L(s) = 1 | − 2.28·2-s + 3.19·4-s + (1.46 + 2.54i)5-s + (0.102 − 2.64i)7-s − 2.73·8-s + (−3.34 − 5.80i)10-s + (−2.58 − 4.47i)11-s + (−0.364 + 3.58i)13-s + (−0.233 + 6.02i)14-s − 0.160·16-s − 5.05·17-s + (−1.12 + 1.95i)19-s + (4.69 + 8.13i)20-s + (5.89 + 10.2i)22-s − 5.23·23-s + ⋯ |
L(s) = 1 | − 1.61·2-s + 1.59·4-s + (0.656 + 1.13i)5-s + (0.0386 − 0.999i)7-s − 0.967·8-s + (−1.05 − 1.83i)10-s + (−0.779 − 1.34i)11-s + (−0.101 + 0.994i)13-s + (−0.0623 + 1.61i)14-s − 0.0400·16-s − 1.22·17-s + (−0.259 + 0.448i)19-s + (1.05 + 1.82i)20-s + (1.25 + 2.17i)22-s − 1.09·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0519i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00118018 - 0.0454088i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00118018 - 0.0454088i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.102 + 2.64i)T \) |
| 13 | \( 1 + (0.364 - 3.58i)T \) |
good | 2 | \( 1 + 2.28T + 2T^{2} \) |
| 5 | \( 1 + (-1.46 - 2.54i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.58 + 4.47i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 5.05T + 17T^{2} \) |
| 19 | \( 1 + (1.12 - 1.95i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 5.23T + 23T^{2} \) |
| 29 | \( 1 + (0.216 - 0.375i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.34 - 2.32i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4.24T + 37T^{2} \) |
| 41 | \( 1 + (0.269 - 0.466i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.66 + 8.07i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.87 - 8.43i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.377 - 0.653i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 3.64T + 59T^{2} \) |
| 61 | \( 1 + (3.47 - 6.02i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.68 - 11.5i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.90 + 6.76i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7.94 - 13.7i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.79 + 13.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 13.2T + 83T^{2} \) |
| 89 | \( 1 - 4.00T + 89T^{2} \) |
| 97 | \( 1 + (-2.69 - 4.67i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46768303384088592528399098314, −10.01818713324958215509451937177, −8.944273878940630087507510063009, −8.284879867804511521584088244946, −7.25747452625361658780446974865, −6.73678000627627893781067405863, −5.87245504760371500407365809027, −4.15252842032218187405407937626, −2.78152051244093891732122052620, −1.72595736927934022506279752350,
0.03524442634483266893619613886, 1.78517219229868751992989724584, 2.43568933957297199742350173669, 4.64166126253803575787733849962, 5.42385547199118551280855729786, 6.52427293609580677173507409459, 7.61921721366825474467102992486, 8.382359622743081049137852527311, 8.953794636220962194453725949179, 9.708969906084086960609907997956