L(s) = 1 | + (1.14 + 1.97i)2-s + (−1.59 + 2.77i)4-s + (1.46 − 2.54i)5-s + (−2.34 − 1.23i)7-s − 2.73·8-s + 6.69·10-s + 5.16·11-s + (−0.364 + 3.58i)13-s + (−0.233 − 6.02i)14-s + (0.0801 + 0.138i)16-s + (2.52 − 4.37i)17-s + 2.25·19-s + (4.69 + 8.13i)20-s + (5.89 + 10.2i)22-s + (2.61 + 4.53i)23-s + ⋯ |
L(s) = 1 | + (0.806 + 1.39i)2-s + (−0.799 + 1.38i)4-s + (0.656 − 1.13i)5-s + (−0.884 − 0.466i)7-s − 0.967·8-s + 2.11·10-s + 1.55·11-s + (−0.101 + 0.994i)13-s + (−0.0623 − 1.61i)14-s + (0.0200 + 0.0346i)16-s + (0.612 − 1.06i)17-s + 0.518·19-s + (1.05 + 1.82i)20-s + (1.25 + 2.17i)22-s + (0.545 + 0.944i)23-s + ⋯ |
Λ(s)=(=(819s/2ΓC(s)L(s)(0.264−0.964i)Λ(2−s)
Λ(s)=(=(819s/2ΓC(s+1/2)L(s)(0.264−0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
819
= 32⋅7⋅13
|
Sign: |
0.264−0.964i
|
Analytic conductor: |
6.53974 |
Root analytic conductor: |
2.55729 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ819(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 819, ( :1/2), 0.264−0.964i)
|
Particular Values
L(1) |
≈ |
2.07671+1.58418i |
L(21) |
≈ |
2.07671+1.58418i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(2.34+1.23i)T |
| 13 | 1+(0.364−3.58i)T |
good | 2 | 1+(−1.14−1.97i)T+(−1+1.73i)T2 |
| 5 | 1+(−1.46+2.54i)T+(−2.5−4.33i)T2 |
| 11 | 1−5.16T+11T2 |
| 17 | 1+(−2.52+4.37i)T+(−8.5−14.7i)T2 |
| 19 | 1−2.25T+19T2 |
| 23 | 1+(−2.61−4.53i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.216−0.375i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.34+2.32i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2.12−3.67i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.269−0.466i)T+(−20.5−35.5i)T2 |
| 43 | 1+(4.66+8.07i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.87+8.43i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.377+0.653i)T+(−26.5+45.8i)T2 |
| 59 | 1+(1.82−3.15i)T+(−29.5−51.0i)T2 |
| 61 | 1−6.95T+61T2 |
| 67 | 1+13.3T+67T2 |
| 71 | 1+(3.90+6.76i)T+(−35.5+61.4i)T2 |
| 73 | 1+(7.94+13.7i)T+(−36.5+63.2i)T2 |
| 79 | 1+(7.79−13.4i)T+(−39.5−68.4i)T2 |
| 83 | 1+13.2T+83T2 |
| 89 | 1+(2.00+3.46i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−2.69−4.67i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00134995790606913050211063051, −9.230995534220021756011933757432, −8.830633100157833227348341768555, −7.39335940047408901237555983052, −6.89383841485443661822631901231, −6.01008004218557172954798453464, −5.23830624804957385143718995140, −4.35049926434681867989076901498, −3.48480099137728640825194119811, −1.33512573575542749221225344113,
1.39229457240910654099614710268, 2.74995431902146623753182029755, 3.23246299103238728813617630152, 4.23858820340699817306244084828, 5.68733889933060569944699889510, 6.22018066731944667592181188132, 7.22675823720693515439130625044, 8.751895892604816773898936139279, 9.756389834491036529549584378328, 10.16251285631956659399898765708