L(s) = 1 | − 2.28·2-s + 3.19·4-s + (1.46 + 2.54i)5-s + (0.102 − 2.64i)7-s − 2.73·8-s + (−3.34 − 5.80i)10-s + (−2.58 − 4.47i)11-s + (−0.364 + 3.58i)13-s + (−0.233 + 6.02i)14-s − 0.160·16-s − 5.05·17-s + (−1.12 + 1.95i)19-s + (4.69 + 8.13i)20-s + (5.89 + 10.2i)22-s − 5.23·23-s + ⋯ |
L(s) = 1 | − 1.61·2-s + 1.59·4-s + (0.656 + 1.13i)5-s + (0.0386 − 0.999i)7-s − 0.967·8-s + (−1.05 − 1.83i)10-s + (−0.779 − 1.34i)11-s + (−0.101 + 0.994i)13-s + (−0.0623 + 1.61i)14-s − 0.0400·16-s − 1.22·17-s + (−0.259 + 0.448i)19-s + (1.05 + 1.82i)20-s + (1.25 + 2.17i)22-s − 1.09·23-s + ⋯ |
Λ(s)=(=(819s/2ΓC(s)L(s)(−0.998+0.0519i)Λ(2−s)
Λ(s)=(=(819s/2ΓC(s+1/2)L(s)(−0.998+0.0519i)Λ(1−s)
Degree: |
2 |
Conductor: |
819
= 32⋅7⋅13
|
Sign: |
−0.998+0.0519i
|
Analytic conductor: |
6.53974 |
Root analytic conductor: |
2.55729 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ819(802,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 819, ( :1/2), −0.998+0.0519i)
|
Particular Values
L(1) |
≈ |
0.00118018−0.0454088i |
L(21) |
≈ |
0.00118018−0.0454088i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.102+2.64i)T |
| 13 | 1+(0.364−3.58i)T |
good | 2 | 1+2.28T+2T2 |
| 5 | 1+(−1.46−2.54i)T+(−2.5+4.33i)T2 |
| 11 | 1+(2.58+4.47i)T+(−5.5+9.52i)T2 |
| 17 | 1+5.05T+17T2 |
| 19 | 1+(1.12−1.95i)T+(−9.5−16.4i)T2 |
| 23 | 1+5.23T+23T2 |
| 29 | 1+(0.216−0.375i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.34−2.32i)T+(−15.5−26.8i)T2 |
| 37 | 1+4.24T+37T2 |
| 41 | 1+(0.269−0.466i)T+(−20.5−35.5i)T2 |
| 43 | 1+(4.66+8.07i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.87−8.43i)T+(−23.5+40.7i)T2 |
| 53 | 1+(0.377−0.653i)T+(−26.5−45.8i)T2 |
| 59 | 1−3.64T+59T2 |
| 61 | 1+(3.47−6.02i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.68−11.5i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.90+6.76i)T+(−35.5+61.4i)T2 |
| 73 | 1+(7.94−13.7i)T+(−36.5−63.2i)T2 |
| 79 | 1+(7.79+13.4i)T+(−39.5+68.4i)T2 |
| 83 | 1+13.2T+83T2 |
| 89 | 1−4.00T+89T2 |
| 97 | 1+(−2.69−4.67i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46768303384088592528399098314, −10.01818713324958215509451937177, −8.944273878940630087507510063009, −8.284879867804511521584088244946, −7.25747452625361658780446974865, −6.73678000627627893781067405863, −5.87245504760371500407365809027, −4.15252842032218187405407937626, −2.78152051244093891732122052620, −1.72595736927934022506279752350,
0.03524442634483266893619613886, 1.78517219229868751992989724584, 2.43568933957297199742350173669, 4.64166126253803575787733849962, 5.42385547199118551280855729786, 6.52427293609580677173507409459, 7.61921721366825474467102992486, 8.382359622743081049137852527311, 8.953794636220962194453725949179, 9.708969906084086960609907997956