Properties

Label 2-819-91.9-c1-0-24
Degree 22
Conductor 819819
Sign 0.2640.964i0.264 - 0.964i
Analytic cond. 6.539746.53974
Root an. cond. 2.557292.55729
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.14 + 1.97i)2-s + (−1.59 + 2.77i)4-s + (1.46 − 2.54i)5-s + (−2.34 − 1.23i)7-s − 2.73·8-s + 6.69·10-s + 5.16·11-s + (−0.364 + 3.58i)13-s + (−0.233 − 6.02i)14-s + (0.0801 + 0.138i)16-s + (2.52 − 4.37i)17-s + 2.25·19-s + (4.69 + 8.13i)20-s + (5.89 + 10.2i)22-s + (2.61 + 4.53i)23-s + ⋯
L(s)  = 1  + (0.806 + 1.39i)2-s + (−0.799 + 1.38i)4-s + (0.656 − 1.13i)5-s + (−0.884 − 0.466i)7-s − 0.967·8-s + 2.11·10-s + 1.55·11-s + (−0.101 + 0.994i)13-s + (−0.0623 − 1.61i)14-s + (0.0200 + 0.0346i)16-s + (0.612 − 1.06i)17-s + 0.518·19-s + (1.05 + 1.82i)20-s + (1.25 + 2.17i)22-s + (0.545 + 0.944i)23-s + ⋯

Functional equation

Λ(s)=(819s/2ΓC(s)L(s)=((0.2640.964i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.264 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(819s/2ΓC(s+1/2)L(s)=((0.2640.964i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.264 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 819819    =    327133^{2} \cdot 7 \cdot 13
Sign: 0.2640.964i0.264 - 0.964i
Analytic conductor: 6.539746.53974
Root analytic conductor: 2.557292.55729
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ819(100,)\chi_{819} (100, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 819, ( :1/2), 0.2640.964i)(2,\ 819,\ (\ :1/2),\ 0.264 - 0.964i)

Particular Values

L(1)L(1) \approx 2.07671+1.58418i2.07671 + 1.58418i
L(12)L(\frac12) \approx 2.07671+1.58418i2.07671 + 1.58418i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(2.34+1.23i)T 1 + (2.34 + 1.23i)T
13 1+(0.3643.58i)T 1 + (0.364 - 3.58i)T
good2 1+(1.141.97i)T+(1+1.73i)T2 1 + (-1.14 - 1.97i)T + (-1 + 1.73i)T^{2}
5 1+(1.46+2.54i)T+(2.54.33i)T2 1 + (-1.46 + 2.54i)T + (-2.5 - 4.33i)T^{2}
11 15.16T+11T2 1 - 5.16T + 11T^{2}
17 1+(2.52+4.37i)T+(8.514.7i)T2 1 + (-2.52 + 4.37i)T + (-8.5 - 14.7i)T^{2}
19 12.25T+19T2 1 - 2.25T + 19T^{2}
23 1+(2.614.53i)T+(11.5+19.9i)T2 1 + (-2.61 - 4.53i)T + (-11.5 + 19.9i)T^{2}
29 1+(0.2160.375i)T+(14.525.1i)T2 1 + (0.216 - 0.375i)T + (-14.5 - 25.1i)T^{2}
31 1+(1.34+2.32i)T+(15.5+26.8i)T2 1 + (1.34 + 2.32i)T + (-15.5 + 26.8i)T^{2}
37 1+(2.123.67i)T+(18.5+32.0i)T2 1 + (-2.12 - 3.67i)T + (-18.5 + 32.0i)T^{2}
41 1+(0.2690.466i)T+(20.535.5i)T2 1 + (0.269 - 0.466i)T + (-20.5 - 35.5i)T^{2}
43 1+(4.66+8.07i)T+(21.5+37.2i)T2 1 + (4.66 + 8.07i)T + (-21.5 + 37.2i)T^{2}
47 1+(4.87+8.43i)T+(23.540.7i)T2 1 + (-4.87 + 8.43i)T + (-23.5 - 40.7i)T^{2}
53 1+(0.377+0.653i)T+(26.5+45.8i)T2 1 + (0.377 + 0.653i)T + (-26.5 + 45.8i)T^{2}
59 1+(1.823.15i)T+(29.551.0i)T2 1 + (1.82 - 3.15i)T + (-29.5 - 51.0i)T^{2}
61 16.95T+61T2 1 - 6.95T + 61T^{2}
67 1+13.3T+67T2 1 + 13.3T + 67T^{2}
71 1+(3.90+6.76i)T+(35.5+61.4i)T2 1 + (3.90 + 6.76i)T + (-35.5 + 61.4i)T^{2}
73 1+(7.94+13.7i)T+(36.5+63.2i)T2 1 + (7.94 + 13.7i)T + (-36.5 + 63.2i)T^{2}
79 1+(7.7913.4i)T+(39.568.4i)T2 1 + (7.79 - 13.4i)T + (-39.5 - 68.4i)T^{2}
83 1+13.2T+83T2 1 + 13.2T + 83T^{2}
89 1+(2.00+3.46i)T+(44.5+77.0i)T2 1 + (2.00 + 3.46i)T + (-44.5 + 77.0i)T^{2}
97 1+(2.694.67i)T+(48.5+84.0i)T2 1 + (-2.69 - 4.67i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.00134995790606913050211063051, −9.230995534220021756011933757432, −8.830633100157833227348341768555, −7.39335940047408901237555983052, −6.89383841485443661822631901231, −6.01008004218557172954798453464, −5.23830624804957385143718995140, −4.35049926434681867989076901498, −3.48480099137728640825194119811, −1.33512573575542749221225344113, 1.39229457240910654099614710268, 2.74995431902146623753182029755, 3.23246299103238728813617630152, 4.23858820340699817306244084828, 5.68733889933060569944699889510, 6.22018066731944667592181188132, 7.22675823720693515439130625044, 8.751895892604816773898936139279, 9.756389834491036529549584378328, 10.16251285631956659399898765708

Graph of the ZZ-function along the critical line