even 3 1 5733.2.a.bs 6
7.d odd 6 1 5733.2.a.bt 6
21.g even 6 1 5733.2.a.bt 6
21.h odd 6 1 inner 819.2.j.i 12
21.h odd 6 1 5733.2.a.bs 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
819.2.j.i 12 1.a even 1 1 trivial
819.2.j.i 12 3.b odd 2 1 inner
819.2.j.i 12 7.c even 3 1 inner
819.2.j.i 12 21.h odd 6 1 inner
5733.2.a.bs 6 7.c even 3 1
5733.2.a.bs 6 21.h odd 6 1
5733.2.a.bt 6 7.d odd 6 1
5733.2.a.bt 6 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T212+8T210+47T28+122T26+233T24+119T22+49 T_{2}^{12} + 8T_{2}^{10} + 47T_{2}^{8} + 122T_{2}^{6} + 233T_{2}^{4} + 119T_{2}^{2} + 49 acting on S2new(819,[χ])S_{2}^{\mathrm{new}}(819, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+8T10++49 T^{12} + 8 T^{10} + \cdots + 49 Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+13T10++3969 T^{12} + 13 T^{10} + \cdots + 3969 Copy content Toggle raw display
77 (T62T5++343)2 (T^{6} - 2 T^{5} + \cdots + 343)^{2} Copy content Toggle raw display
1111 T12+33T10++321489 T^{12} + 33 T^{10} + \cdots + 321489 Copy content Toggle raw display
1313 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
1717 T12+83T10++34656769 T^{12} + 83 T^{10} + \cdots + 34656769 Copy content Toggle raw display
1919 (T6+5T5++441)2 (T^{6} + 5 T^{5} + \cdots + 441)^{2} Copy content Toggle raw display
2323 T12+46T10++3969 T^{12} + 46 T^{10} + \cdots + 3969 Copy content Toggle raw display
2929 (T6164T4+135247)2 (T^{6} - 164 T^{4} + \cdots - 135247)^{2} Copy content Toggle raw display
3131 (T6+4T5++441)2 (T^{6} + 4 T^{5} + \cdots + 441)^{2} Copy content Toggle raw display
3737 (T65T5++38809)2 (T^{6} - 5 T^{5} + \cdots + 38809)^{2} Copy content Toggle raw display
4141 (T6124T4+3087)2 (T^{6} - 124 T^{4} + \cdots - 3087)^{2} Copy content Toggle raw display
4343 (T3+20T2++79)4 (T^{3} + 20 T^{2} + \cdots + 79)^{4} Copy content Toggle raw display
4747 T12+32T10++200704 T^{12} + 32 T^{10} + \cdots + 200704 Copy content Toggle raw display
5353 T12++170852435649 T^{12} + \cdots + 170852435649 Copy content Toggle raw display
5959 T12++6422900449 T^{12} + \cdots + 6422900449 Copy content Toggle raw display
6161 (T6T5++480249)2 (T^{6} - T^{5} + \cdots + 480249)^{2} Copy content Toggle raw display
6767 (T633T5++1520289)2 (T^{6} - 33 T^{5} + \cdots + 1520289)^{2} Copy content Toggle raw display
7171 (T6365T4+942823)2 (T^{6} - 365 T^{4} + \cdots - 942823)^{2} Copy content Toggle raw display
7373 (T614T5++170569)2 (T^{6} - 14 T^{5} + \cdots + 170569)^{2} Copy content Toggle raw display
7979 (T610T5++1265625)2 (T^{6} - 10 T^{5} + \cdots + 1265625)^{2} Copy content Toggle raw display
8383 (T6468T4+3720087)2 (T^{6} - 468 T^{4} + \cdots - 3720087)^{2} Copy content Toggle raw display
8989 T12++48093805809 T^{12} + \cdots + 48093805809 Copy content Toggle raw display
9797 (T311T2++1631)4 (T^{3} - 11 T^{2} + \cdots + 1631)^{4} Copy content Toggle raw display
show more
show less