Properties

Label 819.2.s.f.802.2
Level $819$
Weight $2$
Character 819.802
Analytic conductor $6.540$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(289,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 802.2
Root \(1.14017 - 1.97483i\) of defining polynomial
Character \(\chi\) \(=\) 819.802
Dual form 819.2.s.f.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.28034 q^{2} +3.19995 q^{4} +(1.46862 + 2.54373i) q^{5} +(0.102378 - 2.64377i) q^{7} -2.73629 q^{8} +(-3.34896 - 5.80057i) q^{10} +(-2.58477 - 4.47696i) q^{11} +(-0.364757 + 3.58705i) q^{13} +(-0.233457 + 6.02869i) q^{14} -0.160234 q^{16} -5.05291 q^{17} +(-1.12929 + 1.95599i) q^{19} +(4.69952 + 8.13980i) q^{20} +(5.89416 + 10.2090i) q^{22} -5.23204 q^{23} +(-1.81371 + 3.14143i) q^{25} +(0.831769 - 8.17970i) q^{26} +(0.327604 - 8.45992i) q^{28} +(-0.216901 + 0.375683i) q^{29} +(-1.34122 + 2.32306i) q^{31} +5.83796 q^{32} +11.5224 q^{34} +(6.87539 - 3.62228i) q^{35} -4.24772 q^{37} +(2.57517 - 4.46033i) q^{38} +(-4.01857 - 6.96037i) q^{40} +(-0.269622 + 0.466999i) q^{41} +(-4.66348 - 8.07739i) q^{43} +(-8.27113 - 14.3260i) q^{44} +11.9308 q^{46} +(4.87054 + 8.43603i) q^{47} +(-6.97904 - 0.541328i) q^{49} +(4.13587 - 7.16354i) q^{50} +(-1.16720 + 11.4784i) q^{52} +(-0.377571 + 0.653972i) q^{53} +(7.59211 - 13.1499i) q^{55} +(-0.280135 + 7.23411i) q^{56} +(0.494607 - 0.856685i) q^{58} +3.64771 q^{59} +(-3.47734 + 6.02293i) q^{61} +(3.05843 - 5.29736i) q^{62} -12.9921 q^{64} +(-9.66019 + 4.34019i) q^{65} +(6.68012 + 11.5703i) q^{67} -16.1691 q^{68} +(-15.6782 + 8.26003i) q^{70} +(-3.90487 - 6.76343i) q^{71} +(-7.94401 + 13.7594i) q^{73} +9.68624 q^{74} +(-3.61368 + 6.25908i) q^{76} +(-12.1007 + 6.37520i) q^{77} +(-7.79235 - 13.4967i) q^{79} +(-0.235324 - 0.407593i) q^{80} +(0.614830 - 1.06492i) q^{82} -13.2349 q^{83} +(-7.42083 - 12.8532i) q^{85} +(10.6343 + 18.4192i) q^{86} +(7.07267 + 12.2502i) q^{88} +4.00286 q^{89} +(9.44600 + 1.33157i) q^{91} -16.7423 q^{92} +(-11.1065 - 19.2370i) q^{94} -6.63403 q^{95} +(2.69653 + 4.67053i) q^{97} +(15.9146 + 1.23441i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 32 q^{4} + 3 q^{7} + 12 q^{8} - 4 q^{10} + 8 q^{11} - 5 q^{13} + 9 q^{14} + 40 q^{16} + 7 q^{19} - 12 q^{20} - 9 q^{22} - 28 q^{23} - 32 q^{25} - 13 q^{26} - 23 q^{28} + 9 q^{29} - 9 q^{31} + 34 q^{32}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.28034 −1.61244 −0.806222 0.591614i \(-0.798491\pi\)
−0.806222 + 0.591614i \(0.798491\pi\)
\(3\) 0 0
\(4\) 3.19995 1.59997
\(5\) 1.46862 + 2.54373i 0.656788 + 1.13759i 0.981442 + 0.191758i \(0.0614188\pi\)
−0.324654 + 0.945833i \(0.605248\pi\)
\(6\) 0 0
\(7\) 0.102378 2.64377i 0.0386952 0.999251i
\(8\) −2.73629 −0.967423
\(9\) 0 0
\(10\) −3.34896 5.80057i −1.05903 1.83430i
\(11\) −2.58477 4.47696i −0.779338 1.34985i −0.932324 0.361624i \(-0.882222\pi\)
0.152986 0.988228i \(-0.451111\pi\)
\(12\) 0 0
\(13\) −0.364757 + 3.58705i −0.101165 + 0.994870i
\(14\) −0.233457 + 6.02869i −0.0623939 + 1.61124i
\(15\) 0 0
\(16\) −0.160234 −0.0400586
\(17\) −5.05291 −1.22551 −0.612756 0.790272i \(-0.709939\pi\)
−0.612756 + 0.790272i \(0.709939\pi\)
\(18\) 0 0
\(19\) −1.12929 + 1.95599i −0.259078 + 0.448736i −0.965995 0.258560i \(-0.916752\pi\)
0.706917 + 0.707296i \(0.250085\pi\)
\(20\) 4.69952 + 8.13980i 1.05084 + 1.82011i
\(21\) 0 0
\(22\) 5.89416 + 10.2090i 1.25664 + 2.17656i
\(23\) −5.23204 −1.09096 −0.545478 0.838125i \(-0.683652\pi\)
−0.545478 + 0.838125i \(0.683652\pi\)
\(24\) 0 0
\(25\) −1.81371 + 3.14143i −0.362742 + 0.628287i
\(26\) 0.831769 8.17970i 0.163123 1.60417i
\(27\) 0 0
\(28\) 0.327604 8.45992i 0.0619114 1.59878i
\(29\) −0.216901 + 0.375683i −0.0402775 + 0.0697626i −0.885461 0.464713i \(-0.846158\pi\)
0.845184 + 0.534476i \(0.179491\pi\)
\(30\) 0 0
\(31\) −1.34122 + 2.32306i −0.240890 + 0.417234i −0.960968 0.276659i \(-0.910773\pi\)
0.720078 + 0.693893i \(0.244106\pi\)
\(32\) 5.83796 1.03202
\(33\) 0 0
\(34\) 11.5224 1.97607
\(35\) 6.87539 3.62228i 1.16215 0.612277i
\(36\) 0 0
\(37\) −4.24772 −0.698321 −0.349160 0.937063i \(-0.613533\pi\)
−0.349160 + 0.937063i \(0.613533\pi\)
\(38\) 2.57517 4.46033i 0.417748 0.723561i
\(39\) 0 0
\(40\) −4.01857 6.96037i −0.635392 1.10053i
\(41\) −0.269622 + 0.466999i −0.0421079 + 0.0729330i −0.886311 0.463090i \(-0.846741\pi\)
0.844203 + 0.536023i \(0.180074\pi\)
\(42\) 0 0
\(43\) −4.66348 8.07739i −0.711175 1.23179i −0.964416 0.264388i \(-0.914830\pi\)
0.253242 0.967403i \(-0.418503\pi\)
\(44\) −8.27113 14.3260i −1.24692 2.15973i
\(45\) 0 0
\(46\) 11.9308 1.75910
\(47\) 4.87054 + 8.43603i 0.710442 + 1.23052i 0.964691 + 0.263383i \(0.0848382\pi\)
−0.254250 + 0.967139i \(0.581828\pi\)
\(48\) 0 0
\(49\) −6.97904 0.541328i −0.997005 0.0773325i
\(50\) 4.13587 7.16354i 0.584900 1.01308i
\(51\) 0 0
\(52\) −1.16720 + 11.4784i −0.161862 + 1.59176i
\(53\) −0.377571 + 0.653972i −0.0518634 + 0.0898300i −0.890792 0.454412i \(-0.849849\pi\)
0.838928 + 0.544242i \(0.183183\pi\)
\(54\) 0 0
\(55\) 7.59211 13.1499i 1.02372 1.77313i
\(56\) −0.280135 + 7.23411i −0.0374347 + 0.966698i
\(57\) 0 0
\(58\) 0.494607 0.856685i 0.0649451 0.112488i
\(59\) 3.64771 0.474891 0.237445 0.971401i \(-0.423690\pi\)
0.237445 + 0.971401i \(0.423690\pi\)
\(60\) 0 0
\(61\) −3.47734 + 6.02293i −0.445228 + 0.771157i −0.998068 0.0621304i \(-0.980211\pi\)
0.552841 + 0.833287i \(0.313544\pi\)
\(62\) 3.05843 5.29736i 0.388422 0.672766i
\(63\) 0 0
\(64\) −12.9921 −1.62401
\(65\) −9.66019 + 4.34019i −1.19820 + 0.538334i
\(66\) 0 0
\(67\) 6.68012 + 11.5703i 0.816107 + 1.41354i 0.908530 + 0.417819i \(0.137205\pi\)
−0.0924236 + 0.995720i \(0.529461\pi\)
\(68\) −16.1691 −1.96079
\(69\) 0 0
\(70\) −15.6782 + 8.26003i −1.87391 + 0.987262i
\(71\) −3.90487 6.76343i −0.463423 0.802672i 0.535706 0.844404i \(-0.320045\pi\)
−0.999129 + 0.0417329i \(0.986712\pi\)
\(72\) 0 0
\(73\) −7.94401 + 13.7594i −0.929776 + 1.61042i −0.146083 + 0.989272i \(0.546667\pi\)
−0.783694 + 0.621147i \(0.786667\pi\)
\(74\) 9.68624 1.12600
\(75\) 0 0
\(76\) −3.61368 + 6.25908i −0.414517 + 0.717965i
\(77\) −12.1007 + 6.37520i −1.37900 + 0.726521i
\(78\) 0 0
\(79\) −7.79235 13.4967i −0.876708 1.51850i −0.854932 0.518740i \(-0.826401\pi\)
−0.0217756 0.999763i \(-0.506932\pi\)
\(80\) −0.235324 0.407593i −0.0263100 0.0455703i
\(81\) 0 0
\(82\) 0.614830 1.06492i 0.0678966 0.117600i
\(83\) −13.2349 −1.45272 −0.726360 0.687315i \(-0.758789\pi\)
−0.726360 + 0.687315i \(0.758789\pi\)
\(84\) 0 0
\(85\) −7.42083 12.8532i −0.804902 1.39413i
\(86\) 10.6343 + 18.4192i 1.14673 + 1.98619i
\(87\) 0 0
\(88\) 7.07267 + 12.2502i 0.753949 + 1.30588i
\(89\) 4.00286 0.424303 0.212151 0.977237i \(-0.431953\pi\)
0.212151 + 0.977237i \(0.431953\pi\)
\(90\) 0 0
\(91\) 9.44600 + 1.33157i 0.990210 + 0.139586i
\(92\) −16.7423 −1.74550
\(93\) 0 0
\(94\) −11.1065 19.2370i −1.14555 1.98415i
\(95\) −6.63403 −0.680637
\(96\) 0 0
\(97\) 2.69653 + 4.67053i 0.273791 + 0.474220i 0.969829 0.243784i \(-0.0783889\pi\)
−0.696038 + 0.718005i \(0.745056\pi\)
\(98\) 15.9146 + 1.23441i 1.60761 + 0.124694i
\(99\) 0 0
\(100\) −5.80377 + 10.0524i −0.580377 + 1.00524i
\(101\) −1.57620 2.73006i −0.156838 0.271651i 0.776889 0.629638i \(-0.216797\pi\)
−0.933727 + 0.357987i \(0.883463\pi\)
\(102\) 0 0
\(103\) −6.59727 11.4268i −0.650048 1.12592i −0.983111 0.183012i \(-0.941415\pi\)
0.333062 0.942905i \(-0.391918\pi\)
\(104\) 0.998078 9.81520i 0.0978696 0.962460i
\(105\) 0 0
\(106\) 0.860990 1.49128i 0.0836267 0.144846i
\(107\) −5.86701 −0.567185 −0.283593 0.958945i \(-0.591526\pi\)
−0.283593 + 0.958945i \(0.591526\pi\)
\(108\) 0 0
\(109\) 2.74399 4.75273i 0.262826 0.455229i −0.704166 0.710036i \(-0.748679\pi\)
0.966992 + 0.254807i \(0.0820120\pi\)
\(110\) −17.3126 + 29.9863i −1.65069 + 2.85908i
\(111\) 0 0
\(112\) −0.0164045 + 0.423623i −0.00155008 + 0.0400286i
\(113\) −0.794808 1.37665i −0.0747692 0.129504i 0.826217 0.563352i \(-0.190489\pi\)
−0.900986 + 0.433848i \(0.857155\pi\)
\(114\) 0 0
\(115\) −7.68390 13.3089i −0.716527 1.24106i
\(116\) −0.694071 + 1.20217i −0.0644428 + 0.111618i
\(117\) 0 0
\(118\) −8.31800 −0.765734
\(119\) −0.517307 + 13.3587i −0.0474215 + 1.22459i
\(120\) 0 0
\(121\) −7.86209 + 13.6175i −0.714735 + 1.23796i
\(122\) 7.92951 13.7343i 0.717904 1.24345i
\(123\) 0 0
\(124\) −4.29183 + 7.43367i −0.385418 + 0.667563i
\(125\) 4.03162 0.360599
\(126\) 0 0
\(127\) 0.348278 0.603236i 0.0309047 0.0535285i −0.850159 0.526525i \(-0.823494\pi\)
0.881064 + 0.472997i \(0.156828\pi\)
\(128\) 17.9504 1.58660
\(129\) 0 0
\(130\) 22.0285 9.89710i 1.93203 0.868033i
\(131\) −3.35469 5.81049i −0.293101 0.507665i 0.681441 0.731873i \(-0.261354\pi\)
−0.974541 + 0.224208i \(0.928020\pi\)
\(132\) 0 0
\(133\) 5.05558 + 3.18584i 0.438375 + 0.276248i
\(134\) −15.2329 26.3842i −1.31593 2.27925i
\(135\) 0 0
\(136\) 13.8262 1.18559
\(137\) −12.4993 −1.06789 −0.533944 0.845520i \(-0.679291\pi\)
−0.533944 + 0.845520i \(0.679291\pi\)
\(138\) 0 0
\(139\) −0.657614 1.13902i −0.0557781 0.0966105i 0.836788 0.547527i \(-0.184431\pi\)
−0.892566 + 0.450916i \(0.851097\pi\)
\(140\) 22.0009 11.5911i 1.85941 0.979627i
\(141\) 0 0
\(142\) 8.90442 + 15.4229i 0.747243 + 1.29426i
\(143\) 17.0019 7.63871i 1.42177 0.638781i
\(144\) 0 0
\(145\) −1.27418 −0.105815
\(146\) 18.1150 31.3762i 1.49921 2.59671i
\(147\) 0 0
\(148\) −13.5925 −1.11729
\(149\) 10.5964 18.3534i 0.868088 1.50357i 0.00413964 0.999991i \(-0.498682\pi\)
0.863948 0.503581i \(-0.167984\pi\)
\(150\) 0 0
\(151\) 7.90358 13.6894i 0.643185 1.11403i −0.341533 0.939870i \(-0.610946\pi\)
0.984718 0.174159i \(-0.0557205\pi\)
\(152\) 3.09007 5.35216i 0.250638 0.434117i
\(153\) 0 0
\(154\) 27.5936 14.5376i 2.22356 1.17147i
\(155\) −7.87898 −0.632855
\(156\) 0 0
\(157\) −2.76205 + 4.78402i −0.220436 + 0.381806i −0.954940 0.296798i \(-0.904081\pi\)
0.734505 + 0.678604i \(0.237415\pi\)
\(158\) 17.7692 + 30.7772i 1.41364 + 2.44850i
\(159\) 0 0
\(160\) 8.57376 + 14.8502i 0.677815 + 1.17401i
\(161\) −0.535646 + 13.8323i −0.0422148 + 1.09014i
\(162\) 0 0
\(163\) 1.57435 2.72685i 0.123313 0.213584i −0.797759 0.602976i \(-0.793982\pi\)
0.921072 + 0.389392i \(0.127315\pi\)
\(164\) −0.862777 + 1.49437i −0.0673715 + 0.116691i
\(165\) 0 0
\(166\) 30.1801 2.34243
\(167\) −6.71152 + 11.6247i −0.519353 + 0.899546i 0.480394 + 0.877053i \(0.340494\pi\)
−0.999747 + 0.0224932i \(0.992840\pi\)
\(168\) 0 0
\(169\) −12.7339 2.61680i −0.979531 0.201293i
\(170\) 16.9220 + 29.3098i 1.29786 + 2.24796i
\(171\) 0 0
\(172\) −14.9229 25.8472i −1.13786 1.97083i
\(173\) −6.42442 + 11.1274i −0.488439 + 0.846002i −0.999912 0.0132981i \(-0.995767\pi\)
0.511472 + 0.859300i \(0.329100\pi\)
\(174\) 0 0
\(175\) 8.11955 + 5.11664i 0.613780 + 0.386782i
\(176\) 0.414169 + 0.717362i 0.0312192 + 0.0540732i
\(177\) 0 0
\(178\) −9.12788 −0.684164
\(179\) 9.33314 + 16.1655i 0.697591 + 1.20826i 0.969299 + 0.245884i \(0.0790782\pi\)
−0.271708 + 0.962380i \(0.587588\pi\)
\(180\) 0 0
\(181\) 0.878433 0.0652934 0.0326467 0.999467i \(-0.489606\pi\)
0.0326467 + 0.999467i \(0.489606\pi\)
\(182\) −21.5401 3.03643i −1.59666 0.225075i
\(183\) 0 0
\(184\) 14.3164 1.05542
\(185\) −6.23830 10.8051i −0.458649 0.794403i
\(186\) 0 0
\(187\) 13.0606 + 22.6217i 0.955088 + 1.65426i
\(188\) 15.5855 + 26.9948i 1.13669 + 1.96880i
\(189\) 0 0
\(190\) 15.1278 1.09749
\(191\) −7.97565 + 13.8142i −0.577097 + 0.999562i 0.418713 + 0.908119i \(0.362481\pi\)
−0.995810 + 0.0914434i \(0.970852\pi\)
\(192\) 0 0
\(193\) −1.97533 3.42137i −0.142187 0.246276i 0.786133 0.618058i \(-0.212080\pi\)
−0.928320 + 0.371782i \(0.878747\pi\)
\(194\) −6.14900 10.6504i −0.441473 0.764653i
\(195\) 0 0
\(196\) −22.3325 1.73222i −1.59518 0.123730i
\(197\) 6.72353 11.6455i 0.479032 0.829708i −0.520679 0.853753i \(-0.674321\pi\)
0.999711 + 0.0240448i \(0.00765444\pi\)
\(198\) 0 0
\(199\) 20.8291 1.47654 0.738268 0.674508i \(-0.235644\pi\)
0.738268 + 0.674508i \(0.235644\pi\)
\(200\) 4.96282 8.59586i 0.350925 0.607819i
\(201\) 0 0
\(202\) 3.59427 + 6.22546i 0.252892 + 0.438022i
\(203\) 0.971014 + 0.611897i 0.0681518 + 0.0429468i
\(204\) 0 0
\(205\) −1.58389 −0.110624
\(206\) 15.0440 + 26.0570i 1.04817 + 1.81548i
\(207\) 0 0
\(208\) 0.0584466 0.574769i 0.00405254 0.0398531i
\(209\) 11.6759 0.807636
\(210\) 0 0
\(211\) 7.17814 12.4329i 0.494164 0.855917i −0.505814 0.862643i \(-0.668808\pi\)
0.999977 + 0.00672604i \(0.00214098\pi\)
\(212\) −1.20821 + 2.09268i −0.0829800 + 0.143726i
\(213\) 0 0
\(214\) 13.3788 0.914554
\(215\) 13.6978 23.7253i 0.934182 1.61805i
\(216\) 0 0
\(217\) 6.00432 + 3.78370i 0.407600 + 0.256855i
\(218\) −6.25722 + 10.8378i −0.423793 + 0.734030i
\(219\) 0 0
\(220\) 24.2943 42.0790i 1.63792 2.83697i
\(221\) 1.84308 18.1251i 0.123979 1.21922i
\(222\) 0 0
\(223\) 0.596931 1.03392i 0.0399735 0.0692361i −0.845346 0.534218i \(-0.820606\pi\)
0.885320 + 0.464982i \(0.153939\pi\)
\(224\) 0.597679 15.4342i 0.0399341 1.03124i
\(225\) 0 0
\(226\) 1.81243 + 3.13922i 0.120561 + 0.208818i
\(227\) 15.8887 1.05457 0.527286 0.849688i \(-0.323210\pi\)
0.527286 + 0.849688i \(0.323210\pi\)
\(228\) 0 0
\(229\) −4.39323 7.60931i −0.290313 0.502837i 0.683571 0.729884i \(-0.260426\pi\)
−0.973884 + 0.227047i \(0.927093\pi\)
\(230\) 17.5219 + 30.3488i 1.15536 + 2.00114i
\(231\) 0 0
\(232\) 0.593502 1.02798i 0.0389653 0.0674899i
\(233\) −2.86714 4.96604i −0.187833 0.325336i 0.756695 0.653769i \(-0.226813\pi\)
−0.944527 + 0.328432i \(0.893480\pi\)
\(234\) 0 0
\(235\) −14.3060 + 24.7787i −0.933220 + 1.61638i
\(236\) 11.6725 0.759813
\(237\) 0 0
\(238\) 1.17964 30.4625i 0.0764644 1.97459i
\(239\) 11.5411 0.746532 0.373266 0.927724i \(-0.378238\pi\)
0.373266 + 0.927724i \(0.378238\pi\)
\(240\) 0 0
\(241\) −5.66060 −0.364631 −0.182316 0.983240i \(-0.558359\pi\)
−0.182316 + 0.983240i \(0.558359\pi\)
\(242\) 17.9282 31.0526i 1.15247 1.99614i
\(243\) 0 0
\(244\) −11.1273 + 19.2730i −0.712352 + 1.23383i
\(245\) −8.87258 18.5478i −0.566849 1.18498i
\(246\) 0 0
\(247\) −6.60434 4.76430i −0.420224 0.303145i
\(248\) 3.66996 6.35655i 0.233043 0.403642i
\(249\) 0 0
\(250\) −9.19346 −0.581445
\(251\) −12.1872 21.1088i −0.769249 1.33238i −0.937971 0.346715i \(-0.887297\pi\)
0.168721 0.985664i \(-0.446036\pi\)
\(252\) 0 0
\(253\) 13.5236 + 23.4236i 0.850223 + 1.47263i
\(254\) −0.794193 + 1.37558i −0.0498321 + 0.0863117i
\(255\) 0 0
\(256\) −14.9488 −0.934303
\(257\) −4.60536 −0.287275 −0.143637 0.989630i \(-0.545880\pi\)
−0.143637 + 0.989630i \(0.545880\pi\)
\(258\) 0 0
\(259\) −0.434873 + 11.2300i −0.0270217 + 0.697798i
\(260\) −30.9121 + 13.8884i −1.91709 + 0.861320i
\(261\) 0 0
\(262\) 7.64983 + 13.2499i 0.472608 + 0.818581i
\(263\) 11.4912 + 19.9033i 0.708576 + 1.22729i 0.965385 + 0.260828i \(0.0839955\pi\)
−0.256809 + 0.966462i \(0.582671\pi\)
\(264\) 0 0
\(265\) −2.21804 −0.136253
\(266\) −11.5284 7.26480i −0.706854 0.445434i
\(267\) 0 0
\(268\) 21.3760 + 37.0244i 1.30575 + 2.26162i
\(269\) −14.0049 −0.853896 −0.426948 0.904276i \(-0.640411\pi\)
−0.426948 + 0.904276i \(0.640411\pi\)
\(270\) 0 0
\(271\) −19.1060 −1.16061 −0.580303 0.814401i \(-0.697066\pi\)
−0.580303 + 0.814401i \(0.697066\pi\)
\(272\) 0.809651 0.0490923
\(273\) 0 0
\(274\) 28.5027 1.72191
\(275\) 18.7521 1.13079
\(276\) 0 0
\(277\) 12.9200 0.776285 0.388142 0.921599i \(-0.373117\pi\)
0.388142 + 0.921599i \(0.373117\pi\)
\(278\) 1.49958 + 2.59735i 0.0899390 + 0.155779i
\(279\) 0 0
\(280\) −18.8130 + 9.91159i −1.12429 + 0.592331i
\(281\) 19.6264 1.17082 0.585408 0.810739i \(-0.300934\pi\)
0.585408 + 0.810739i \(0.300934\pi\)
\(282\) 0 0
\(283\) −1.63363 2.82954i −0.0971095 0.168199i 0.813378 0.581736i \(-0.197626\pi\)
−0.910487 + 0.413538i \(0.864293\pi\)
\(284\) −12.4954 21.6426i −0.741464 1.28425i
\(285\) 0 0
\(286\) −38.7701 + 17.4189i −2.29252 + 1.03000i
\(287\) 1.20704 + 0.760629i 0.0712490 + 0.0448985i
\(288\) 0 0
\(289\) 8.53194 0.501879
\(290\) 2.90557 0.170621
\(291\) 0 0
\(292\) −25.4204 + 44.0295i −1.48762 + 2.57663i
\(293\) −9.50947 16.4709i −0.555549 0.962239i −0.997861 0.0653778i \(-0.979175\pi\)
0.442311 0.896862i \(-0.354159\pi\)
\(294\) 0 0
\(295\) 5.35710 + 9.27878i 0.311903 + 0.540231i
\(296\) 11.6230 0.675572
\(297\) 0 0
\(298\) −24.1633 + 41.8521i −1.39974 + 2.42442i
\(299\) 1.90842 18.7676i 0.110367 1.08536i
\(300\) 0 0
\(301\) −21.8322 + 11.5022i −1.25839 + 0.662978i
\(302\) −18.0229 + 31.2165i −1.03710 + 1.79631i
\(303\) 0 0
\(304\) 0.180952 0.313418i 0.0103783 0.0179757i
\(305\) −20.4276 −1.16968
\(306\) 0 0
\(307\) −8.30660 −0.474083 −0.237041 0.971500i \(-0.576178\pi\)
−0.237041 + 0.971500i \(0.576178\pi\)
\(308\) −38.7215 + 20.4003i −2.20636 + 1.16241i
\(309\) 0 0
\(310\) 17.9668 1.02044
\(311\) −5.42853 + 9.40250i −0.307824 + 0.533167i −0.977886 0.209138i \(-0.932934\pi\)
0.670062 + 0.742305i \(0.266267\pi\)
\(312\) 0 0
\(313\) 0.566928 + 0.981949i 0.0320447 + 0.0555030i 0.881603 0.471992i \(-0.156465\pi\)
−0.849558 + 0.527495i \(0.823131\pi\)
\(314\) 6.29842 10.9092i 0.355440 0.615641i
\(315\) 0 0
\(316\) −24.9351 43.1889i −1.40271 2.42956i
\(317\) 4.98712 + 8.63795i 0.280105 + 0.485155i 0.971410 0.237407i \(-0.0762975\pi\)
−0.691306 + 0.722562i \(0.742964\pi\)
\(318\) 0 0
\(319\) 2.24256 0.125559
\(320\) −19.0804 33.0483i −1.06663 1.84746i
\(321\) 0 0
\(322\) 1.22145 31.5424i 0.0680690 1.75779i
\(323\) 5.70622 9.88347i 0.317503 0.549931i
\(324\) 0 0
\(325\) −10.6069 7.65173i −0.588367 0.424441i
\(326\) −3.59005 + 6.21815i −0.198835 + 0.344392i
\(327\) 0 0
\(328\) 0.737763 1.27784i 0.0407362 0.0705571i
\(329\) 22.8016 12.0129i 1.25709 0.662294i
\(330\) 0 0
\(331\) 0.827569 1.43339i 0.0454873 0.0787863i −0.842385 0.538876i \(-0.818849\pi\)
0.887873 + 0.460089i \(0.152183\pi\)
\(332\) −42.3510 −2.32431
\(333\) 0 0
\(334\) 15.3045 26.5083i 0.837428 1.45047i
\(335\) −19.6212 + 33.9849i −1.07202 + 1.85679i
\(336\) 0 0
\(337\) −12.4081 −0.675913 −0.337956 0.941162i \(-0.609736\pi\)
−0.337956 + 0.941162i \(0.609736\pi\)
\(338\) 29.0376 + 5.96720i 1.57944 + 0.324573i
\(339\) 0 0
\(340\) −23.7463 41.1297i −1.28782 2.23057i
\(341\) 13.8670 0.750939
\(342\) 0 0
\(343\) −2.14565 + 18.3955i −0.115854 + 0.993266i
\(344\) 12.7606 + 22.1021i 0.688007 + 1.19166i
\(345\) 0 0
\(346\) 14.6498 25.3743i 0.787581 1.36413i
\(347\) −13.2452 −0.711041 −0.355521 0.934668i \(-0.615696\pi\)
−0.355521 + 0.934668i \(0.615696\pi\)
\(348\) 0 0
\(349\) 17.5068 30.3227i 0.937119 1.62314i 0.166307 0.986074i \(-0.446816\pi\)
0.770812 0.637063i \(-0.219851\pi\)
\(350\) −18.5153 11.6677i −0.989685 0.623663i
\(351\) 0 0
\(352\) −15.0898 26.1363i −0.804289 1.39307i
\(353\) 11.5541 + 20.0123i 0.614964 + 1.06515i 0.990391 + 0.138297i \(0.0441628\pi\)
−0.375427 + 0.926852i \(0.622504\pi\)
\(354\) 0 0
\(355\) 11.4696 19.8659i 0.608741 1.05437i
\(356\) 12.8089 0.678873
\(357\) 0 0
\(358\) −21.2827 36.8628i −1.12483 1.94826i
\(359\) 6.44458 + 11.1623i 0.340132 + 0.589126i 0.984457 0.175626i \(-0.0561949\pi\)
−0.644325 + 0.764752i \(0.722862\pi\)
\(360\) 0 0
\(361\) 6.94939 + 12.0367i 0.365758 + 0.633511i
\(362\) −2.00312 −0.105282
\(363\) 0 0
\(364\) 30.2267 + 4.26095i 1.58431 + 0.223334i
\(365\) −46.6670 −2.44266
\(366\) 0 0
\(367\) 13.2465 + 22.9436i 0.691460 + 1.19764i 0.971360 + 0.237614i \(0.0763655\pi\)
−0.279900 + 0.960029i \(0.590301\pi\)
\(368\) 0.838353 0.0437022
\(369\) 0 0
\(370\) 14.2254 + 24.6392i 0.739545 + 1.28093i
\(371\) 1.69030 + 1.06516i 0.0877558 + 0.0553005i
\(372\) 0 0
\(373\) 6.18549 10.7136i 0.320273 0.554729i −0.660271 0.751027i \(-0.729559\pi\)
0.980544 + 0.196298i \(0.0628921\pi\)
\(374\) −29.7827 51.5851i −1.54002 2.66740i
\(375\) 0 0
\(376\) −13.3272 23.0834i −0.687298 1.19043i
\(377\) −1.26848 0.915067i −0.0653300 0.0471284i
\(378\) 0 0
\(379\) −14.0179 + 24.2797i −0.720050 + 1.24716i 0.240929 + 0.970543i \(0.422548\pi\)
−0.960979 + 0.276621i \(0.910785\pi\)
\(380\) −21.2285 −1.08900
\(381\) 0 0
\(382\) 18.1872 31.5011i 0.930537 1.61174i
\(383\) −13.1452 + 22.7681i −0.671687 + 1.16340i 0.305739 + 0.952115i \(0.401097\pi\)
−0.977426 + 0.211280i \(0.932237\pi\)
\(384\) 0 0
\(385\) −33.9881 21.4181i −1.73219 1.09157i
\(386\) 4.50442 + 7.80188i 0.229269 + 0.397105i
\(387\) 0 0
\(388\) 8.62875 + 14.9454i 0.438059 + 0.758740i
\(389\) 13.4205 23.2449i 0.680445 1.17856i −0.294400 0.955682i \(-0.595120\pi\)
0.974845 0.222883i \(-0.0715467\pi\)
\(390\) 0 0
\(391\) 26.4371 1.33698
\(392\) 19.0966 + 1.48123i 0.964526 + 0.0748133i
\(393\) 0 0
\(394\) −15.3319 + 26.5557i −0.772412 + 1.33786i
\(395\) 22.8881 39.6433i 1.15162 1.99467i
\(396\) 0 0
\(397\) −12.2621 + 21.2386i −0.615419 + 1.06594i 0.374892 + 0.927068i \(0.377680\pi\)
−0.990311 + 0.138868i \(0.955654\pi\)
\(398\) −47.4974 −2.38083
\(399\) 0 0
\(400\) 0.290618 0.503366i 0.0145309 0.0251683i
\(401\) −3.16570 −0.158088 −0.0790438 0.996871i \(-0.525187\pi\)
−0.0790438 + 0.996871i \(0.525187\pi\)
\(402\) 0 0
\(403\) −7.84372 5.65838i −0.390724 0.281864i
\(404\) −5.04376 8.73605i −0.250936 0.434635i
\(405\) 0 0
\(406\) −2.21424 1.39533i −0.109891 0.0692492i
\(407\) 10.9794 + 19.0169i 0.544228 + 0.942630i
\(408\) 0 0
\(409\) 19.0685 0.942876 0.471438 0.881899i \(-0.343735\pi\)
0.471438 + 0.881899i \(0.343735\pi\)
\(410\) 3.61181 0.178375
\(411\) 0 0
\(412\) −21.1109 36.5652i −1.04006 1.80144i
\(413\) 0.373445 9.64369i 0.0183760 0.474535i
\(414\) 0 0
\(415\) −19.4371 33.6660i −0.954129 1.65260i
\(416\) −2.12943 + 20.9411i −0.104404 + 1.02672i
\(417\) 0 0
\(418\) −26.6249 −1.30227
\(419\) −7.80534 + 13.5192i −0.381316 + 0.660458i −0.991251 0.131993i \(-0.957862\pi\)
0.609935 + 0.792452i \(0.291196\pi\)
\(420\) 0 0
\(421\) −18.0525 −0.879827 −0.439913 0.898040i \(-0.644991\pi\)
−0.439913 + 0.898040i \(0.644991\pi\)
\(422\) −16.3686 + 28.3512i −0.796811 + 1.38012i
\(423\) 0 0
\(424\) 1.03314 1.78945i 0.0501738 0.0869036i
\(425\) 9.16451 15.8734i 0.444544 0.769973i
\(426\) 0 0
\(427\) 15.5672 + 9.80990i 0.753351 + 0.474734i
\(428\) −18.7741 −0.907481
\(429\) 0 0
\(430\) −31.2356 + 54.1017i −1.50632 + 2.60902i
\(431\) −8.75826 15.1698i −0.421871 0.730701i 0.574252 0.818679i \(-0.305293\pi\)
−0.996122 + 0.0879774i \(0.971960\pi\)
\(432\) 0 0
\(433\) −3.02961 5.24744i −0.145594 0.252176i 0.784001 0.620760i \(-0.213176\pi\)
−0.929594 + 0.368584i \(0.879843\pi\)
\(434\) −13.6919 8.62813i −0.657232 0.414163i
\(435\) 0 0
\(436\) 8.78061 15.2085i 0.420515 0.728354i
\(437\) 5.90851 10.2338i 0.282642 0.489551i
\(438\) 0 0
\(439\) 23.3824 1.11598 0.557990 0.829848i \(-0.311573\pi\)
0.557990 + 0.829848i \(0.311573\pi\)
\(440\) −20.7742 + 35.9819i −0.990370 + 1.71537i
\(441\) 0 0
\(442\) −4.20286 + 41.3313i −0.199910 + 1.96593i
\(443\) −4.44712 7.70264i −0.211289 0.365963i 0.740829 0.671693i \(-0.234433\pi\)
−0.952118 + 0.305730i \(0.901099\pi\)
\(444\) 0 0
\(445\) 5.87870 + 10.1822i 0.278677 + 0.482683i
\(446\) −1.36121 + 2.35768i −0.0644550 + 0.111639i
\(447\) 0 0
\(448\) −1.33010 + 34.3480i −0.0628414 + 1.62279i
\(449\) 19.3671 + 33.5448i 0.913989 + 1.58308i 0.808375 + 0.588668i \(0.200348\pi\)
0.105614 + 0.994407i \(0.466319\pi\)
\(450\) 0 0
\(451\) 2.78765 0.131265
\(452\) −2.54334 4.40520i −0.119629 0.207203i
\(453\) 0 0
\(454\) −36.2317 −1.70044
\(455\) 10.4855 + 25.9836i 0.491566 + 1.21813i
\(456\) 0 0
\(457\) 22.4003 1.04784 0.523920 0.851767i \(-0.324469\pi\)
0.523920 + 0.851767i \(0.324469\pi\)
\(458\) 10.0181 + 17.3518i 0.468113 + 0.810796i
\(459\) 0 0
\(460\) −24.5881 42.5878i −1.14642 1.98567i
\(461\) 1.40367 + 2.43123i 0.0653755 + 0.113234i 0.896860 0.442314i \(-0.145842\pi\)
−0.831485 + 0.555547i \(0.812509\pi\)
\(462\) 0 0
\(463\) 37.7530 1.75453 0.877266 0.480004i \(-0.159365\pi\)
0.877266 + 0.480004i \(0.159365\pi\)
\(464\) 0.0347550 0.0601974i 0.00161346 0.00279459i
\(465\) 0 0
\(466\) 6.53806 + 11.3243i 0.302870 + 0.524586i
\(467\) 8.04389 + 13.9324i 0.372227 + 0.644716i 0.989908 0.141713i \(-0.0452609\pi\)
−0.617681 + 0.786429i \(0.711928\pi\)
\(468\) 0 0
\(469\) 31.2731 16.4762i 1.44406 0.760798i
\(470\) 32.6225 56.5038i 1.50476 2.60633i
\(471\) 0 0
\(472\) −9.98116 −0.459420
\(473\) −24.1081 + 41.7564i −1.10849 + 1.91996i
\(474\) 0 0
\(475\) −4.09642 7.09520i −0.187956 0.325550i
\(476\) −1.65536 + 42.7473i −0.0758731 + 1.95932i
\(477\) 0 0
\(478\) −26.3176 −1.20374
\(479\) 4.27425 + 7.40322i 0.195295 + 0.338262i 0.946997 0.321241i \(-0.104100\pi\)
−0.751702 + 0.659503i \(0.770767\pi\)
\(480\) 0 0
\(481\) 1.54938 15.2368i 0.0706458 0.694738i
\(482\) 12.9081 0.587948
\(483\) 0 0
\(484\) −25.1583 + 43.5754i −1.14356 + 1.98070i
\(485\) −7.92037 + 13.7185i −0.359646 + 0.622925i
\(486\) 0 0
\(487\) −35.5761 −1.61211 −0.806054 0.591842i \(-0.798401\pi\)
−0.806054 + 0.591842i \(0.798401\pi\)
\(488\) 9.51499 16.4804i 0.430723 0.746035i
\(489\) 0 0
\(490\) 20.2325 + 42.2953i 0.914011 + 1.91071i
\(491\) −15.6990 + 27.1914i −0.708485 + 1.22713i 0.256934 + 0.966429i \(0.417288\pi\)
−0.965419 + 0.260703i \(0.916046\pi\)
\(492\) 0 0
\(493\) 1.09598 1.89829i 0.0493605 0.0854949i
\(494\) 15.0601 + 10.8642i 0.677587 + 0.488804i
\(495\) 0 0
\(496\) 0.214909 0.372234i 0.00964972 0.0167138i
\(497\) −18.2807 + 9.63115i −0.820003 + 0.432016i
\(498\) 0 0
\(499\) 2.14606 + 3.71708i 0.0960708 + 0.166399i 0.910055 0.414488i \(-0.136039\pi\)
−0.813984 + 0.580887i \(0.802706\pi\)
\(500\) 12.9010 0.576949
\(501\) 0 0
\(502\) 27.7909 + 48.1353i 1.24037 + 2.14839i
\(503\) −7.83439 13.5696i −0.349318 0.605037i 0.636810 0.771021i \(-0.280253\pi\)
−0.986129 + 0.165984i \(0.946920\pi\)
\(504\) 0 0
\(505\) 4.62969 8.01886i 0.206019 0.356835i
\(506\) −30.8385 53.4138i −1.37094 2.37453i
\(507\) 0 0
\(508\) 1.11447 1.93032i 0.0494467 0.0856442i
\(509\) −1.70373 −0.0755165 −0.0377583 0.999287i \(-0.512022\pi\)
−0.0377583 + 0.999287i \(0.512022\pi\)
\(510\) 0 0
\(511\) 35.5635 + 22.4108i 1.57324 + 0.991396i
\(512\) −1.81234 −0.0800947
\(513\) 0 0
\(514\) 10.5018 0.463214
\(515\) 19.3778 33.5633i 0.853888 1.47898i
\(516\) 0 0
\(517\) 25.1785 43.6104i 1.10735 1.91798i
\(518\) 0.991658 25.6082i 0.0435710 1.12516i
\(519\) 0 0
\(520\) 26.4330 11.8760i 1.15916 0.520797i
\(521\) −8.39696 + 14.5440i −0.367878 + 0.637183i −0.989234 0.146346i \(-0.953249\pi\)
0.621356 + 0.783528i \(0.286582\pi\)
\(522\) 0 0
\(523\) −7.49051 −0.327537 −0.163769 0.986499i \(-0.552365\pi\)
−0.163769 + 0.986499i \(0.552365\pi\)
\(524\) −10.7348 18.5933i −0.468953 0.812251i
\(525\) 0 0
\(526\) −26.2038 45.3863i −1.14254 1.97894i
\(527\) 6.77706 11.7382i 0.295214 0.511325i
\(528\) 0 0
\(529\) 4.37426 0.190185
\(530\) 5.05788 0.219700
\(531\) 0 0
\(532\) 16.1776 + 10.1945i 0.701388 + 0.441989i
\(533\) −1.57681 1.13749i −0.0682990 0.0492702i
\(534\) 0 0
\(535\) −8.61643 14.9241i −0.372521 0.645225i
\(536\) −18.2787 31.6597i −0.789521 1.36749i
\(537\) 0 0
\(538\) 31.9360 1.37686
\(539\) 15.6157 + 32.6440i 0.672617 + 1.40608i
\(540\) 0 0
\(541\) 4.78963 + 8.29588i 0.205922 + 0.356668i 0.950426 0.310950i \(-0.100647\pi\)
−0.744504 + 0.667618i \(0.767314\pi\)
\(542\) 43.5681 1.87141
\(543\) 0 0
\(544\) −29.4987 −1.26475
\(545\) 16.1195 0.690485
\(546\) 0 0
\(547\) −30.1843 −1.29059 −0.645293 0.763935i \(-0.723265\pi\)
−0.645293 + 0.763935i \(0.723265\pi\)
\(548\) −39.9971 −1.70859
\(549\) 0 0
\(550\) −42.7611 −1.82334
\(551\) −0.489889 0.848513i −0.0208700 0.0361479i
\(552\) 0 0
\(553\) −36.4801 + 19.2194i −1.55129 + 0.817292i
\(554\) −29.4619 −1.25172
\(555\) 0 0
\(556\) −2.10433 3.64480i −0.0892434 0.154574i
\(557\) −2.33571 4.04557i −0.0989673 0.171416i 0.812290 0.583254i \(-0.198221\pi\)
−0.911257 + 0.411837i \(0.864887\pi\)
\(558\) 0 0
\(559\) 30.6751 13.7819i 1.29742 0.582912i
\(560\) −1.10167 + 0.580414i −0.0465542 + 0.0245270i
\(561\) 0 0
\(562\) −44.7550 −1.88787
\(563\) 14.3818 0.606120 0.303060 0.952971i \(-0.401992\pi\)
0.303060 + 0.952971i \(0.401992\pi\)
\(564\) 0 0
\(565\) 2.33455 4.04355i 0.0982151 0.170114i
\(566\) 3.72524 + 6.45231i 0.156584 + 0.271211i
\(567\) 0 0
\(568\) 10.6848 + 18.5067i 0.448326 + 0.776523i
\(569\) 14.5756 0.611040 0.305520 0.952186i \(-0.401170\pi\)
0.305520 + 0.952186i \(0.401170\pi\)
\(570\) 0 0
\(571\) −12.9575 + 22.4430i −0.542254 + 0.939211i 0.456520 + 0.889713i \(0.349096\pi\)
−0.998774 + 0.0494981i \(0.984238\pi\)
\(572\) 54.4051 24.4435i 2.27479 1.02203i
\(573\) 0 0
\(574\) −2.75245 1.73449i −0.114885 0.0723963i
\(575\) 9.48940 16.4361i 0.395735 0.685433i
\(576\) 0 0
\(577\) 11.7875 20.4165i 0.490719 0.849950i −0.509224 0.860634i \(-0.670068\pi\)
0.999943 + 0.0106839i \(0.00340085\pi\)
\(578\) −19.4557 −0.809251
\(579\) 0 0
\(580\) −4.07731 −0.169301
\(581\) −1.35496 + 34.9900i −0.0562133 + 1.45163i
\(582\) 0 0
\(583\) 3.90374 0.161676
\(584\) 21.7371 37.6497i 0.899487 1.55796i
\(585\) 0 0
\(586\) 21.6848 + 37.5592i 0.895791 + 1.55156i
\(587\) 23.7561 41.1468i 0.980521 1.69831i 0.320160 0.947364i \(-0.396263\pi\)
0.660361 0.750948i \(-0.270403\pi\)
\(588\) 0 0
\(589\) −3.02926 5.24683i −0.124818 0.216192i
\(590\) −12.2160 21.1588i −0.502925 0.871092i
\(591\) 0 0
\(592\) 0.680631 0.0279738
\(593\) 2.36887 + 4.10300i 0.0972779 + 0.168490i 0.910557 0.413384i \(-0.135653\pi\)
−0.813279 + 0.581874i \(0.802320\pi\)
\(594\) 0 0
\(595\) −34.7408 + 18.3031i −1.42423 + 0.750353i
\(596\) 33.9078 58.7300i 1.38892 2.40568i
\(597\) 0 0
\(598\) −4.35185 + 42.7965i −0.177960 + 1.75008i
\(599\) −1.07453 + 1.86114i −0.0439041 + 0.0760441i −0.887142 0.461496i \(-0.847313\pi\)
0.843238 + 0.537540i \(0.180646\pi\)
\(600\) 0 0
\(601\) 0.736182 1.27511i 0.0300295 0.0520126i −0.850620 0.525781i \(-0.823773\pi\)
0.880650 + 0.473768i \(0.157107\pi\)
\(602\) 49.7848 26.2290i 2.02908 1.06901i
\(603\) 0 0
\(604\) 25.2910 43.8054i 1.02908 1.78242i
\(605\) −46.1858 −1.87772
\(606\) 0 0
\(607\) 6.49295 11.2461i 0.263541 0.456466i −0.703640 0.710557i \(-0.748443\pi\)
0.967180 + 0.254091i \(0.0817763\pi\)
\(608\) −6.59277 + 11.4190i −0.267372 + 0.463102i
\(609\) 0 0
\(610\) 46.5818 1.88604
\(611\) −32.0371 + 14.3938i −1.29608 + 0.582311i
\(612\) 0 0
\(613\) 20.0546 + 34.7356i 0.809997 + 1.40296i 0.912865 + 0.408262i \(0.133865\pi\)
−0.102868 + 0.994695i \(0.532802\pi\)
\(614\) 18.9419 0.764432
\(615\) 0 0
\(616\) 33.1109 17.4444i 1.33407 0.702853i
\(617\) −8.82052 15.2776i −0.355101 0.615052i 0.632035 0.774940i \(-0.282220\pi\)
−0.987135 + 0.159888i \(0.948887\pi\)
\(618\) 0 0
\(619\) 13.3825 23.1792i 0.537890 0.931652i −0.461128 0.887334i \(-0.652555\pi\)
0.999017 0.0443184i \(-0.0141116\pi\)
\(620\) −25.2123 −1.01255
\(621\) 0 0
\(622\) 12.3789 21.4409i 0.496349 0.859701i
\(623\) 0.409805 10.5826i 0.0164185 0.423985i
\(624\) 0 0
\(625\) 14.9895 + 25.9625i 0.599579 + 1.03850i
\(626\) −1.29279 2.23918i −0.0516702 0.0894955i
\(627\) 0 0
\(628\) −8.83842 + 15.3086i −0.352691 + 0.610880i
\(629\) 21.4634 0.855800
\(630\) 0 0
\(631\) 10.1224 + 17.5324i 0.402964 + 0.697955i 0.994082 0.108630i \(-0.0346465\pi\)
−0.591118 + 0.806585i \(0.701313\pi\)
\(632\) 21.3221 + 36.9309i 0.848147 + 1.46903i
\(633\) 0 0
\(634\) −11.3723 19.6974i −0.451653 0.782286i
\(635\) 2.04596 0.0811914
\(636\) 0 0
\(637\) 4.48742 24.8367i 0.177798 0.984067i
\(638\) −5.11379 −0.202457
\(639\) 0 0
\(640\) 26.3623 + 45.6609i 1.04206 + 1.80491i
\(641\) 14.7765 0.583637 0.291819 0.956474i \(-0.405740\pi\)
0.291819 + 0.956474i \(0.405740\pi\)
\(642\) 0 0
\(643\) 4.74073 + 8.21118i 0.186956 + 0.323817i 0.944234 0.329276i \(-0.106804\pi\)
−0.757278 + 0.653093i \(0.773471\pi\)
\(644\) −1.71404 + 44.2627i −0.0675426 + 1.74419i
\(645\) 0 0
\(646\) −13.0121 + 22.5377i −0.511955 + 0.886732i
\(647\) −24.9513 43.2169i −0.980937 1.69903i −0.658760 0.752353i \(-0.728919\pi\)
−0.322177 0.946680i \(-0.604414\pi\)
\(648\) 0 0
\(649\) −9.42848 16.3306i −0.370100 0.641033i
\(650\) 24.1874 + 17.4485i 0.948708 + 0.684388i
\(651\) 0 0
\(652\) 5.03784 8.72579i 0.197297 0.341728i
\(653\) −41.4038 −1.62026 −0.810128 0.586252i \(-0.800603\pi\)
−0.810128 + 0.586252i \(0.800603\pi\)
\(654\) 0 0
\(655\) 9.85355 17.0668i 0.385010 0.666857i
\(656\) 0.0432028 0.0748294i 0.00168678 0.00292160i
\(657\) 0 0
\(658\) −51.9953 + 27.3936i −2.02699 + 1.06791i
\(659\) −1.08993 1.88781i −0.0424576 0.0735387i 0.844016 0.536318i \(-0.180185\pi\)
−0.886473 + 0.462780i \(0.846852\pi\)
\(660\) 0 0
\(661\) −16.4283 28.4546i −0.638986 1.10676i −0.985656 0.168769i \(-0.946021\pi\)
0.346669 0.937987i \(-0.387313\pi\)
\(662\) −1.88714 + 3.26862i −0.0733457 + 0.127038i
\(663\) 0 0
\(664\) 36.2145 1.40539
\(665\) −0.679178 + 17.5388i −0.0263374 + 0.680127i
\(666\) 0 0
\(667\) 1.13483 1.96559i 0.0439409 0.0761079i
\(668\) −21.4765 + 37.1984i −0.830951 + 1.43925i
\(669\) 0 0
\(670\) 44.7429 77.4970i 1.72857 2.99397i
\(671\) 35.9525 1.38793
\(672\) 0 0
\(673\) −5.61199 + 9.72024i −0.216326 + 0.374688i −0.953682 0.300817i \(-0.902741\pi\)
0.737356 + 0.675505i \(0.236074\pi\)
\(674\) 28.2947 1.08987
\(675\) 0 0
\(676\) −40.7478 8.37363i −1.56722 0.322063i
\(677\) −10.0207 17.3564i −0.385127 0.667059i 0.606660 0.794961i \(-0.292509\pi\)
−0.991787 + 0.127902i \(0.959176\pi\)
\(678\) 0 0
\(679\) 12.6239 6.65085i 0.484460 0.255236i
\(680\) 20.3055 + 35.1702i 0.778680 + 1.34871i
\(681\) 0 0
\(682\) −31.6214 −1.21085
\(683\) −14.6601 −0.560953 −0.280476 0.959861i \(-0.590492\pi\)
−0.280476 + 0.959861i \(0.590492\pi\)
\(684\) 0 0
\(685\) −18.3568 31.7949i −0.701376 1.21482i
\(686\) 4.89280 41.9481i 0.186808 1.60159i
\(687\) 0 0
\(688\) 0.747251 + 1.29428i 0.0284887 + 0.0493438i
\(689\) −2.20811 1.59291i −0.0841223 0.0606850i
\(690\) 0 0
\(691\) 28.9453 1.10113 0.550565 0.834792i \(-0.314412\pi\)
0.550565 + 0.834792i \(0.314412\pi\)
\(692\) −20.5578 + 35.6071i −0.781490 + 1.35358i
\(693\) 0 0
\(694\) 30.2036 1.14651
\(695\) 1.93157 3.34558i 0.0732688 0.126905i
\(696\) 0 0
\(697\) 1.36238 2.35971i 0.0516037 0.0893803i
\(698\) −39.9215 + 69.1460i −1.51105 + 2.61722i
\(699\) 0 0
\(700\) 25.9821 + 16.3730i 0.982032 + 0.618840i
\(701\) 37.6521 1.42210 0.711051 0.703141i \(-0.248220\pi\)
0.711051 + 0.703141i \(0.248220\pi\)
\(702\) 0 0
\(703\) 4.79692 8.30851i 0.180919 0.313362i
\(704\) 33.5815 + 58.1649i 1.26565 + 2.19217i
\(705\) 0 0
\(706\) −26.3473 45.6349i −0.991595 1.71749i
\(707\) −7.37902 + 3.88761i −0.277517 + 0.146209i
\(708\) 0 0
\(709\) −11.2107 + 19.4175i −0.421026 + 0.729239i −0.996040 0.0889046i \(-0.971663\pi\)
0.575014 + 0.818144i \(0.304997\pi\)
\(710\) −26.1545 + 45.3009i −0.981560 + 1.70011i
\(711\) 0 0
\(712\) −10.9530 −0.410480
\(713\) 7.01731 12.1543i 0.262800 0.455184i
\(714\) 0 0
\(715\) 44.4002 + 32.0298i 1.66047 + 1.19785i
\(716\) 29.8655 + 51.7286i 1.11613 + 1.93319i
\(717\) 0 0
\(718\) −14.6958 25.4539i −0.548444 0.949932i
\(719\) 4.18609 7.25051i 0.156115 0.270399i −0.777350 0.629069i \(-0.783436\pi\)
0.933464 + 0.358670i \(0.116770\pi\)
\(720\) 0 0
\(721\) −30.8853 + 16.2718i −1.15023 + 0.605994i
\(722\) −15.8470 27.4478i −0.589763 1.02150i
\(723\) 0 0
\(724\) 2.81094 0.104468
\(725\) −0.786789 1.36276i −0.0292206 0.0506116i
\(726\) 0 0
\(727\) 20.0990 0.745432 0.372716 0.927945i \(-0.378427\pi\)
0.372716 + 0.927945i \(0.378427\pi\)
\(728\) −25.8470 3.64355i −0.957952 0.135039i
\(729\) 0 0
\(730\) 106.417 3.93866
\(731\) 23.5642 + 40.8144i 0.871553 + 1.50957i
\(732\) 0 0
\(733\) 5.77804 + 10.0079i 0.213417 + 0.369649i 0.952782 0.303656i \(-0.0982074\pi\)
−0.739365 + 0.673305i \(0.764874\pi\)
\(734\) −30.2064 52.3191i −1.11494 1.93113i
\(735\) 0 0
\(736\) −30.5444 −1.12588
\(737\) 34.5332 59.8132i 1.27205 2.20325i
\(738\) 0 0
\(739\) −12.1325 21.0141i −0.446300 0.773015i 0.551841 0.833949i \(-0.313925\pi\)
−0.998142 + 0.0609342i \(0.980592\pi\)
\(740\) −19.9622 34.5756i −0.733826 1.27102i
\(741\) 0 0
\(742\) −3.85445 2.42893i −0.141501 0.0891689i
\(743\) −0.777681 + 1.34698i −0.0285303 + 0.0494160i −0.879938 0.475088i \(-0.842416\pi\)
0.851408 + 0.524504i \(0.175749\pi\)
\(744\) 0 0
\(745\) 62.2483 2.28060
\(746\) −14.1050 + 24.4306i −0.516422 + 0.894468i
\(747\) 0 0
\(748\) 41.7933 + 72.3881i 1.52811 + 2.64677i
\(749\) −0.600653 + 15.5110i −0.0219474 + 0.566761i
\(750\) 0 0
\(751\) −35.3585 −1.29025 −0.645125 0.764077i \(-0.723195\pi\)
−0.645125 + 0.764077i \(0.723195\pi\)
\(752\) −0.780429 1.35174i −0.0284593 0.0492930i
\(753\) 0 0
\(754\) 2.89256 + 2.08666i 0.105341 + 0.0759918i
\(755\) 46.4295 1.68974
\(756\) 0 0
\(757\) 9.73684 16.8647i 0.353891 0.612958i −0.633036 0.774122i \(-0.718192\pi\)
0.986928 + 0.161164i \(0.0515249\pi\)
\(758\) 31.9655 55.3659i 1.16104 2.01098i
\(759\) 0 0
\(760\) 18.1526 0.658464
\(761\) 8.81978 15.2763i 0.319717 0.553766i −0.660712 0.750640i \(-0.729746\pi\)
0.980429 + 0.196874i \(0.0630789\pi\)
\(762\) 0 0
\(763\) −12.2842 7.74105i −0.444717 0.280245i
\(764\) −25.5216 + 44.2048i −0.923341 + 1.59927i
\(765\) 0 0
\(766\) 29.9754 51.9190i 1.08306 1.87591i
\(767\) −1.33052 + 13.0845i −0.0480425 + 0.472454i
\(768\) 0 0
\(769\) −2.32077 + 4.01969i −0.0836890 + 0.144954i −0.904832 0.425769i \(-0.860004\pi\)
0.821143 + 0.570723i \(0.193337\pi\)
\(770\) 77.5044 + 48.8404i 2.79306 + 1.76009i
\(771\) 0 0
\(772\) −6.32095 10.9482i −0.227496 0.394034i
\(773\) −20.0445 −0.720949 −0.360475 0.932769i \(-0.617385\pi\)
−0.360475 + 0.932769i \(0.617385\pi\)
\(774\) 0 0
\(775\) −4.86516 8.42670i −0.174762 0.302696i
\(776\) −7.37848 12.7799i −0.264872 0.458772i
\(777\) 0 0
\(778\) −30.6032 + 53.0063i −1.09718 + 1.90037i
\(779\) −0.608965 1.05476i −0.0218184 0.0377906i
\(780\) 0 0
\(781\) −20.1864 + 34.9638i −0.722326 + 1.25110i
\(782\) −60.2855 −2.15580
\(783\) 0 0
\(784\) 1.11828 + 0.0867393i 0.0399386 + 0.00309783i
\(785\) −16.2257 −0.579119
\(786\) 0 0
\(787\) −10.1166 −0.360620 −0.180310 0.983610i \(-0.557710\pi\)
−0.180310 + 0.983610i \(0.557710\pi\)
\(788\) 21.5150 37.2650i 0.766438 1.32751i
\(789\) 0 0
\(790\) −52.1925 + 90.4001i −1.85693 + 3.21629i
\(791\) −3.72091 + 1.96035i −0.132300 + 0.0697020i
\(792\) 0 0
\(793\) −20.3362 14.6703i −0.722159 0.520958i
\(794\) 27.9618 48.4313i 0.992328 1.71876i
\(795\) 0 0
\(796\) 66.6520 2.36242
\(797\) 4.44188 + 7.69357i 0.157340 + 0.272520i 0.933908 0.357512i \(-0.116375\pi\)
−0.776569 + 0.630032i \(0.783042\pi\)
\(798\) 0 0
\(799\) −24.6104 42.6265i −0.870655 1.50802i
\(800\) −10.5884 + 18.3396i −0.374355 + 0.648402i
\(801\) 0 0
\(802\) 7.21887 0.254907
\(803\) 82.1338 2.89844
\(804\) 0 0
\(805\) −35.9723 + 18.9519i −1.26786 + 0.667967i
\(806\) 17.8863 + 12.9030i 0.630020 + 0.454489i
\(807\) 0 0
\(808\) 4.31294 + 7.47022i 0.151729 + 0.262802i
\(809\) −20.8784 36.1625i −0.734047 1.27141i −0.955140 0.296153i \(-0.904296\pi\)
0.221094 0.975253i \(-0.429037\pi\)
\(810\) 0 0
\(811\) −31.3690 −1.10151 −0.550757 0.834666i \(-0.685661\pi\)
−0.550757 + 0.834666i \(0.685661\pi\)
\(812\) 3.10719 + 1.95804i 0.109041 + 0.0687137i
\(813\) 0 0
\(814\) −25.0367 43.3649i −0.877537 1.51994i
\(815\) 9.24851 0.323961
\(816\) 0 0
\(817\) 21.0658 0.736998
\(818\) −43.4826 −1.52033
\(819\) 0 0
\(820\) −5.06838 −0.176995
\(821\) −30.5508 −1.06623 −0.533114 0.846043i \(-0.678978\pi\)
−0.533114 + 0.846043i \(0.678978\pi\)
\(822\) 0 0
\(823\) 3.34874 0.116730 0.0583650 0.998295i \(-0.481411\pi\)
0.0583650 + 0.998295i \(0.481411\pi\)
\(824\) 18.0520 + 31.2670i 0.628872 + 1.08924i
\(825\) 0 0
\(826\) −0.851581 + 21.9909i −0.0296303 + 0.765161i
\(827\) 48.2646 1.67833 0.839163 0.543880i \(-0.183045\pi\)
0.839163 + 0.543880i \(0.183045\pi\)
\(828\) 0 0
\(829\) −24.9146 43.1534i −0.865320 1.49878i −0.866729 0.498780i \(-0.833782\pi\)
0.00140835 0.999999i \(-0.499552\pi\)
\(830\) 44.3231 + 76.7699i 1.53848 + 2.66472i
\(831\) 0 0
\(832\) 4.73894 46.6032i 0.164293 1.61568i
\(833\) 35.2645 + 2.73528i 1.22184 + 0.0947719i
\(834\) 0 0
\(835\) −39.4268 −1.36442
\(836\) 37.3621 1.29220
\(837\) 0 0
\(838\) 17.7988 30.8285i 0.614850 1.06495i
\(839\) −16.4441 28.4819i −0.567712 0.983305i −0.996792 0.0800390i \(-0.974496\pi\)
0.429080 0.903266i \(-0.358838\pi\)
\(840\) 0 0
\(841\) 14.4059 + 24.9518i 0.496755 + 0.860406i
\(842\) 41.1659 1.41867
\(843\) 0 0
\(844\) 22.9697 39.7846i 0.790649 1.36944i
\(845\) −12.0449 36.2347i −0.414356 1.24651i
\(846\) 0 0
\(847\) 35.1967 + 22.1797i 1.20937 + 0.762103i
\(848\) 0.0604999 0.104789i 0.00207757 0.00359846i
\(849\) 0 0
\(850\) −20.8982 + 36.1967i −0.716802 + 1.24154i
\(851\) 22.2242 0.761837
\(852\) 0 0
\(853\) −17.9823 −0.615701 −0.307850 0.951435i \(-0.599610\pi\)
−0.307850 + 0.951435i \(0.599610\pi\)
\(854\) −35.4986 22.3699i −1.21474 0.765482i
\(855\) 0 0
\(856\) 16.0538 0.548708
\(857\) −23.5502 + 40.7901i −0.804459 + 1.39336i 0.112196 + 0.993686i \(0.464211\pi\)
−0.916656 + 0.399678i \(0.869122\pi\)
\(858\) 0 0
\(859\) −13.8486 23.9866i −0.472510 0.818411i 0.526995 0.849868i \(-0.323319\pi\)
−0.999505 + 0.0314573i \(0.989985\pi\)
\(860\) 43.8322 75.9197i 1.49467 2.58884i
\(861\) 0 0
\(862\) 19.9718 + 34.5922i 0.680242 + 1.17821i
\(863\) −18.5569 32.1414i −0.631683 1.09411i −0.987208 0.159440i \(-0.949031\pi\)
0.355525 0.934667i \(-0.384302\pi\)
\(864\) 0 0
\(865\) −37.7402 −1.28320
\(866\) 6.90854 + 11.9659i 0.234762 + 0.406619i
\(867\) 0 0
\(868\) 19.2135 + 12.1077i 0.652149 + 0.410961i
\(869\) −40.2829 + 69.7720i −1.36650 + 2.36685i
\(870\) 0 0
\(871\) −43.9399 + 19.7416i −1.48885 + 0.668919i
\(872\) −7.50833 + 13.0048i −0.254264 + 0.440399i
\(873\) 0 0
\(874\) −13.4734 + 23.3366i −0.455745 + 0.789373i
\(875\) 0.412749 10.6587i 0.0139535 0.360329i
\(876\) 0 0
\(877\) −14.1491 + 24.5069i −0.477780 + 0.827538i −0.999676 0.0254707i \(-0.991892\pi\)
0.521896 + 0.853009i \(0.325225\pi\)
\(878\) −53.3198 −1.79945
\(879\) 0 0
\(880\) −1.21652 + 2.10707i −0.0410088 + 0.0710293i
\(881\) 9.74919 16.8861i 0.328458 0.568907i −0.653748 0.756713i \(-0.726804\pi\)
0.982206 + 0.187806i \(0.0601376\pi\)
\(882\) 0 0
\(883\) 36.8164 1.23897 0.619485 0.785009i \(-0.287342\pi\)
0.619485 + 0.785009i \(0.287342\pi\)
\(884\) 5.89777 57.9993i 0.198364 1.95073i
\(885\) 0 0
\(886\) 10.1409 + 17.5646i 0.340692 + 0.590095i
\(887\) 22.1839 0.744863 0.372432 0.928060i \(-0.378524\pi\)
0.372432 + 0.928060i \(0.378524\pi\)
\(888\) 0 0
\(889\) −1.55916 0.982526i −0.0522926 0.0329529i
\(890\) −13.4054 23.2189i −0.449351 0.778298i
\(891\) 0 0
\(892\) 1.91015 3.30847i 0.0639565 0.110776i
\(893\) −22.0011 −0.736238
\(894\) 0 0
\(895\) −27.4137 + 47.4820i −0.916340 + 1.58715i
\(896\) 1.83772 47.4567i 0.0613941 1.58542i
\(897\) 0 0
\(898\) −44.1635 76.4935i −1.47376 2.55262i
\(899\) −0.581823 1.00775i −0.0194049 0.0336102i
\(900\) 0 0
\(901\) 1.90783 3.30446i 0.0635592 0.110088i
\(902\) −6.35678 −0.211658
\(903\) 0 0
\(904\) 2.17482 + 3.76690i 0.0723335 + 0.125285i
\(905\) 1.29009 + 2.23450i 0.0428839 + 0.0742771i
\(906\) 0 0
\(907\) 23.3042 + 40.3640i 0.773803 + 1.34027i 0.935465 + 0.353420i \(0.114981\pi\)
−0.161662 + 0.986846i \(0.551685\pi\)
\(908\) 50.8431 1.68729
\(909\) 0 0
\(910\) −23.9104 59.2515i −0.792623 1.96417i
\(911\) −0.542513 −0.0179743 −0.00898714 0.999960i \(-0.502861\pi\)
−0.00898714 + 0.999960i \(0.502861\pi\)
\(912\) 0 0
\(913\) 34.2092 + 59.2521i 1.13216 + 1.96096i
\(914\) −51.0802 −1.68958
\(915\) 0 0
\(916\) −14.0581 24.3494i −0.464493 0.804526i
\(917\) −15.7051 + 8.27416i −0.518626 + 0.273237i
\(918\) 0 0
\(919\) −16.8311 + 29.1522i −0.555205 + 0.961644i 0.442682 + 0.896679i \(0.354027\pi\)
−0.997888 + 0.0649652i \(0.979306\pi\)
\(920\) 21.0253 + 36.4170i 0.693185 + 1.20063i
\(921\) 0 0
\(922\) −3.20085 5.54403i −0.105414 0.182583i
\(923\) 25.6851 11.5400i 0.845436 0.379843i
\(924\) 0 0
\(925\) 7.70412 13.3439i 0.253310 0.438746i
\(926\) −86.0897 −2.82908
\(927\) 0 0
\(928\) −1.26626 + 2.19322i −0.0415669 + 0.0719961i
\(929\) −21.3392 + 36.9606i −0.700116 + 1.21264i 0.268309 + 0.963333i \(0.413535\pi\)
−0.968425 + 0.249304i \(0.919798\pi\)
\(930\) 0 0
\(931\) 8.94021 13.0396i 0.293004 0.427357i
\(932\) −9.17471 15.8911i −0.300528 0.520529i
\(933\) 0 0
\(934\) −18.3428 31.7707i −0.600195 1.03957i
\(935\) −38.3623 + 66.4454i −1.25458 + 2.17300i
\(936\) 0 0
\(937\) −10.2859 −0.336026 −0.168013 0.985785i \(-0.553735\pi\)
−0.168013 + 0.985785i \(0.553735\pi\)
\(938\) −71.3134 + 37.5712i −2.32846 + 1.22674i
\(939\) 0 0
\(940\) −45.7784 + 79.2905i −1.49313 + 2.58617i
\(941\) −5.84119 + 10.1172i −0.190417 + 0.329813i −0.945389 0.325945i \(-0.894317\pi\)
0.754971 + 0.655758i \(0.227651\pi\)
\(942\) 0 0
\(943\) 1.41067 2.44336i 0.0459379 0.0795667i
\(944\) −0.584488 −0.0190235
\(945\) 0 0
\(946\) 54.9746 95.2188i 1.78738 3.09583i
\(947\) −31.8808 −1.03599 −0.517993 0.855385i \(-0.673321\pi\)
−0.517993 + 0.855385i \(0.673321\pi\)
\(948\) 0 0
\(949\) −46.4582 33.5144i −1.50810 1.08792i
\(950\) 9.34122 + 16.1795i 0.303069 + 0.524931i
\(951\) 0 0
\(952\) 1.41550 36.5533i 0.0458766 1.18470i
\(953\) −3.72492 6.45175i −0.120662 0.208993i 0.799367 0.600843i \(-0.205168\pi\)
−0.920029 + 0.391850i \(0.871835\pi\)
\(954\) 0 0
\(955\) −46.8529 −1.51612
\(956\) 36.9309 1.19443
\(957\) 0 0
\(958\) −9.74674 16.8818i −0.314903 0.545428i
\(959\) −1.27965 + 33.0453i −0.0413222 + 1.06709i
\(960\) 0 0
\(961\) 11.9023 + 20.6153i 0.383944 + 0.665010i
\(962\) −3.53312 + 34.7451i −0.113912 + 1.12023i
\(963\) 0 0
\(964\) −18.1136 −0.583401
\(965\) 5.80203 10.0494i 0.186774 0.323502i
\(966\) 0 0
\(967\) −51.0981 −1.64320 −0.821602 0.570061i \(-0.806920\pi\)
−0.821602 + 0.570061i \(0.806920\pi\)
\(968\) 21.5129 37.2615i 0.691451 1.19763i
\(969\) 0 0
\(970\) 18.0611 31.2828i 0.579908 1.00443i
\(971\) 2.50917 4.34602i 0.0805232 0.139470i −0.822952 0.568112i \(-0.807674\pi\)
0.903475 + 0.428641i \(0.141008\pi\)
\(972\) 0 0
\(973\) −3.07863 + 1.62197i −0.0986964 + 0.0519979i
\(974\) 81.1256 2.59943
\(975\) 0 0
\(976\) 0.557189 0.965080i 0.0178352 0.0308915i
\(977\) −13.8306 23.9553i −0.442479 0.766396i 0.555394 0.831588i \(-0.312568\pi\)
−0.997873 + 0.0651911i \(0.979234\pi\)
\(978\) 0 0
\(979\) −10.3465 17.9206i −0.330675 0.572746i
\(980\) −28.3918 59.3519i −0.906943 1.89593i
\(981\) 0 0
\(982\) 35.7990 62.0057i 1.14239 1.97868i
\(983\) −2.23464 + 3.87050i −0.0712738 + 0.123450i −0.899460 0.437003i \(-0.856040\pi\)
0.828186 + 0.560453i \(0.189373\pi\)
\(984\) 0 0
\(985\) 39.4974 1.25849
\(986\) −2.49921 + 4.32875i −0.0795910 + 0.137856i
\(987\) 0 0
\(988\) −21.1335 15.2455i −0.672347 0.485024i
\(989\) 24.3995 + 42.2613i 0.775860 + 1.34383i
\(990\) 0 0
\(991\) −5.21216 9.02772i −0.165570 0.286775i 0.771288 0.636487i \(-0.219613\pi\)
−0.936857 + 0.349712i \(0.886280\pi\)
\(992\) −7.82998 + 13.5619i −0.248602 + 0.430592i
\(993\) 0 0
\(994\) 41.6863 21.9623i 1.32221 0.696601i
\(995\) 30.5901 + 52.9836i 0.969771 + 1.67969i
\(996\) 0 0
\(997\) −14.5120 −0.459599 −0.229800 0.973238i \(-0.573807\pi\)
−0.229800 + 0.973238i \(0.573807\pi\)
\(998\) −4.89374 8.47621i −0.154909 0.268310i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.f.802.2 20
3.2 odd 2 273.2.l.c.256.9 yes 20
7.2 even 3 819.2.n.f.100.9 20
13.3 even 3 819.2.n.f.172.9 20
21.2 odd 6 273.2.j.c.100.2 20
39.29 odd 6 273.2.j.c.172.2 yes 20
91.16 even 3 inner 819.2.s.f.289.2 20
273.107 odd 6 273.2.l.c.16.9 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.2 20 21.2 odd 6
273.2.j.c.172.2 yes 20 39.29 odd 6
273.2.l.c.16.9 yes 20 273.107 odd 6
273.2.l.c.256.9 yes 20 3.2 odd 2
819.2.n.f.100.9 20 7.2 even 3
819.2.n.f.172.9 20 13.3 even 3
819.2.s.f.289.2 20 91.16 even 3 inner
819.2.s.f.802.2 20 1.1 even 1 trivial