L(s) = 1 | + (1.14 + 1.97i)2-s + (−1.59 + 2.77i)4-s + (1.46 − 2.54i)5-s + (−2.34 − 1.23i)7-s − 2.73·8-s + 6.69·10-s + 5.16·11-s + (−0.364 + 3.58i)13-s + (−0.233 − 6.02i)14-s + (0.0801 + 0.138i)16-s + (2.52 − 4.37i)17-s + 2.25·19-s + (4.69 + 8.13i)20-s + (5.89 + 10.2i)22-s + (2.61 + 4.53i)23-s + ⋯ |
L(s) = 1 | + (0.806 + 1.39i)2-s + (−0.799 + 1.38i)4-s + (0.656 − 1.13i)5-s + (−0.884 − 0.466i)7-s − 0.967·8-s + 2.11·10-s + 1.55·11-s + (−0.101 + 0.994i)13-s + (−0.0623 − 1.61i)14-s + (0.0200 + 0.0346i)16-s + (0.612 − 1.06i)17-s + 0.518·19-s + (1.05 + 1.82i)20-s + (1.25 + 2.17i)22-s + (0.545 + 0.944i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.264 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.264 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.07671 + 1.58418i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.07671 + 1.58418i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.34 + 1.23i)T \) |
| 13 | \( 1 + (0.364 - 3.58i)T \) |
good | 2 | \( 1 + (-1.14 - 1.97i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.46 + 2.54i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 - 5.16T + 11T^{2} \) |
| 17 | \( 1 + (-2.52 + 4.37i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 - 2.25T + 19T^{2} \) |
| 23 | \( 1 + (-2.61 - 4.53i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.216 - 0.375i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.34 + 2.32i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.12 - 3.67i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.269 - 0.466i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.66 + 8.07i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.87 + 8.43i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.377 + 0.653i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.82 - 3.15i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 6.95T + 61T^{2} \) |
| 67 | \( 1 + 13.3T + 67T^{2} \) |
| 71 | \( 1 + (3.90 + 6.76i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7.94 + 13.7i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.79 - 13.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 13.2T + 83T^{2} \) |
| 89 | \( 1 + (2.00 + 3.46i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.69 - 4.67i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00134995790606913050211063051, −9.230995534220021756011933757432, −8.830633100157833227348341768555, −7.39335940047408901237555983052, −6.89383841485443661822631901231, −6.01008004218557172954798453464, −5.23830624804957385143718995140, −4.35049926434681867989076901498, −3.48480099137728640825194119811, −1.33512573575542749221225344113,
1.39229457240910654099614710268, 2.74995431902146623753182029755, 3.23246299103238728813617630152, 4.23858820340699817306244084828, 5.68733889933060569944699889510, 6.22018066731944667592181188132, 7.22675823720693515439130625044, 8.751895892604816773898936139279, 9.756389834491036529549584378328, 10.16251285631956659399898765708