Properties

Label 819.2.j.i
Level $819$
Weight $2$
Character orbit 819.j
Analytic conductor $6.540$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(235,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 8x^{10} + 47x^{8} + 122x^{6} + 233x^{4} + 119x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} + \beta_1) q^{2} + ( - \beta_{9} - \beta_{5} - 1) q^{4} + \beta_{10} q^{5} + (\beta_{7} + \beta_{5} - \beta_{3} + \cdots + 1) q^{7} + ( - \beta_{10} - \beta_{4}) q^{8} + ( - \beta_{9} + \beta_{2}) q^{10}+ \cdots + ( - \beta_{11} + \beta_{10} + \cdots - 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 4 q^{7} + 4 q^{10} - 12 q^{13} + 12 q^{16} - 10 q^{19} - 36 q^{22} + 4 q^{25} - 8 q^{28} - 8 q^{31} + 12 q^{34} + 10 q^{37} - 26 q^{40} - 80 q^{43} - 22 q^{46} + 4 q^{52} + 36 q^{58} + 2 q^{61}+ \cdots + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 8x^{10} + 47x^{8} + 122x^{6} + 233x^{4} + 119x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -157\nu^{10} - 4672\nu^{8} - 27448\nu^{6} - 110812\nu^{4} - 136072\nu^{2} - 69496 ) / 69993 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -64\nu^{10} - 376\nu^{8} - 2209\nu^{6} - 1864\nu^{4} - 952\nu^{2} + 24404 ) / 9999 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -64\nu^{11} - 376\nu^{9} - 2209\nu^{7} - 1864\nu^{5} - 952\nu^{3} + 34403\nu ) / 9999 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 799\nu^{10} + 5944\nu^{8} + 34921\nu^{6} + 82015\nu^{4} + 173119\nu^{2} + 18424 ) / 69993 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 799\nu^{11} + 5944\nu^{9} + 34921\nu^{7} + 82015\nu^{5} + 173119\nu^{3} + 18424\nu ) / 69993 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 184\nu^{10} + 1081\nu^{8} + 5101\nu^{6} + 5359\nu^{4} + 2737\nu^{2} - 5168 ) / 9999 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -248\nu^{11} - 1457\nu^{9} - 7310\nu^{7} - 7223\nu^{5} - 3689\nu^{3} + 39571\nu ) / 9999 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -1949\nu^{10} - 15200\nu^{8} - 89300\nu^{6} - 232997\nu^{4} - 442700\nu^{2} - 226100 ) / 69993 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -916\nu^{11} - 7048\nu^{9} - 41407\nu^{7} - 105004\nu^{5} - 205273\nu^{3} - 104839\nu ) / 23331 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -415\nu^{11} - 3688\nu^{9} - 21667\nu^{7} - 60832\nu^{5} - 107413\nu^{3} - 54859\nu ) / 9999 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{9} + 3\beta_{5} + \beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{10} + 4\beta_{6} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{9} - 12\beta_{5} + \beta_{2} - 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{11} - 6\beta_{10} - 17\beta_{6} - 17\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -8\beta_{7} - 23\beta_{3} + 52 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 8\beta_{8} - 31\beta_{4} + 75\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 106\beta_{9} + 47\beta_{7} + 233\beta_{5} + 106\beta_{3} - 47\beta_{2} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -47\beta_{11} + 153\beta_{10} - 47\beta_{8} + 339\beta_{6} + 153\beta_{4} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -492\beta_{9} - 1064\beta_{5} + 247\beta_{2} - 1064 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 247\beta_{11} - 739\beta_{10} - 1556\beta_{6} - 1556\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
235.1
1.08393 1.87742i
0.830794 1.43898i
0.367252 0.636099i
−0.367252 + 0.636099i
−0.830794 + 1.43898i
−1.08393 + 1.87742i
1.08393 + 1.87742i
0.830794 + 1.43898i
0.367252 + 0.636099i
−0.367252 0.636099i
−0.830794 1.43898i
−1.08393 1.87742i
−1.08393 1.87742i 0 −1.34981 + 2.33795i −0.758349 1.31350i 0 1.40545 2.24159i 1.51670 0 −1.64400 + 2.84748i
235.2 −0.830794 1.43898i 0 −0.380438 + 0.658939i 1.02946 + 1.78307i 0 1.85185 + 1.88962i −2.05891 0 1.71053 2.96273i
235.3 −0.367252 0.636099i 0 0.730252 1.26483i 1.27088 + 2.20122i 0 −2.25729 1.38008i −2.54175 0 0.933463 1.61680i
235.4 0.367252 + 0.636099i 0 0.730252 1.26483i −1.27088 2.20122i 0 −2.25729 1.38008i 2.54175 0 0.933463 1.61680i
235.5 0.830794 + 1.43898i 0 −0.380438 + 0.658939i −1.02946 1.78307i 0 1.85185 + 1.88962i 2.05891 0 1.71053 2.96273i
235.6 1.08393 + 1.87742i 0 −1.34981 + 2.33795i 0.758349 + 1.31350i 0 1.40545 2.24159i −1.51670 0 −1.64400 + 2.84748i
352.1 −1.08393 + 1.87742i 0 −1.34981 2.33795i −0.758349 + 1.31350i 0 1.40545 + 2.24159i 1.51670 0 −1.64400 2.84748i
352.2 −0.830794 + 1.43898i 0 −0.380438 0.658939i 1.02946 1.78307i 0 1.85185 1.88962i −2.05891 0 1.71053 + 2.96273i
352.3 −0.367252 + 0.636099i 0 0.730252 + 1.26483i 1.27088 2.20122i 0 −2.25729 + 1.38008i −2.54175 0 0.933463 + 1.61680i
352.4 0.367252 0.636099i 0 0.730252 + 1.26483i −1.27088 + 2.20122i 0 −2.25729 + 1.38008i 2.54175 0 0.933463 + 1.61680i
352.5 0.830794 1.43898i 0 −0.380438 0.658939i −1.02946 + 1.78307i 0 1.85185 1.88962i 2.05891 0 1.71053 + 2.96273i
352.6 1.08393 1.87742i 0 −1.34981 2.33795i 0.758349 1.31350i 0 1.40545 + 2.24159i −1.51670 0 −1.64400 2.84748i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 235.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.j.i 12
3.b odd 2 1 inner 819.2.j.i 12
7.c even 3 1 inner 819.2.j.i 12
7.c even 3 1 5733.2.a.bs 6
7.d odd 6 1 5733.2.a.bt 6
21.g even 6 1 5733.2.a.bt 6
21.h odd 6 1 inner 819.2.j.i 12
21.h odd 6 1 5733.2.a.bs 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
819.2.j.i 12 1.a even 1 1 trivial
819.2.j.i 12 3.b odd 2 1 inner
819.2.j.i 12 7.c even 3 1 inner
819.2.j.i 12 21.h odd 6 1 inner
5733.2.a.bs 6 7.c even 3 1
5733.2.a.bs 6 21.h odd 6 1
5733.2.a.bt 6 7.d odd 6 1
5733.2.a.bt 6 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} + 8T_{2}^{10} + 47T_{2}^{8} + 122T_{2}^{6} + 233T_{2}^{4} + 119T_{2}^{2} + 49 \) acting on \(S_{2}^{\mathrm{new}}(819, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + 8 T^{10} + \cdots + 49 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + 13 T^{10} + \cdots + 3969 \) Copy content Toggle raw display
$7$ \( (T^{6} - 2 T^{5} + \cdots + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} + 33 T^{10} + \cdots + 321489 \) Copy content Toggle raw display
$13$ \( (T + 1)^{12} \) Copy content Toggle raw display
$17$ \( T^{12} + 83 T^{10} + \cdots + 34656769 \) Copy content Toggle raw display
$19$ \( (T^{6} + 5 T^{5} + \cdots + 441)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + 46 T^{10} + \cdots + 3969 \) Copy content Toggle raw display
$29$ \( (T^{6} - 164 T^{4} + \cdots - 135247)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 4 T^{5} + \cdots + 441)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} - 5 T^{5} + \cdots + 38809)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} - 124 T^{4} + \cdots - 3087)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + 20 T^{2} + \cdots + 79)^{4} \) Copy content Toggle raw display
$47$ \( T^{12} + 32 T^{10} + \cdots + 200704 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 170852435649 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 6422900449 \) Copy content Toggle raw display
$61$ \( (T^{6} - T^{5} + \cdots + 480249)^{2} \) Copy content Toggle raw display
$67$ \( (T^{6} - 33 T^{5} + \cdots + 1520289)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} - 365 T^{4} + \cdots - 942823)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} - 14 T^{5} + \cdots + 170569)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} - 10 T^{5} + \cdots + 1265625)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} - 468 T^{4} + \cdots - 3720087)^{2} \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 48093805809 \) Copy content Toggle raw display
$97$ \( (T^{3} - 11 T^{2} + \cdots + 1631)^{4} \) Copy content Toggle raw display
show more
show less