Properties

Label 2-819-91.74-c1-0-0
Degree 22
Conductor 819819
Sign 0.998+0.0519i-0.998 + 0.0519i
Analytic cond. 6.539746.53974
Root an. cond. 2.557292.55729
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.28·2-s + 3.19·4-s + (1.46 + 2.54i)5-s + (0.102 − 2.64i)7-s − 2.73·8-s + (−3.34 − 5.80i)10-s + (−2.58 − 4.47i)11-s + (−0.364 + 3.58i)13-s + (−0.233 + 6.02i)14-s − 0.160·16-s − 5.05·17-s + (−1.12 + 1.95i)19-s + (4.69 + 8.13i)20-s + (5.89 + 10.2i)22-s − 5.23·23-s + ⋯
L(s)  = 1  − 1.61·2-s + 1.59·4-s + (0.656 + 1.13i)5-s + (0.0386 − 0.999i)7-s − 0.967·8-s + (−1.05 − 1.83i)10-s + (−0.779 − 1.34i)11-s + (−0.101 + 0.994i)13-s + (−0.0623 + 1.61i)14-s − 0.0400·16-s − 1.22·17-s + (−0.259 + 0.448i)19-s + (1.05 + 1.82i)20-s + (1.25 + 2.17i)22-s − 1.09·23-s + ⋯

Functional equation

Λ(s)=(819s/2ΓC(s)L(s)=((0.998+0.0519i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0519i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(819s/2ΓC(s+1/2)L(s)=((0.998+0.0519i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0519i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 819819    =    327133^{2} \cdot 7 \cdot 13
Sign: 0.998+0.0519i-0.998 + 0.0519i
Analytic conductor: 6.539746.53974
Root analytic conductor: 2.557292.55729
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ819(802,)\chi_{819} (802, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 819, ( :1/2), 0.998+0.0519i)(2,\ 819,\ (\ :1/2),\ -0.998 + 0.0519i)

Particular Values

L(1)L(1) \approx 0.001180180.0454088i0.00118018 - 0.0454088i
L(12)L(\frac12) \approx 0.001180180.0454088i0.00118018 - 0.0454088i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(0.102+2.64i)T 1 + (-0.102 + 2.64i)T
13 1+(0.3643.58i)T 1 + (0.364 - 3.58i)T
good2 1+2.28T+2T2 1 + 2.28T + 2T^{2}
5 1+(1.462.54i)T+(2.5+4.33i)T2 1 + (-1.46 - 2.54i)T + (-2.5 + 4.33i)T^{2}
11 1+(2.58+4.47i)T+(5.5+9.52i)T2 1 + (2.58 + 4.47i)T + (-5.5 + 9.52i)T^{2}
17 1+5.05T+17T2 1 + 5.05T + 17T^{2}
19 1+(1.121.95i)T+(9.516.4i)T2 1 + (1.12 - 1.95i)T + (-9.5 - 16.4i)T^{2}
23 1+5.23T+23T2 1 + 5.23T + 23T^{2}
29 1+(0.2160.375i)T+(14.525.1i)T2 1 + (0.216 - 0.375i)T + (-14.5 - 25.1i)T^{2}
31 1+(1.342.32i)T+(15.526.8i)T2 1 + (1.34 - 2.32i)T + (-15.5 - 26.8i)T^{2}
37 1+4.24T+37T2 1 + 4.24T + 37T^{2}
41 1+(0.2690.466i)T+(20.535.5i)T2 1 + (0.269 - 0.466i)T + (-20.5 - 35.5i)T^{2}
43 1+(4.66+8.07i)T+(21.5+37.2i)T2 1 + (4.66 + 8.07i)T + (-21.5 + 37.2i)T^{2}
47 1+(4.878.43i)T+(23.5+40.7i)T2 1 + (-4.87 - 8.43i)T + (-23.5 + 40.7i)T^{2}
53 1+(0.3770.653i)T+(26.545.8i)T2 1 + (0.377 - 0.653i)T + (-26.5 - 45.8i)T^{2}
59 13.64T+59T2 1 - 3.64T + 59T^{2}
61 1+(3.476.02i)T+(30.552.8i)T2 1 + (3.47 - 6.02i)T + (-30.5 - 52.8i)T^{2}
67 1+(6.6811.5i)T+(33.5+58.0i)T2 1 + (-6.68 - 11.5i)T + (-33.5 + 58.0i)T^{2}
71 1+(3.90+6.76i)T+(35.5+61.4i)T2 1 + (3.90 + 6.76i)T + (-35.5 + 61.4i)T^{2}
73 1+(7.9413.7i)T+(36.563.2i)T2 1 + (7.94 - 13.7i)T + (-36.5 - 63.2i)T^{2}
79 1+(7.79+13.4i)T+(39.5+68.4i)T2 1 + (7.79 + 13.4i)T + (-39.5 + 68.4i)T^{2}
83 1+13.2T+83T2 1 + 13.2T + 83T^{2}
89 14.00T+89T2 1 - 4.00T + 89T^{2}
97 1+(2.694.67i)T+(48.5+84.0i)T2 1 + (-2.69 - 4.67i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.46768303384088592528399098314, −10.01818713324958215509451937177, −8.944273878940630087507510063009, −8.284879867804511521584088244946, −7.25747452625361658780446974865, −6.73678000627627893781067405863, −5.87245504760371500407365809027, −4.15252842032218187405407937626, −2.78152051244093891732122052620, −1.72595736927934022506279752350, 0.03524442634483266893619613886, 1.78517219229868751992989724584, 2.43568933957297199742350173669, 4.64166126253803575787733849962, 5.42385547199118551280855729786, 6.52427293609580677173507409459, 7.61921721366825474467102992486, 8.382359622743081049137852527311, 8.953794636220962194453725949179, 9.708969906084086960609907997956

Graph of the ZZ-function along the critical line