Properties

Label 819.2.n.f.100.9
Level $819$
Weight $2$
Character 819.100
Analytic conductor $6.540$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(100,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.n (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.9
Root \(1.14017 - 1.97483i\) of defining polynomial
Character \(\chi\) \(=\) 819.100
Dual form 819.2.n.f.172.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14017 + 1.97483i) q^{2} +(-1.59997 + 2.77124i) q^{4} +(1.46862 - 2.54373i) q^{5} +(-2.34076 - 1.23322i) q^{7} -2.73629 q^{8} +6.69792 q^{10} +5.16954 q^{11} +(-0.364757 + 3.58705i) q^{13} +(-0.233457 - 6.02869i) q^{14} +(0.0801172 + 0.138767i) q^{16} +(2.52646 - 4.37595i) q^{17} +2.25859 q^{19} +(4.69952 + 8.13980i) q^{20} +(5.89416 + 10.2090i) q^{22} +(2.61602 + 4.53108i) q^{23} +(-1.81371 - 3.14143i) q^{25} +(-7.49971 + 3.36952i) q^{26} +(7.16271 - 4.51367i) q^{28} +(-0.216901 + 0.375683i) q^{29} +(-1.34122 - 2.32306i) q^{31} +(-2.91898 + 5.05582i) q^{32} +11.5224 q^{34} +(-6.57468 + 4.14312i) q^{35} +(2.12386 + 3.67863i) q^{37} +(2.57517 + 4.46033i) q^{38} +(-4.01857 + 6.96037i) q^{40} +(-0.269622 + 0.466999i) q^{41} +(-4.66348 - 8.07739i) q^{43} +(-8.27113 + 14.3260i) q^{44} +(-5.96541 + 10.3324i) q^{46} +(4.87054 - 8.43603i) q^{47} +(3.95832 + 5.77336i) q^{49} +(4.13587 - 7.16354i) q^{50} +(-9.35697 - 6.75002i) q^{52} +(-0.377571 - 0.653972i) q^{53} +(7.59211 - 13.1499i) q^{55} +(6.40499 + 3.37445i) q^{56} -0.989214 q^{58} +(-1.82385 + 3.15901i) q^{59} +6.95468 q^{61} +(3.05843 - 5.29736i) q^{62} -12.9921 q^{64} +(8.58881 + 6.19587i) q^{65} -13.3602 q^{67} +(8.08453 + 14.0028i) q^{68} +(-15.6782 - 8.26003i) q^{70} +(-3.90487 - 6.76343i) q^{71} +(-7.94401 - 13.7594i) q^{73} +(-4.84312 + 8.38853i) q^{74} +(-3.61368 + 6.25908i) q^{76} +(-12.1007 - 6.37520i) q^{77} +(-7.79235 + 13.4967i) q^{79} +0.470648 q^{80} -1.22966 q^{82} -13.2349 q^{83} +(-7.42083 - 12.8532i) q^{85} +(10.6343 - 18.4192i) q^{86} -14.1453 q^{88} +(-2.00143 - 3.46658i) q^{89} +(5.27744 - 7.94661i) q^{91} -16.7423 q^{92} +22.2130 q^{94} +(3.31701 - 5.74523i) q^{95} +(2.69653 + 4.67053i) q^{97} +(-6.88826 + 14.3996i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 16 q^{4} - 9 q^{7} + 12 q^{8} + 8 q^{10} - 16 q^{11} - 5 q^{13} + 9 q^{14} - 20 q^{16} - 14 q^{19} - 12 q^{20} - 9 q^{22} + 14 q^{23} - 32 q^{25} - 4 q^{26} + 13 q^{28} + 9 q^{29} - 9 q^{31} - 17 q^{32}+ \cdots + 79 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14017 + 1.97483i 0.806222 + 1.39642i 0.915463 + 0.402402i \(0.131824\pi\)
−0.109242 + 0.994015i \(0.534842\pi\)
\(3\) 0 0
\(4\) −1.59997 + 2.77124i −0.799987 + 1.38562i
\(5\) 1.46862 2.54373i 0.656788 1.13759i −0.324654 0.945833i \(-0.605248\pi\)
0.981442 0.191758i \(-0.0614188\pi\)
\(6\) 0 0
\(7\) −2.34076 1.23322i −0.884724 0.466114i
\(8\) −2.73629 −0.967423
\(9\) 0 0
\(10\) 6.69792 2.11807
\(11\) 5.16954 1.55868 0.779338 0.626604i \(-0.215556\pi\)
0.779338 + 0.626604i \(0.215556\pi\)
\(12\) 0 0
\(13\) −0.364757 + 3.58705i −0.101165 + 0.994870i
\(14\) −0.233457 6.02869i −0.0623939 1.61124i
\(15\) 0 0
\(16\) 0.0801172 + 0.138767i 0.0200293 + 0.0346918i
\(17\) 2.52646 4.37595i 0.612756 1.06132i −0.378018 0.925798i \(-0.623394\pi\)
0.990774 0.135526i \(-0.0432724\pi\)
\(18\) 0 0
\(19\) 2.25859 0.518155 0.259078 0.965856i \(-0.416581\pi\)
0.259078 + 0.965856i \(0.416581\pi\)
\(20\) 4.69952 + 8.13980i 1.05084 + 1.82011i
\(21\) 0 0
\(22\) 5.89416 + 10.2090i 1.25664 + 2.17656i
\(23\) 2.61602 + 4.53108i 0.545478 + 0.944796i 0.998577 + 0.0533353i \(0.0169852\pi\)
−0.453099 + 0.891460i \(0.649681\pi\)
\(24\) 0 0
\(25\) −1.81371 3.14143i −0.362742 0.628287i
\(26\) −7.49971 + 3.36952i −1.47081 + 0.660817i
\(27\) 0 0
\(28\) 7.16271 4.51367i 1.35362 0.853004i
\(29\) −0.216901 + 0.375683i −0.0402775 + 0.0697626i −0.885461 0.464713i \(-0.846158\pi\)
0.845184 + 0.534476i \(0.179491\pi\)
\(30\) 0 0
\(31\) −1.34122 2.32306i −0.240890 0.417234i 0.720078 0.693893i \(-0.244106\pi\)
−0.960968 + 0.276659i \(0.910773\pi\)
\(32\) −2.91898 + 5.05582i −0.516008 + 0.893751i
\(33\) 0 0
\(34\) 11.5224 1.97607
\(35\) −6.57468 + 4.14312i −1.11132 + 0.700316i
\(36\) 0 0
\(37\) 2.12386 + 3.67863i 0.349160 + 0.604764i 0.986101 0.166150i \(-0.0531335\pi\)
−0.636940 + 0.770913i \(0.719800\pi\)
\(38\) 2.57517 + 4.46033i 0.417748 + 0.723561i
\(39\) 0 0
\(40\) −4.01857 + 6.96037i −0.635392 + 1.10053i
\(41\) −0.269622 + 0.466999i −0.0421079 + 0.0729330i −0.886311 0.463090i \(-0.846741\pi\)
0.844203 + 0.536023i \(0.180074\pi\)
\(42\) 0 0
\(43\) −4.66348 8.07739i −0.711175 1.23179i −0.964416 0.264388i \(-0.914830\pi\)
0.253242 0.967403i \(-0.418503\pi\)
\(44\) −8.27113 + 14.3260i −1.24692 + 2.15973i
\(45\) 0 0
\(46\) −5.96541 + 10.3324i −0.879552 + 1.52343i
\(47\) 4.87054 8.43603i 0.710442 1.23052i −0.254250 0.967139i \(-0.581828\pi\)
0.964691 0.263383i \(-0.0848382\pi\)
\(48\) 0 0
\(49\) 3.95832 + 5.77336i 0.565475 + 0.824766i
\(50\) 4.13587 7.16354i 0.584900 1.01308i
\(51\) 0 0
\(52\) −9.35697 6.75002i −1.29758 0.936059i
\(53\) −0.377571 0.653972i −0.0518634 0.0898300i 0.838928 0.544242i \(-0.183183\pi\)
−0.890792 + 0.454412i \(0.849849\pi\)
\(54\) 0 0
\(55\) 7.59211 13.1499i 1.02372 1.77313i
\(56\) 6.40499 + 3.37445i 0.855903 + 0.450930i
\(57\) 0 0
\(58\) −0.989214 −0.129890
\(59\) −1.82385 + 3.15901i −0.237445 + 0.411267i −0.959981 0.280067i \(-0.909643\pi\)
0.722535 + 0.691334i \(0.242977\pi\)
\(60\) 0 0
\(61\) 6.95468 0.890455 0.445228 0.895417i \(-0.353123\pi\)
0.445228 + 0.895417i \(0.353123\pi\)
\(62\) 3.05843 5.29736i 0.388422 0.672766i
\(63\) 0 0
\(64\) −12.9921 −1.62401
\(65\) 8.58881 + 6.19587i 1.06531 + 0.768503i
\(66\) 0 0
\(67\) −13.3602 −1.63221 −0.816107 0.577901i \(-0.803872\pi\)
−0.816107 + 0.577901i \(0.803872\pi\)
\(68\) 8.08453 + 14.0028i 0.980393 + 1.69809i
\(69\) 0 0
\(70\) −15.6782 8.26003i −1.87391 0.987262i
\(71\) −3.90487 6.76343i −0.463423 0.802672i 0.535706 0.844404i \(-0.320045\pi\)
−0.999129 + 0.0417329i \(0.986712\pi\)
\(72\) 0 0
\(73\) −7.94401 13.7594i −0.929776 1.61042i −0.783694 0.621147i \(-0.786667\pi\)
−0.146083 0.989272i \(-0.546667\pi\)
\(74\) −4.84312 + 8.38853i −0.563001 + 0.975147i
\(75\) 0 0
\(76\) −3.61368 + 6.25908i −0.414517 + 0.717965i
\(77\) −12.1007 6.37520i −1.37900 0.726521i
\(78\) 0 0
\(79\) −7.79235 + 13.4967i −0.876708 + 1.51850i −0.0217756 + 0.999763i \(0.506932\pi\)
−0.854932 + 0.518740i \(0.826401\pi\)
\(80\) 0.470648 0.0526200
\(81\) 0 0
\(82\) −1.22966 −0.135793
\(83\) −13.2349 −1.45272 −0.726360 0.687315i \(-0.758789\pi\)
−0.726360 + 0.687315i \(0.758789\pi\)
\(84\) 0 0
\(85\) −7.42083 12.8532i −0.804902 1.39413i
\(86\) 10.6343 18.4192i 1.14673 1.98619i
\(87\) 0 0
\(88\) −14.1453 −1.50790
\(89\) −2.00143 3.46658i −0.212151 0.367457i 0.740236 0.672347i \(-0.234714\pi\)
−0.952388 + 0.304890i \(0.901380\pi\)
\(90\) 0 0
\(91\) 5.27744 7.94661i 0.553227 0.833031i
\(92\) −16.7423 −1.74550
\(93\) 0 0
\(94\) 22.2130 2.29109
\(95\) 3.31701 5.74523i 0.340318 0.589449i
\(96\) 0 0
\(97\) 2.69653 + 4.67053i 0.273791 + 0.474220i 0.969829 0.243784i \(-0.0783889\pi\)
−0.696038 + 0.718005i \(0.745056\pi\)
\(98\) −6.88826 + 14.3996i −0.695819 + 1.45458i
\(99\) 0 0
\(100\) 11.6075 1.16075
\(101\) 3.15240 0.313676 0.156838 0.987624i \(-0.449870\pi\)
0.156838 + 0.987624i \(0.449870\pi\)
\(102\) 0 0
\(103\) −6.59727 + 11.4268i −0.650048 + 1.12592i 0.333062 + 0.942905i \(0.391918\pi\)
−0.983111 + 0.183012i \(0.941415\pi\)
\(104\) 0.998078 9.81520i 0.0978696 0.962460i
\(105\) 0 0
\(106\) 0.860990 1.49128i 0.0836267 0.144846i
\(107\) 2.93351 + 5.08098i 0.283593 + 0.491197i 0.972267 0.233874i \(-0.0751403\pi\)
−0.688674 + 0.725071i \(0.741807\pi\)
\(108\) 0 0
\(109\) 2.74399 + 4.75273i 0.262826 + 0.455229i 0.966992 0.254807i \(-0.0820120\pi\)
−0.704166 + 0.710036i \(0.748679\pi\)
\(110\) 34.6252 3.30138
\(111\) 0 0
\(112\) −0.0164045 0.423623i −0.00155008 0.0400286i
\(113\) −0.794808 1.37665i −0.0747692 0.129504i 0.826217 0.563352i \(-0.190489\pi\)
−0.900986 + 0.433848i \(0.857155\pi\)
\(114\) 0 0
\(115\) 15.3678 1.43305
\(116\) −0.694071 1.20217i −0.0644428 0.111618i
\(117\) 0 0
\(118\) −8.31800 −0.765734
\(119\) −11.3104 + 7.12737i −1.03682 + 0.653365i
\(120\) 0 0
\(121\) 15.7242 1.42947
\(122\) 7.92951 + 13.7343i 0.717904 + 1.24345i
\(123\) 0 0
\(124\) 8.58366 0.770835
\(125\) 4.03162 0.360599
\(126\) 0 0
\(127\) 0.348278 0.603236i 0.0309047 0.0535285i −0.850159 0.526525i \(-0.823494\pi\)
0.881064 + 0.472997i \(0.156828\pi\)
\(128\) −8.97519 15.5455i −0.793302 1.37404i
\(129\) 0 0
\(130\) −2.44311 + 24.0258i −0.214275 + 2.10720i
\(131\) −3.35469 + 5.81049i −0.293101 + 0.507665i −0.974541 0.224208i \(-0.928020\pi\)
0.681441 + 0.731873i \(0.261354\pi\)
\(132\) 0 0
\(133\) −5.28681 2.78534i −0.458425 0.241520i
\(134\) −15.2329 26.3842i −1.31593 2.27925i
\(135\) 0 0
\(136\) −6.91311 + 11.9739i −0.592794 + 1.02675i
\(137\) 6.24965 10.8247i 0.533944 0.924818i −0.465270 0.885169i \(-0.654043\pi\)
0.999214 0.0396491i \(-0.0126240\pi\)
\(138\) 0 0
\(139\) −0.657614 1.13902i −0.0557781 0.0966105i 0.836788 0.547527i \(-0.184431\pi\)
−0.892566 + 0.450916i \(0.851097\pi\)
\(140\) −0.962254 24.8489i −0.0813253 2.10011i
\(141\) 0 0
\(142\) 8.90442 15.4229i 0.747243 1.29426i
\(143\) −1.88563 + 18.5434i −0.157684 + 1.55068i
\(144\) 0 0
\(145\) 0.637091 + 1.10347i 0.0529075 + 0.0916385i
\(146\) 18.1150 31.3762i 1.49921 2.59671i
\(147\) 0 0
\(148\) −13.5925 −1.11729
\(149\) −21.1927 −1.73618 −0.868088 0.496411i \(-0.834651\pi\)
−0.868088 + 0.496411i \(0.834651\pi\)
\(150\) 0 0
\(151\) 7.90358 + 13.6894i 0.643185 + 1.11403i 0.984718 + 0.174159i \(0.0557205\pi\)
−0.341533 + 0.939870i \(0.610946\pi\)
\(152\) −6.18014 −0.501275
\(153\) 0 0
\(154\) −1.20686 31.1656i −0.0972518 2.51139i
\(155\) −7.87898 −0.632855
\(156\) 0 0
\(157\) −2.76205 4.78402i −0.220436 0.381806i 0.734505 0.678604i \(-0.237415\pi\)
−0.954940 + 0.296798i \(0.904081\pi\)
\(158\) −35.5384 −2.82728
\(159\) 0 0
\(160\) 8.57376 + 14.8502i 0.677815 + 1.17401i
\(161\) −0.535646 13.8323i −0.0422148 1.09014i
\(162\) 0 0
\(163\) −3.14870 −0.246625 −0.123313 0.992368i \(-0.539352\pi\)
−0.123313 + 0.992368i \(0.539352\pi\)
\(164\) −0.862777 1.49437i −0.0673715 0.116691i
\(165\) 0 0
\(166\) −15.0900 26.1367i −1.17121 2.02860i
\(167\) −6.71152 + 11.6247i −0.519353 + 0.899546i 0.480394 + 0.877053i \(0.340494\pi\)
−0.999747 + 0.0224932i \(0.992840\pi\)
\(168\) 0 0
\(169\) −12.7339 2.61680i −0.979531 0.201293i
\(170\) 16.9220 29.3098i 1.29786 2.24796i
\(171\) 0 0
\(172\) 29.8458 2.27572
\(173\) 12.8488 0.976879 0.488439 0.872598i \(-0.337566\pi\)
0.488439 + 0.872598i \(0.337566\pi\)
\(174\) 0 0
\(175\) 0.371368 + 9.59005i 0.0280728 + 0.724940i
\(176\) 0.414169 + 0.717362i 0.0312192 + 0.0540732i
\(177\) 0 0
\(178\) 4.56394 7.90498i 0.342082 0.592503i
\(179\) −18.6663 −1.39518 −0.697591 0.716496i \(-0.745745\pi\)
−0.697591 + 0.716496i \(0.745745\pi\)
\(180\) 0 0
\(181\) 0.878433 0.0652934 0.0326467 0.999467i \(-0.489606\pi\)
0.0326467 + 0.999467i \(0.489606\pi\)
\(182\) 21.7104 + 1.36158i 1.60928 + 0.100927i
\(183\) 0 0
\(184\) −7.15818 12.3983i −0.527708 0.914017i
\(185\) 12.4766 0.917298
\(186\) 0 0
\(187\) 13.0606 22.6217i 0.955088 1.65426i
\(188\) 15.5855 + 26.9948i 1.13669 + 1.96880i
\(189\) 0 0
\(190\) 15.1278 1.09749
\(191\) 15.9513 1.15419 0.577097 0.816675i \(-0.304185\pi\)
0.577097 + 0.816675i \(0.304185\pi\)
\(192\) 0 0
\(193\) 3.95066 0.284375 0.142187 0.989840i \(-0.454586\pi\)
0.142187 + 0.989840i \(0.454586\pi\)
\(194\) −6.14900 + 10.6504i −0.441473 + 0.764653i
\(195\) 0 0
\(196\) −22.3325 + 1.73222i −1.59518 + 0.123730i
\(197\) 6.72353 11.6455i 0.479032 0.829708i −0.520679 0.853753i \(-0.674321\pi\)
0.999711 + 0.0240448i \(0.00765444\pi\)
\(198\) 0 0
\(199\) −10.4145 + 18.0385i −0.738268 + 1.27872i 0.215007 + 0.976612i \(0.431023\pi\)
−0.953275 + 0.302105i \(0.902311\pi\)
\(200\) 4.96282 + 8.59586i 0.350925 + 0.607819i
\(201\) 0 0
\(202\) 3.59427 + 6.22546i 0.252892 + 0.438022i
\(203\) 0.971014 0.611897i 0.0681518 0.0429468i
\(204\) 0 0
\(205\) 0.791947 + 1.37169i 0.0553120 + 0.0958031i
\(206\) −30.0880 −2.09633
\(207\) 0 0
\(208\) −0.526988 + 0.236769i −0.0365401 + 0.0164169i
\(209\) 11.6759 0.807636
\(210\) 0 0
\(211\) 7.17814 12.4329i 0.494164 0.855917i −0.505814 0.862643i \(-0.668808\pi\)
0.999977 + 0.00672604i \(0.00214098\pi\)
\(212\) 2.41641 0.165960
\(213\) 0 0
\(214\) −6.68939 + 11.5864i −0.457277 + 0.792027i
\(215\) −27.3956 −1.86836
\(216\) 0 0
\(217\) 0.274623 + 7.09175i 0.0186426 + 0.481419i
\(218\) −6.25722 + 10.8378i −0.423793 + 0.734030i
\(219\) 0 0
\(220\) 24.2943 + 42.0790i 1.63792 + 2.83697i
\(221\) 14.7752 + 10.6587i 0.993890 + 0.716981i
\(222\) 0 0
\(223\) 0.596931 1.03392i 0.0399735 0.0692361i −0.845346 0.534218i \(-0.820606\pi\)
0.885320 + 0.464982i \(0.153939\pi\)
\(224\) 13.0676 8.23472i 0.873115 0.550205i
\(225\) 0 0
\(226\) 1.81243 3.13922i 0.120561 0.208818i
\(227\) −7.94437 + 13.7600i −0.527286 + 0.913286i 0.472208 + 0.881487i \(0.343457\pi\)
−0.999494 + 0.0317993i \(0.989876\pi\)
\(228\) 0 0
\(229\) −4.39323 + 7.60931i −0.290313 + 0.502837i −0.973884 0.227047i \(-0.927093\pi\)
0.683571 + 0.729884i \(0.260426\pi\)
\(230\) 17.5219 + 30.3488i 1.15536 + 2.00114i
\(231\) 0 0
\(232\) 0.593502 1.02798i 0.0389653 0.0674899i
\(233\) −2.86714 + 4.96604i −0.187833 + 0.325336i −0.944527 0.328432i \(-0.893480\pi\)
0.756695 + 0.653769i \(0.226813\pi\)
\(234\) 0 0
\(235\) −14.3060 24.7787i −0.933220 1.61638i
\(236\) −5.83623 10.1086i −0.379906 0.658017i
\(237\) 0 0
\(238\) −26.9711 14.2096i −1.74828 0.921074i
\(239\) 11.5411 0.746532 0.373266 0.927724i \(-0.378238\pi\)
0.373266 + 0.927724i \(0.378238\pi\)
\(240\) 0 0
\(241\) 2.83030 4.90223i 0.182316 0.315780i −0.760353 0.649510i \(-0.774974\pi\)
0.942669 + 0.333730i \(0.108307\pi\)
\(242\) 17.9282 + 31.0526i 1.15247 + 1.99614i
\(243\) 0 0
\(244\) −11.1273 + 19.2730i −0.712352 + 1.23383i
\(245\) 20.4992 1.59001i 1.30964 0.101582i
\(246\) 0 0
\(247\) −0.823835 + 8.10167i −0.0524193 + 0.515497i
\(248\) 3.66996 + 6.35655i 0.233043 + 0.403642i
\(249\) 0 0
\(250\) 4.59673 + 7.96177i 0.290723 + 0.503546i
\(251\) −12.1872 21.1088i −0.769249 1.33238i −0.937971 0.346715i \(-0.887297\pi\)
0.168721 0.985664i \(-0.446036\pi\)
\(252\) 0 0
\(253\) 13.5236 + 23.4236i 0.850223 + 1.47263i
\(254\) 1.58839 0.0996641
\(255\) 0 0
\(256\) 7.47442 12.9461i 0.467151 0.809130i
\(257\) 2.30268 + 3.98836i 0.143637 + 0.248787i 0.928864 0.370422i \(-0.120787\pi\)
−0.785226 + 0.619209i \(0.787453\pi\)
\(258\) 0 0
\(259\) −0.434873 11.2300i −0.0270217 0.697798i
\(260\) −30.9121 + 13.8884i −1.91709 + 0.861320i
\(261\) 0 0
\(262\) −15.2997 −0.945216
\(263\) −22.9824 −1.41715 −0.708576 0.705634i \(-0.750662\pi\)
−0.708576 + 0.705634i \(0.750662\pi\)
\(264\) 0 0
\(265\) −2.21804 −0.136253
\(266\) −0.527282 13.6163i −0.0323297 0.834870i
\(267\) 0 0
\(268\) 21.3760 37.0244i 1.30575 2.26162i
\(269\) 7.00246 12.1286i 0.426948 0.739495i −0.569652 0.821886i \(-0.692922\pi\)
0.996600 + 0.0823905i \(0.0262555\pi\)
\(270\) 0 0
\(271\) 9.55299 + 16.5463i 0.580303 + 1.00511i 0.995443 + 0.0953563i \(0.0303990\pi\)
−0.415141 + 0.909757i \(0.636268\pi\)
\(272\) 0.809651 0.0490923
\(273\) 0 0
\(274\) 28.5027 1.72191
\(275\) −9.37604 16.2398i −0.565397 0.979296i
\(276\) 0 0
\(277\) −6.45998 + 11.1890i −0.388142 + 0.672282i −0.992200 0.124658i \(-0.960216\pi\)
0.604057 + 0.796941i \(0.293550\pi\)
\(278\) 1.49958 2.59735i 0.0899390 0.155779i
\(279\) 0 0
\(280\) 17.9902 11.3368i 1.07512 0.677502i
\(281\) 19.6264 1.17082 0.585408 0.810739i \(-0.300934\pi\)
0.585408 + 0.810739i \(0.300934\pi\)
\(282\) 0 0
\(283\) 3.26727 0.194219 0.0971095 0.995274i \(-0.469040\pi\)
0.0971095 + 0.995274i \(0.469040\pi\)
\(284\) 24.9907 1.48293
\(285\) 0 0
\(286\) −38.7701 + 17.4189i −2.29252 + 1.03000i
\(287\) 1.20704 0.760629i 0.0712490 0.0448985i
\(288\) 0 0
\(289\) −4.26597 7.38888i −0.250939 0.434640i
\(290\) −1.45278 + 2.51629i −0.0853104 + 0.147762i
\(291\) 0 0
\(292\) 50.8408 2.97523
\(293\) −9.50947 16.4709i −0.555549 0.962239i −0.997861 0.0653778i \(-0.979175\pi\)
0.442311 0.896862i \(-0.354159\pi\)
\(294\) 0 0
\(295\) 5.35710 + 9.27878i 0.311903 + 0.540231i
\(296\) −5.81149 10.0658i −0.337786 0.585062i
\(297\) 0 0
\(298\) −24.1633 41.8521i −1.39974 2.42442i
\(299\) −17.2074 + 7.73106i −0.995132 + 0.447099i
\(300\) 0 0
\(301\) 0.954876 + 24.6584i 0.0550382 + 1.42128i
\(302\) −18.0229 + 31.2165i −1.03710 + 1.79631i
\(303\) 0 0
\(304\) 0.180952 + 0.313418i 0.0103783 + 0.0179757i
\(305\) 10.2138 17.6908i 0.584840 1.01297i
\(306\) 0 0
\(307\) −8.30660 −0.474083 −0.237041 0.971500i \(-0.576178\pi\)
−0.237041 + 0.971500i \(0.576178\pi\)
\(308\) 37.0279 23.3336i 2.10986 1.32956i
\(309\) 0 0
\(310\) −8.98338 15.5597i −0.510221 0.883729i
\(311\) −5.42853 9.40250i −0.307824 0.533167i 0.670062 0.742305i \(-0.266267\pi\)
−0.977886 + 0.209138i \(0.932934\pi\)
\(312\) 0 0
\(313\) 0.566928 0.981949i 0.0320447 0.0555030i −0.849558 0.527495i \(-0.823131\pi\)
0.881603 + 0.471992i \(0.156465\pi\)
\(314\) 6.29842 10.9092i 0.355440 0.615641i
\(315\) 0 0
\(316\) −24.9351 43.1889i −1.40271 2.42956i
\(317\) 4.98712 8.63795i 0.280105 0.485155i −0.691306 0.722562i \(-0.742964\pi\)
0.971410 + 0.237407i \(0.0762975\pi\)
\(318\) 0 0
\(319\) −1.12128 + 1.94211i −0.0627795 + 0.108737i
\(320\) −19.0804 + 33.0483i −1.06663 + 1.84746i
\(321\) 0 0
\(322\) 26.7058 16.8290i 1.48825 0.937843i
\(323\) 5.70622 9.88347i 0.317503 0.549931i
\(324\) 0 0
\(325\) 11.9301 5.36001i 0.661760 0.297320i
\(326\) −3.59005 6.21815i −0.198835 0.344392i
\(327\) 0 0
\(328\) 0.737763 1.27784i 0.0407362 0.0705571i
\(329\) −21.8043 + 13.7403i −1.20211 + 0.757525i
\(330\) 0 0
\(331\) −1.65514 −0.0909746 −0.0454873 0.998965i \(-0.514484\pi\)
−0.0454873 + 0.998965i \(0.514484\pi\)
\(332\) 21.1755 36.6770i 1.16216 2.01291i
\(333\) 0 0
\(334\) −30.6091 −1.67486
\(335\) −19.6212 + 33.9849i −1.07202 + 1.85679i
\(336\) 0 0
\(337\) −12.4081 −0.675913 −0.337956 0.941162i \(-0.609736\pi\)
−0.337956 + 0.941162i \(0.609736\pi\)
\(338\) −9.35107 28.1309i −0.508631 1.53012i
\(339\) 0 0
\(340\) 47.4925 2.57564
\(341\) −6.93349 12.0092i −0.375469 0.650332i
\(342\) 0 0
\(343\) −2.14565 18.3955i −0.115854 0.993266i
\(344\) 12.7606 + 22.1021i 0.688007 + 1.19166i
\(345\) 0 0
\(346\) 14.6498 + 25.3743i 0.787581 + 1.36413i
\(347\) 6.62262 11.4707i 0.355521 0.615780i −0.631686 0.775224i \(-0.717637\pi\)
0.987207 + 0.159444i \(0.0509702\pi\)
\(348\) 0 0
\(349\) 17.5068 30.3227i 0.937119 1.62314i 0.166307 0.986074i \(-0.446816\pi\)
0.770812 0.637063i \(-0.219851\pi\)
\(350\) −18.5153 + 11.6677i −0.989685 + 0.623663i
\(351\) 0 0
\(352\) −15.0898 + 26.1363i −0.804289 + 1.39307i
\(353\) −23.1083 −1.22993 −0.614964 0.788555i \(-0.710829\pi\)
−0.614964 + 0.788555i \(0.710829\pi\)
\(354\) 0 0
\(355\) −22.9391 −1.21748
\(356\) 12.8089 0.678873
\(357\) 0 0
\(358\) −21.2827 36.8628i −1.12483 1.94826i
\(359\) 6.44458 11.1623i 0.340132 0.589126i −0.644325 0.764752i \(-0.722862\pi\)
0.984457 + 0.175626i \(0.0561949\pi\)
\(360\) 0 0
\(361\) −13.8988 −0.731515
\(362\) 1.00156 + 1.73476i 0.0526409 + 0.0911768i
\(363\) 0 0
\(364\) 13.5781 + 27.3394i 0.711688 + 1.43297i
\(365\) −46.6670 −2.44266
\(366\) 0 0
\(367\) −26.4929 −1.38292 −0.691460 0.722415i \(-0.743032\pi\)
−0.691460 + 0.722415i \(0.743032\pi\)
\(368\) −0.419177 + 0.726035i −0.0218511 + 0.0378472i
\(369\) 0 0
\(370\) 14.2254 + 24.6392i 0.739545 + 1.28093i
\(371\) 0.0773099 + 1.99642i 0.00401373 + 0.103649i
\(372\) 0 0
\(373\) −12.3710 −0.640545 −0.320273 0.947325i \(-0.603775\pi\)
−0.320273 + 0.947325i \(0.603775\pi\)
\(374\) 59.5653 3.08005
\(375\) 0 0
\(376\) −13.3272 + 23.0834i −0.687298 + 1.19043i
\(377\) −1.26848 0.915067i −0.0653300 0.0471284i
\(378\) 0 0
\(379\) −14.0179 + 24.2797i −0.720050 + 1.24716i 0.240929 + 0.970543i \(0.422548\pi\)
−0.960979 + 0.276621i \(0.910785\pi\)
\(380\) 10.6143 + 18.3844i 0.544500 + 0.943102i
\(381\) 0 0
\(382\) 18.1872 + 31.5011i 0.930537 + 1.61174i
\(383\) 26.2903 1.34337 0.671687 0.740835i \(-0.265570\pi\)
0.671687 + 0.740835i \(0.265570\pi\)
\(384\) 0 0
\(385\) −33.9881 + 21.4181i −1.73219 + 1.09157i
\(386\) 4.50442 + 7.80188i 0.229269 + 0.397105i
\(387\) 0 0
\(388\) −17.2575 −0.876117
\(389\) 13.4205 + 23.2449i 0.680445 + 1.17856i 0.974845 + 0.222883i \(0.0715467\pi\)
−0.294400 + 0.955682i \(0.595120\pi\)
\(390\) 0 0
\(391\) 26.4371 1.33698
\(392\) −10.8311 15.7976i −0.547053 0.797897i
\(393\) 0 0
\(394\) 30.6639 1.54482
\(395\) 22.8881 + 39.6433i 1.15162 + 1.99467i
\(396\) 0 0
\(397\) 24.5243 1.23084 0.615419 0.788200i \(-0.288987\pi\)
0.615419 + 0.788200i \(0.288987\pi\)
\(398\) −47.4974 −2.38083
\(399\) 0 0
\(400\) 0.290618 0.503366i 0.0145309 0.0251683i
\(401\) 1.58285 + 2.74158i 0.0790438 + 0.136908i 0.902838 0.429982i \(-0.141480\pi\)
−0.823794 + 0.566889i \(0.808147\pi\)
\(402\) 0 0
\(403\) 8.82216 3.96367i 0.439463 0.197445i
\(404\) −5.04376 + 8.73605i −0.250936 + 0.434635i
\(405\) 0 0
\(406\) 2.31551 + 1.21992i 0.114917 + 0.0605437i
\(407\) 10.9794 + 19.0169i 0.544228 + 0.942630i
\(408\) 0 0
\(409\) −9.53424 + 16.5138i −0.471438 + 0.816555i −0.999466 0.0326723i \(-0.989598\pi\)
0.528028 + 0.849227i \(0.322932\pi\)
\(410\) −1.80591 + 3.12792i −0.0891874 + 0.154477i
\(411\) 0 0
\(412\) −21.1109 36.5652i −1.04006 1.80144i
\(413\) 8.16496 5.14526i 0.401771 0.253182i
\(414\) 0 0
\(415\) −19.4371 + 33.6660i −0.954129 + 1.65260i
\(416\) −17.0708 12.3147i −0.836964 0.603777i
\(417\) 0 0
\(418\) 13.3125 + 23.0579i 0.651134 + 1.12780i
\(419\) −7.80534 + 13.5192i −0.381316 + 0.660458i −0.991251 0.131993i \(-0.957862\pi\)
0.609935 + 0.792452i \(0.291196\pi\)
\(420\) 0 0
\(421\) −18.0525 −0.879827 −0.439913 0.898040i \(-0.644991\pi\)
−0.439913 + 0.898040i \(0.644991\pi\)
\(422\) 32.7372 1.59362
\(423\) 0 0
\(424\) 1.03314 + 1.78945i 0.0501738 + 0.0869036i
\(425\) −18.3290 −0.889088
\(426\) 0 0
\(427\) −16.2792 8.57667i −0.787807 0.415054i
\(428\) −18.7741 −0.907481
\(429\) 0 0
\(430\) −31.2356 54.1017i −1.50632 2.60902i
\(431\) 17.5165 0.843741 0.421871 0.906656i \(-0.361374\pi\)
0.421871 + 0.906656i \(0.361374\pi\)
\(432\) 0 0
\(433\) −3.02961 5.24744i −0.145594 0.252176i 0.784001 0.620760i \(-0.213176\pi\)
−0.929594 + 0.368584i \(0.879843\pi\)
\(434\) −13.6919 + 8.62813i −0.657232 + 0.414163i
\(435\) 0 0
\(436\) −17.5612 −0.841030
\(437\) 5.90851 + 10.2338i 0.282642 + 0.489551i
\(438\) 0 0
\(439\) −11.6912 20.2497i −0.557990 0.966467i −0.997664 0.0683098i \(-0.978239\pi\)
0.439674 0.898157i \(-0.355094\pi\)
\(440\) −20.7742 + 35.9819i −0.990370 + 1.71537i
\(441\) 0 0
\(442\) −4.20286 + 41.3313i −0.199910 + 1.96593i
\(443\) −4.44712 + 7.70264i −0.211289 + 0.365963i −0.952118 0.305730i \(-0.901099\pi\)
0.740829 + 0.671693i \(0.234433\pi\)
\(444\) 0 0
\(445\) −11.7574 −0.557354
\(446\) 2.72241 0.128910
\(447\) 0 0
\(448\) 30.4113 + 16.0221i 1.43680 + 0.756973i
\(449\) 19.3671 + 33.5448i 0.913989 + 1.58308i 0.808375 + 0.588668i \(0.200348\pi\)
0.105614 + 0.994407i \(0.466319\pi\)
\(450\) 0 0
\(451\) −1.39382 + 2.41417i −0.0656326 + 0.113679i
\(452\) 5.08668 0.239258
\(453\) 0 0
\(454\) −36.2317 −1.70044
\(455\) −12.4634 25.0950i −0.584295 1.17647i
\(456\) 0 0
\(457\) −11.2001 19.3992i −0.523920 0.907457i −0.999612 0.0278448i \(-0.991136\pi\)
0.475692 0.879612i \(-0.342198\pi\)
\(458\) −20.0361 −0.936227
\(459\) 0 0
\(460\) −24.5881 + 42.5878i −1.14642 + 1.98567i
\(461\) 1.40367 + 2.43123i 0.0653755 + 0.113234i 0.896860 0.442314i \(-0.145842\pi\)
−0.831485 + 0.555547i \(0.812509\pi\)
\(462\) 0 0
\(463\) 37.7530 1.75453 0.877266 0.480004i \(-0.159365\pi\)
0.877266 + 0.480004i \(0.159365\pi\)
\(464\) −0.0695099 −0.00322692
\(465\) 0 0
\(466\) −13.0761 −0.605740
\(467\) 8.04389 13.9324i 0.372227 0.644716i −0.617681 0.786429i \(-0.711928\pi\)
0.989908 + 0.141713i \(0.0452609\pi\)
\(468\) 0 0
\(469\) 31.2731 + 16.4762i 1.44406 + 0.760798i
\(470\) 32.6225 56.5038i 1.50476 2.60633i
\(471\) 0 0
\(472\) 4.99058 8.64394i 0.229710 0.397870i
\(473\) −24.1081 41.7564i −1.10849 1.91996i
\(474\) 0 0
\(475\) −4.09642 7.09520i −0.187956 0.325550i
\(476\) −1.65536 42.7473i −0.0758731 1.95932i
\(477\) 0 0
\(478\) 13.1588 + 22.7917i 0.601870 + 1.04247i
\(479\) −8.54850 −0.390591 −0.195295 0.980744i \(-0.562567\pi\)
−0.195295 + 0.980744i \(0.562567\pi\)
\(480\) 0 0
\(481\) −13.9701 + 6.27659i −0.636984 + 0.286188i
\(482\) 12.9081 0.587948
\(483\) 0 0
\(484\) −25.1583 + 43.5754i −1.14356 + 1.98070i
\(485\) 15.8407 0.719291
\(486\) 0 0
\(487\) 17.7881 30.8098i 0.806054 1.39613i −0.109524 0.993984i \(-0.534932\pi\)
0.915577 0.402142i \(-0.131734\pi\)
\(488\) −19.0300 −0.861447
\(489\) 0 0
\(490\) 26.5125 + 38.6695i 1.19771 + 1.74691i
\(491\) −15.6990 + 27.1914i −0.708485 + 1.22713i 0.256934 + 0.966429i \(0.417288\pi\)
−0.965419 + 0.260703i \(0.916046\pi\)
\(492\) 0 0
\(493\) 1.09598 + 1.89829i 0.0493605 + 0.0854949i
\(494\) −16.9387 + 7.61034i −0.762110 + 0.342406i
\(495\) 0 0
\(496\) 0.214909 0.372234i 0.00964972 0.0167138i
\(497\) 0.799545 + 20.6471i 0.0358645 + 0.926151i
\(498\) 0 0
\(499\) 2.14606 3.71708i 0.0960708 0.166399i −0.813984 0.580887i \(-0.802706\pi\)
0.910055 + 0.414488i \(0.136039\pi\)
\(500\) −6.45048 + 11.1726i −0.288474 + 0.499652i
\(501\) 0 0
\(502\) 27.7909 48.1353i 1.24037 2.14839i
\(503\) −7.83439 13.5696i −0.349318 0.605037i 0.636810 0.771021i \(-0.280253\pi\)
−0.986129 + 0.165984i \(0.946920\pi\)
\(504\) 0 0
\(505\) 4.62969 8.01886i 0.206019 0.356835i
\(506\) −30.8385 + 53.4138i −1.37094 + 2.37453i
\(507\) 0 0
\(508\) 1.11447 + 1.93032i 0.0494467 + 0.0856442i
\(509\) 0.851865 + 1.47547i 0.0377583 + 0.0653992i 0.884287 0.466944i \(-0.154645\pi\)
−0.846529 + 0.532343i \(0.821312\pi\)
\(510\) 0 0
\(511\) 1.62658 + 42.0043i 0.0719558 + 1.85816i
\(512\) −1.81234 −0.0800947
\(513\) 0 0
\(514\) −5.25089 + 9.09481i −0.231607 + 0.401155i
\(515\) 19.3778 + 33.5633i 0.853888 + 1.47898i
\(516\) 0 0
\(517\) 25.1785 43.6104i 1.10735 1.91798i
\(518\) 21.6815 13.6629i 0.952631 0.600313i
\(519\) 0 0
\(520\) −23.5014 16.9537i −1.03061 0.743468i
\(521\) −8.39696 14.5440i −0.367878 0.637183i 0.621356 0.783528i \(-0.286582\pi\)
−0.989234 + 0.146346i \(0.953249\pi\)
\(522\) 0 0
\(523\) 3.74526 + 6.48697i 0.163769 + 0.283656i 0.936217 0.351422i \(-0.114302\pi\)
−0.772449 + 0.635077i \(0.780968\pi\)
\(524\) −10.7348 18.5933i −0.468953 0.812251i
\(525\) 0 0
\(526\) −26.2038 45.3863i −1.14254 1.97894i
\(527\) −13.5541 −0.590427
\(528\) 0 0
\(529\) −2.18713 + 3.78822i −0.0950926 + 0.164705i
\(530\) −2.52894 4.38025i −0.109850 0.190266i
\(531\) 0 0
\(532\) 16.1776 10.1945i 0.701388 0.441989i
\(533\) −1.57681 1.13749i −0.0682990 0.0492702i
\(534\) 0 0
\(535\) 17.2329 0.745041
\(536\) 36.5574 1.57904
\(537\) 0 0
\(538\) 31.9360 1.37686
\(539\) 20.4627 + 29.8456i 0.881392 + 1.28554i
\(540\) 0 0
\(541\) 4.78963 8.29588i 0.205922 0.356668i −0.744504 0.667618i \(-0.767314\pi\)
0.950426 + 0.310950i \(0.100647\pi\)
\(542\) −21.7840 + 37.7311i −0.935705 + 1.62069i
\(543\) 0 0
\(544\) 14.7494 + 25.5466i 0.632373 + 1.09530i
\(545\) 16.1195 0.690485
\(546\) 0 0
\(547\) −30.1843 −1.29059 −0.645293 0.763935i \(-0.723265\pi\)
−0.645293 + 0.763935i \(0.723265\pi\)
\(548\) 19.9986 + 34.6385i 0.854296 + 1.47968i
\(549\) 0 0
\(550\) 21.3806 37.0322i 0.911670 1.57906i
\(551\) −0.489889 + 0.848513i −0.0208700 + 0.0361479i
\(552\) 0 0
\(553\) 34.8845 21.9829i 1.48344 0.934810i
\(554\) −29.4619 −1.25172
\(555\) 0 0
\(556\) 4.20866 0.178487
\(557\) 4.67142 0.197935 0.0989673 0.995091i \(-0.468446\pi\)
0.0989673 + 0.995091i \(0.468446\pi\)
\(558\) 0 0
\(559\) 30.6751 13.7819i 1.29742 0.582912i
\(560\) −1.10167 0.580414i −0.0465542 0.0245270i
\(561\) 0 0
\(562\) 22.3775 + 38.7589i 0.943937 + 1.63495i
\(563\) −7.19090 + 12.4550i −0.303060 + 0.524915i −0.976828 0.214028i \(-0.931342\pi\)
0.673767 + 0.738943i \(0.264675\pi\)
\(564\) 0 0
\(565\) −4.66909 −0.196430
\(566\) 3.72524 + 6.45231i 0.156584 + 0.271211i
\(567\) 0 0
\(568\) 10.6848 + 18.5067i 0.448326 + 0.776523i
\(569\) −7.28779 12.6228i −0.305520 0.529176i 0.671857 0.740681i \(-0.265497\pi\)
−0.977377 + 0.211505i \(0.932164\pi\)
\(570\) 0 0
\(571\) −12.9575 22.4430i −0.542254 0.939211i −0.998774 0.0494981i \(-0.984238\pi\)
0.456520 0.889713i \(-0.349096\pi\)
\(572\) −48.3712 34.8945i −2.02250 1.45901i
\(573\) 0 0
\(574\) 2.87834 + 1.51645i 0.120140 + 0.0632952i
\(575\) 9.48940 16.4361i 0.395735 0.685433i
\(576\) 0 0
\(577\) 11.7875 + 20.4165i 0.490719 + 0.849950i 0.999943 0.0106839i \(-0.00340085\pi\)
−0.509224 + 0.860634i \(0.670068\pi\)
\(578\) 9.72786 16.8491i 0.404626 0.700832i
\(579\) 0 0
\(580\) −4.07731 −0.169301
\(581\) 30.9797 + 16.3216i 1.28526 + 0.677133i
\(582\) 0 0
\(583\) −1.95187 3.38074i −0.0808382 0.140016i
\(584\) 21.7371 + 37.6497i 0.899487 + 1.55796i
\(585\) 0 0
\(586\) 21.6848 37.5592i 0.895791 1.55156i
\(587\) 23.7561 41.1468i 0.980521 1.69831i 0.320160 0.947364i \(-0.396263\pi\)
0.660361 0.750948i \(-0.270403\pi\)
\(588\) 0 0
\(589\) −3.02926 5.24683i −0.124818 0.216192i
\(590\) −12.2160 + 21.1588i −0.502925 + 0.871092i
\(591\) 0 0
\(592\) −0.340316 + 0.589444i −0.0139869 + 0.0242260i
\(593\) 2.36887 4.10300i 0.0972779 0.168490i −0.813279 0.581874i \(-0.802320\pi\)
0.910557 + 0.413384i \(0.135653\pi\)
\(594\) 0 0
\(595\) 1.51946 + 39.2379i 0.0622917 + 1.60860i
\(596\) 33.9078 58.7300i 1.38892 2.40568i
\(597\) 0 0
\(598\) −34.8870 25.1671i −1.42663 1.02916i
\(599\) −1.07453 1.86114i −0.0439041 0.0760441i 0.843238 0.537540i \(-0.180646\pi\)
−0.887142 + 0.461496i \(0.847313\pi\)
\(600\) 0 0
\(601\) 0.736182 1.27511i 0.0300295 0.0520126i −0.850620 0.525781i \(-0.823773\pi\)
0.880650 + 0.473768i \(0.157107\pi\)
\(602\) −47.6074 + 30.0004i −1.94033 + 1.22273i
\(603\) 0 0
\(604\) −50.5821 −2.05816
\(605\) 23.0929 39.9980i 0.938859 1.62615i
\(606\) 0 0
\(607\) −12.9859 −0.527082 −0.263541 0.964648i \(-0.584890\pi\)
−0.263541 + 0.964648i \(0.584890\pi\)
\(608\) −6.59277 + 11.4190i −0.267372 + 0.463102i
\(609\) 0 0
\(610\) 46.5818 1.88604
\(611\) 28.4839 + 20.5480i 1.15234 + 0.831283i
\(612\) 0 0
\(613\) −40.1092 −1.61999 −0.809997 0.586433i \(-0.800532\pi\)
−0.809997 + 0.586433i \(0.800532\pi\)
\(614\) −9.47093 16.4041i −0.382216 0.662017i
\(615\) 0 0
\(616\) 33.1109 + 17.4444i 1.33407 + 0.702853i
\(617\) −8.82052 15.2776i −0.355101 0.615052i 0.632035 0.774940i \(-0.282220\pi\)
−0.987135 + 0.159888i \(0.948887\pi\)
\(618\) 0 0
\(619\) 13.3825 + 23.1792i 0.537890 + 0.931652i 0.999017 + 0.0443184i \(0.0141116\pi\)
−0.461128 + 0.887334i \(0.652555\pi\)
\(620\) 12.6062 21.8345i 0.506276 0.876895i
\(621\) 0 0
\(622\) 12.3789 21.4409i 0.496349 0.859701i
\(623\) 0.409805 + 10.5826i 0.0164185 + 0.423985i
\(624\) 0 0
\(625\) 14.9895 25.9625i 0.599579 1.03850i
\(626\) 2.58558 0.103340
\(627\) 0 0
\(628\) 17.6768 0.705383
\(629\) 21.4634 0.855800
\(630\) 0 0
\(631\) 10.1224 + 17.5324i 0.402964 + 0.697955i 0.994082 0.108630i \(-0.0346465\pi\)
−0.591118 + 0.806585i \(0.701313\pi\)
\(632\) 21.3221 36.9309i 0.848147 1.46903i
\(633\) 0 0
\(634\) 22.7447 0.903306
\(635\) −1.02298 1.77185i −0.0405957 0.0703138i
\(636\) 0 0
\(637\) −22.1532 + 12.0928i −0.877741 + 0.479136i
\(638\) −5.11379 −0.202457
\(639\) 0 0
\(640\) −52.7247 −2.08413
\(641\) −7.38825 + 12.7968i −0.291819 + 0.505445i −0.974240 0.225515i \(-0.927594\pi\)
0.682421 + 0.730959i \(0.260927\pi\)
\(642\) 0 0
\(643\) 4.74073 + 8.21118i 0.186956 + 0.323817i 0.944234 0.329276i \(-0.106804\pi\)
−0.757278 + 0.653093i \(0.773471\pi\)
\(644\) 39.1896 + 20.6469i 1.54429 + 0.813603i
\(645\) 0 0
\(646\) 26.0242 1.02391
\(647\) 49.9026 1.96187 0.980937 0.194327i \(-0.0622522\pi\)
0.980937 + 0.194327i \(0.0622522\pi\)
\(648\) 0 0
\(649\) −9.42848 + 16.3306i −0.370100 + 0.641033i
\(650\) 24.1874 + 17.4485i 0.948708 + 0.684388i
\(651\) 0 0
\(652\) 5.03784 8.72579i 0.197297 0.341728i
\(653\) 20.7019 + 35.8568i 0.810128 + 1.40318i 0.912774 + 0.408466i \(0.133936\pi\)
−0.102645 + 0.994718i \(0.532731\pi\)
\(654\) 0 0
\(655\) 9.85355 + 17.0668i 0.385010 + 0.666857i
\(656\) −0.0864055 −0.00337357
\(657\) 0 0
\(658\) −51.9953 27.3936i −2.02699 1.06791i
\(659\) −1.08993 1.88781i −0.0424576 0.0735387i 0.844016 0.536318i \(-0.180185\pi\)
−0.886473 + 0.462780i \(0.846852\pi\)
\(660\) 0 0
\(661\) 32.8566 1.27797 0.638986 0.769218i \(-0.279354\pi\)
0.638986 + 0.769218i \(0.279354\pi\)
\(662\) −1.88714 3.26862i −0.0733457 0.127038i
\(663\) 0 0
\(664\) 36.2145 1.40539
\(665\) −14.8495 + 9.35760i −0.575838 + 0.362872i
\(666\) 0 0
\(667\) −2.26967 −0.0878819
\(668\) −21.4765 37.1984i −0.830951 1.43925i
\(669\) 0 0
\(670\) −89.4858 −3.45714
\(671\) 35.9525 1.38793
\(672\) 0 0
\(673\) −5.61199 + 9.72024i −0.216326 + 0.374688i −0.953682 0.300817i \(-0.902741\pi\)
0.737356 + 0.675505i \(0.236074\pi\)
\(674\) −14.1473 24.5039i −0.544936 0.943856i
\(675\) 0 0
\(676\) 27.6257 31.1018i 1.06253 1.19622i
\(677\) −10.0207 + 17.3564i −0.385127 + 0.667059i −0.991787 0.127902i \(-0.959176\pi\)
0.606660 + 0.794961i \(0.292509\pi\)
\(678\) 0 0
\(679\) −0.552131 14.2580i −0.0211888 0.547172i
\(680\) 20.3055 + 35.1702i 0.778680 + 1.34871i
\(681\) 0 0
\(682\) 15.8107 27.3849i 0.605423 1.04862i
\(683\) 7.33004 12.6960i 0.280476 0.485799i −0.691026 0.722830i \(-0.742841\pi\)
0.971502 + 0.237031i \(0.0761743\pi\)
\(684\) 0 0
\(685\) −18.3568 31.7949i −0.701376 1.21482i
\(686\) 33.8817 25.2113i 1.29361 0.962573i
\(687\) 0 0
\(688\) 0.747251 1.29428i 0.0284887 0.0493438i
\(689\) 2.48355 1.11583i 0.0946159 0.0425096i
\(690\) 0 0
\(691\) −14.4726 25.0673i −0.550565 0.953606i −0.998234 0.0594069i \(-0.981079\pi\)
0.447669 0.894199i \(-0.352254\pi\)
\(692\) −20.5578 + 35.6071i −0.781490 + 1.35358i
\(693\) 0 0
\(694\) 30.2036 1.14651
\(695\) −3.86315 −0.146538
\(696\) 0 0
\(697\) 1.36238 + 2.35971i 0.0516037 + 0.0893803i
\(698\) 79.8430 3.02210
\(699\) 0 0
\(700\) −27.1705 14.3147i −1.02695 0.541044i
\(701\) 37.6521 1.42210 0.711051 0.703141i \(-0.248220\pi\)
0.711051 + 0.703141i \(0.248220\pi\)
\(702\) 0 0
\(703\) 4.79692 + 8.30851i 0.180919 + 0.313362i
\(704\) −67.1630 −2.53130
\(705\) 0 0
\(706\) −26.3473 45.6349i −0.991595 1.71749i
\(707\) −7.37902 3.88761i −0.277517 0.146209i
\(708\) 0 0
\(709\) 22.4214 0.842053 0.421026 0.907048i \(-0.361670\pi\)
0.421026 + 0.907048i \(0.361670\pi\)
\(710\) −26.1545 45.3009i −0.981560 1.70011i
\(711\) 0 0
\(712\) 5.47649 + 9.48555i 0.205240 + 0.355486i
\(713\) 7.01731 12.1543i 0.262800 0.455184i
\(714\) 0 0
\(715\) 44.4002 + 32.0298i 1.66047 + 1.19785i
\(716\) 29.8655 51.7286i 1.11613 1.93319i
\(717\) 0 0
\(718\) 29.3917 1.09689
\(719\) −8.37217 −0.312229 −0.156115 0.987739i \(-0.549897\pi\)
−0.156115 + 0.987739i \(0.549897\pi\)
\(720\) 0 0
\(721\) 29.5344 18.6115i 1.09992 0.693129i
\(722\) −15.8470 27.4478i −0.589763 1.02150i
\(723\) 0 0
\(724\) −1.40547 + 2.43434i −0.0522338 + 0.0904717i
\(725\) 1.57358 0.0584412
\(726\) 0 0
\(727\) 20.0990 0.745432 0.372716 0.927945i \(-0.378427\pi\)
0.372716 + 0.927945i \(0.378427\pi\)
\(728\) −14.4406 + 21.7442i −0.535204 + 0.805893i
\(729\) 0 0
\(730\) −53.2083 92.1596i −1.96933 3.41098i
\(731\) −47.1284 −1.74311
\(732\) 0 0
\(733\) 5.77804 10.0079i 0.213417 0.369649i −0.739365 0.673305i \(-0.764874\pi\)
0.952782 + 0.303656i \(0.0982074\pi\)
\(734\) −30.2064 52.3191i −1.11494 1.93113i
\(735\) 0 0
\(736\) −30.5444 −1.12588
\(737\) −69.0664 −2.54409
\(738\) 0 0
\(739\) 24.2650 0.892601 0.446300 0.894883i \(-0.352741\pi\)
0.446300 + 0.894883i \(0.352741\pi\)
\(740\) −19.9622 + 34.5756i −0.733826 + 1.27102i
\(741\) 0 0
\(742\) −3.85445 + 2.42893i −0.141501 + 0.0891689i
\(743\) −0.777681 + 1.34698i −0.0285303 + 0.0494160i −0.879938 0.475088i \(-0.842416\pi\)
0.851408 + 0.524504i \(0.175749\pi\)
\(744\) 0 0
\(745\) −31.1241 + 53.9086i −1.14030 + 1.97506i
\(746\) −14.1050 24.4306i −0.516422 0.894468i
\(747\) 0 0
\(748\) 41.7933 + 72.3881i 1.52811 + 2.64677i
\(749\) −0.600653 15.5110i −0.0219474 0.566761i
\(750\) 0 0
\(751\) 17.6793 + 30.6214i 0.645125 + 1.11739i 0.984273 + 0.176656i \(0.0565281\pi\)
−0.339148 + 0.940733i \(0.610139\pi\)
\(752\) 1.56086 0.0569186
\(753\) 0 0
\(754\) 0.360823 3.54836i 0.0131404 0.129224i
\(755\) 46.4295 1.68974
\(756\) 0 0
\(757\) 9.73684 16.8647i 0.353891 0.612958i −0.633036 0.774122i \(-0.718192\pi\)
0.986928 + 0.161164i \(0.0515249\pi\)
\(758\) −63.9310 −2.32208
\(759\) 0 0
\(760\) −9.07629 + 15.7206i −0.329232 + 0.570246i
\(761\) −17.6396 −0.639434 −0.319717 0.947513i \(-0.603588\pi\)
−0.319717 + 0.947513i \(0.603588\pi\)
\(762\) 0 0
\(763\) −0.561848 14.5089i −0.0203403 0.525259i
\(764\) −25.5216 + 44.2048i −0.923341 + 1.59927i
\(765\) 0 0
\(766\) 29.9754 + 51.9190i 1.08306 + 1.87591i
\(767\) −10.6663 7.69452i −0.385136 0.277833i
\(768\) 0 0
\(769\) −2.32077 + 4.01969i −0.0836890 + 0.144954i −0.904832 0.425769i \(-0.860004\pi\)
0.821143 + 0.570723i \(0.193337\pi\)
\(770\) −81.0492 42.7006i −2.92081 1.53882i
\(771\) 0 0
\(772\) −6.32095 + 10.9482i −0.227496 + 0.394034i
\(773\) 10.0222 17.3590i 0.360475 0.624360i −0.627564 0.778565i \(-0.715948\pi\)
0.988039 + 0.154204i \(0.0492814\pi\)
\(774\) 0 0
\(775\) −4.86516 + 8.42670i −0.174762 + 0.302696i
\(776\) −7.37848 12.7799i −0.264872 0.458772i
\(777\) 0 0
\(778\) −30.6032 + 53.0063i −1.09718 + 1.90037i
\(779\) −0.608965 + 1.05476i −0.0218184 + 0.0377906i
\(780\) 0 0
\(781\) −20.1864 34.9638i −0.722326 1.25110i
\(782\) 30.1427 + 52.2087i 1.07790 + 1.86698i
\(783\) 0 0
\(784\) −0.484023 + 1.01183i −0.0172865 + 0.0361368i
\(785\) −16.2257 −0.579119
\(786\) 0 0
\(787\) 5.05832 8.76128i 0.180310 0.312306i −0.761676 0.647958i \(-0.775623\pi\)
0.941986 + 0.335652i \(0.108957\pi\)
\(788\) 21.5150 + 37.2650i 0.766438 + 1.32751i
\(789\) 0 0
\(790\) −52.1925 + 90.4001i −1.85693 + 3.21629i
\(791\) 0.162742 + 4.20258i 0.00578643 + 0.149426i
\(792\) 0 0
\(793\) −2.53676 + 24.9468i −0.0900831 + 0.885887i
\(794\) 27.9618 + 48.4313i 0.992328 + 1.71876i
\(795\) 0 0
\(796\) −33.3260 57.7223i −1.18121 2.04591i
\(797\) 4.44188 + 7.69357i 0.157340 + 0.272520i 0.933908 0.357512i \(-0.116375\pi\)
−0.776569 + 0.630032i \(0.783042\pi\)
\(798\) 0 0
\(799\) −24.6104 42.6265i −0.870655 1.50802i
\(800\) 21.1767 0.748710
\(801\) 0 0
\(802\) −3.60944 + 6.25172i −0.127454 + 0.220756i
\(803\) −41.0669 71.1300i −1.44922 2.51012i
\(804\) 0 0
\(805\) −35.9723 18.9519i −1.26786 0.667967i
\(806\) 17.8863 + 12.9030i 0.630020 + 0.454489i
\(807\) 0 0
\(808\) −8.62587 −0.303457
\(809\) 41.7569 1.46809 0.734047 0.679099i \(-0.237629\pi\)
0.734047 + 0.679099i \(0.237629\pi\)
\(810\) 0 0
\(811\) −31.3690 −1.10151 −0.550757 0.834666i \(-0.685661\pi\)
−0.550757 + 0.834666i \(0.685661\pi\)
\(812\) 0.142115 + 3.66993i 0.00498726 + 0.128789i
\(813\) 0 0
\(814\) −25.0367 + 43.3649i −0.877537 + 1.51994i
\(815\) −4.62425 + 8.00944i −0.161981 + 0.280559i
\(816\) 0 0
\(817\) −10.5329 18.2435i −0.368499 0.638259i
\(818\) −43.4826 −1.52033
\(819\) 0 0
\(820\) −5.06838 −0.176995
\(821\) 15.2754 + 26.4577i 0.533114 + 0.923381i 0.999252 + 0.0386690i \(0.0123118\pi\)
−0.466138 + 0.884712i \(0.654355\pi\)
\(822\) 0 0
\(823\) −1.67437 + 2.90010i −0.0583650 + 0.101091i −0.893732 0.448602i \(-0.851922\pi\)
0.835367 + 0.549693i \(0.185255\pi\)
\(824\) 18.0520 31.2670i 0.628872 1.08924i
\(825\) 0 0
\(826\) 19.4705 + 10.2580i 0.677464 + 0.356920i
\(827\) 48.2646 1.67833 0.839163 0.543880i \(-0.183045\pi\)
0.839163 + 0.543880i \(0.183045\pi\)
\(828\) 0 0
\(829\) 49.8292 1.73064 0.865320 0.501219i \(-0.167115\pi\)
0.865320 + 0.501219i \(0.167115\pi\)
\(830\) −88.6463 −3.07696
\(831\) 0 0
\(832\) 4.73894 46.6032i 0.164293 1.61568i
\(833\) 35.2645 2.73528i 1.22184 0.0947719i
\(834\) 0 0
\(835\) 19.7134 + 34.1446i 0.682210 + 1.18162i
\(836\) −18.6811 + 32.3566i −0.646098 + 1.11907i
\(837\) 0 0
\(838\) −35.5976 −1.22970
\(839\) −16.4441 28.4819i −0.567712 0.983305i −0.996792 0.0800390i \(-0.974496\pi\)
0.429080 0.903266i \(-0.358838\pi\)
\(840\) 0 0
\(841\) 14.4059 + 24.9518i 0.496755 + 0.860406i
\(842\) −20.5830 35.6507i −0.709335 1.22860i
\(843\) 0 0
\(844\) 22.9697 + 39.7846i 0.790649 + 1.36944i
\(845\) −25.3577 + 28.5485i −0.872333 + 0.982099i
\(846\) 0 0
\(847\) −36.8065 19.3914i −1.26469 0.666297i
\(848\) 0.0604999 0.104789i 0.00207757 0.00359846i
\(849\) 0 0
\(850\) −20.8982 36.1967i −0.716802 1.24154i
\(851\) −11.1121 + 19.2468i −0.380919 + 0.659771i
\(852\) 0 0
\(853\) −17.9823 −0.615701 −0.307850 0.951435i \(-0.599610\pi\)
−0.307850 + 0.951435i \(0.599610\pi\)
\(854\) −1.62361 41.9276i −0.0555590 1.43473i
\(855\) 0 0
\(856\) −8.02691 13.9030i −0.274354 0.475195i
\(857\) −23.5502 40.7901i −0.804459 1.39336i −0.916656 0.399678i \(-0.869122\pi\)
0.112196 0.993686i \(-0.464211\pi\)
\(858\) 0 0
\(859\) −13.8486 + 23.9866i −0.472510 + 0.818411i −0.999505 0.0314573i \(-0.989985\pi\)
0.526995 + 0.849868i \(0.323319\pi\)
\(860\) 43.8322 75.9197i 1.49467 2.58884i
\(861\) 0 0
\(862\) 19.9718 + 34.5922i 0.680242 + 1.17821i
\(863\) −18.5569 + 32.1414i −0.631683 + 1.09411i 0.355525 + 0.934667i \(0.384302\pi\)
−0.987208 + 0.159440i \(0.949031\pi\)
\(864\) 0 0
\(865\) 18.8701 32.6840i 0.641602 1.11129i
\(866\) 6.90854 11.9659i 0.234762 0.406619i
\(867\) 0 0
\(868\) −20.0923 10.5856i −0.681977 0.359298i
\(869\) −40.2829 + 69.7720i −1.36650 + 2.36685i
\(870\) 0 0
\(871\) 4.87324 47.9239i 0.165123 1.62384i
\(872\) −7.50833 13.0048i −0.254264 0.440399i
\(873\) 0 0
\(874\) −13.4734 + 23.3366i −0.455745 + 0.789373i
\(875\) −9.43705 4.97188i −0.319031 0.168080i
\(876\) 0 0
\(877\) 28.2981 0.955559 0.477780 0.878480i \(-0.341442\pi\)
0.477780 + 0.878480i \(0.341442\pi\)
\(878\) 26.6599 46.1763i 0.899727 1.55837i
\(879\) 0 0
\(880\) 2.43303 0.0820176
\(881\) 9.74919 16.8861i 0.328458 0.568907i −0.653748 0.756713i \(-0.726804\pi\)
0.982206 + 0.187806i \(0.0601376\pi\)
\(882\) 0 0
\(883\) 36.8164 1.23897 0.619485 0.785009i \(-0.287342\pi\)
0.619485 + 0.785009i \(0.287342\pi\)
\(884\) −53.1777 + 23.8920i −1.78856 + 0.803575i
\(885\) 0 0
\(886\) −20.2819 −0.681383
\(887\) −11.0920 19.2118i −0.372432 0.645070i 0.617507 0.786565i \(-0.288143\pi\)
−0.989939 + 0.141495i \(0.954809\pi\)
\(888\) 0 0
\(889\) −1.55916 + 0.982526i −0.0522926 + 0.0329529i
\(890\) −13.4054 23.2189i −0.449351 0.778298i
\(891\) 0 0
\(892\) 1.91015 + 3.30847i 0.0639565 + 0.110776i
\(893\) 11.0005 19.0535i 0.368119 0.637601i
\(894\) 0 0
\(895\) −27.4137 + 47.4820i −0.916340 + 1.58715i
\(896\) 1.83772 + 47.4567i 0.0613941 + 1.58542i
\(897\) 0 0
\(898\) −44.1635 + 76.4935i −1.47376 + 2.55262i
\(899\) 1.16365 0.0388098
\(900\) 0 0
\(901\) −3.81567 −0.127118
\(902\) −6.35678 −0.211658
\(903\) 0 0
\(904\) 2.17482 + 3.76690i 0.0723335 + 0.125285i
\(905\) 1.29009 2.23450i 0.0428839 0.0742771i
\(906\) 0 0
\(907\) −46.6084 −1.54761 −0.773803 0.633427i \(-0.781648\pi\)
−0.773803 + 0.633427i \(0.781648\pi\)
\(908\) −25.4215 44.0314i −0.843644 1.46123i
\(909\) 0 0
\(910\) 35.3479 53.2257i 1.17177 1.76442i
\(911\) −0.542513 −0.0179743 −0.00898714 0.999960i \(-0.502861\pi\)
−0.00898714 + 0.999960i \(0.502861\pi\)
\(912\) 0 0
\(913\) −68.4184 −2.26432
\(914\) 25.5401 44.2368i 0.844792 1.46322i
\(915\) 0 0
\(916\) −14.0581 24.3494i −0.464493 0.804526i
\(917\) 15.0182 9.46389i 0.495943 0.312525i
\(918\) 0 0
\(919\) 33.6621 1.11041 0.555205 0.831713i \(-0.312640\pi\)
0.555205 + 0.831713i \(0.312640\pi\)
\(920\) −42.0507 −1.38637
\(921\) 0 0
\(922\) −3.20085 + 5.54403i −0.105414 + 0.182583i
\(923\) 25.6851 11.5400i 0.845436 0.379843i
\(924\) 0 0
\(925\) 7.70412 13.3439i 0.253310 0.438746i
\(926\) 43.0449 + 74.5559i 1.41454 + 2.45006i
\(927\) 0 0
\(928\) −1.26626 2.19322i −0.0415669 0.0719961i
\(929\) 42.6784 1.40023 0.700116 0.714029i \(-0.253131\pi\)
0.700116 + 0.714029i \(0.253131\pi\)
\(930\) 0 0
\(931\) 8.94021 + 13.0396i 0.293004 + 0.427357i
\(932\) −9.17471 15.8911i −0.300528 0.520529i
\(933\) 0 0
\(934\) 36.6856 1.20039
\(935\) −38.3623 66.4454i −1.25458 2.17300i
\(936\) 0 0
\(937\) −10.2859 −0.336026 −0.168013 0.985785i \(-0.553735\pi\)
−0.168013 + 0.985785i \(0.553735\pi\)
\(938\) 3.11904 + 80.5448i 0.101840 + 2.62988i
\(939\) 0 0
\(940\) 91.5568 2.98625
\(941\) −5.84119 10.1172i −0.190417 0.329813i 0.754971 0.655758i \(-0.227651\pi\)
−0.945389 + 0.325945i \(0.894317\pi\)
\(942\) 0 0
\(943\) −2.82135 −0.0918758
\(944\) −0.584488 −0.0190235
\(945\) 0 0
\(946\) 54.9746 95.2188i 1.78738 3.09583i
\(947\) 15.9404 + 27.6096i 0.517993 + 0.897190i 0.999782 + 0.0209026i \(0.00665399\pi\)
−0.481789 + 0.876287i \(0.660013\pi\)
\(948\) 0 0
\(949\) 52.2535 23.4768i 1.69622 0.762088i
\(950\) 9.34122 16.1795i 0.303069 0.524931i
\(951\) 0 0
\(952\) 30.9484 19.5025i 1.00304 0.632080i
\(953\) −3.72492 6.45175i −0.120662 0.208993i 0.799367 0.600843i \(-0.205168\pi\)
−0.920029 + 0.391850i \(0.871835\pi\)
\(954\) 0 0
\(955\) 23.4264 40.5758i 0.758062 1.31300i
\(956\) −18.4655 + 31.9831i −0.597215 + 1.03441i
\(957\) 0 0
\(958\) −9.74674 16.8818i −0.314903 0.545428i
\(959\) −27.9782 + 17.6309i −0.903464 + 0.569330i
\(960\) 0 0
\(961\) 11.9023 20.6153i 0.383944 0.665010i
\(962\) −28.3236 20.4323i −0.913188 0.658764i
\(963\) 0 0
\(964\) 9.05681 + 15.6869i 0.291700 + 0.505240i
\(965\) 5.80203 10.0494i 0.186774 0.323502i
\(966\) 0 0
\(967\) −51.0981 −1.64320 −0.821602 0.570061i \(-0.806920\pi\)
−0.821602 + 0.570061i \(0.806920\pi\)
\(968\) −43.0258 −1.38290
\(969\) 0 0
\(970\) 18.0611 + 31.2828i 0.579908 + 1.00443i
\(971\) −5.01835 −0.161046 −0.0805232 0.996753i \(-0.525659\pi\)
−0.0805232 + 0.996753i \(0.525659\pi\)
\(972\) 0 0
\(973\) 0.134650 + 3.47716i 0.00431669 + 0.111473i
\(974\) 81.1256 2.59943
\(975\) 0 0
\(976\) 0.557189 + 0.965080i 0.0178352 + 0.0308915i
\(977\) 27.6611 0.884958 0.442479 0.896779i \(-0.354099\pi\)
0.442479 + 0.896779i \(0.354099\pi\)
\(978\) 0 0
\(979\) −10.3465 17.9206i −0.330675 0.572746i
\(980\) −28.3918 + 59.3519i −0.906943 + 1.89593i
\(981\) 0 0
\(982\) −71.5980 −2.28478
\(983\) −2.23464 3.87050i −0.0712738 0.123450i 0.828186 0.560453i \(-0.189373\pi\)
−0.899460 + 0.437003i \(0.856040\pi\)
\(984\) 0 0
\(985\) −19.7487 34.2057i −0.629245 1.08988i
\(986\) −2.49921 + 4.32875i −0.0795910 + 0.137856i
\(987\) 0 0
\(988\) −21.1335 15.2455i −0.672347 0.485024i
\(989\) 24.3995 42.2613i 0.775860 1.34383i
\(990\) 0 0
\(991\) 10.4243 0.331139 0.165570 0.986198i \(-0.447054\pi\)
0.165570 + 0.986198i \(0.447054\pi\)
\(992\) 15.6600 0.497204
\(993\) 0 0
\(994\) −39.8630 + 25.1202i −1.26438 + 0.796765i
\(995\) 30.5901 + 52.9836i 0.969771 + 1.67969i
\(996\) 0 0
\(997\) 7.25600 12.5678i 0.229800 0.398025i −0.727949 0.685631i \(-0.759526\pi\)
0.957749 + 0.287607i \(0.0928596\pi\)
\(998\) 9.78748 0.309817
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.n.f.100.9 20
3.2 odd 2 273.2.j.c.100.2 20
7.4 even 3 819.2.s.f.802.2 20
13.3 even 3 819.2.s.f.289.2 20
21.11 odd 6 273.2.l.c.256.9 yes 20
39.29 odd 6 273.2.l.c.16.9 yes 20
91.81 even 3 inner 819.2.n.f.172.9 20
273.263 odd 6 273.2.j.c.172.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.2 20 3.2 odd 2
273.2.j.c.172.2 yes 20 273.263 odd 6
273.2.l.c.16.9 yes 20 39.29 odd 6
273.2.l.c.256.9 yes 20 21.11 odd 6
819.2.n.f.100.9 20 1.1 even 1 trivial
819.2.n.f.172.9 20 91.81 even 3 inner
819.2.s.f.289.2 20 13.3 even 3
819.2.s.f.802.2 20 7.4 even 3