Properties

Label 273.2.j.c.172.2
Level $273$
Weight $2$
Character 273.172
Analytic conductor $2.180$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(100,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.2
Root \(1.14017 + 1.97483i\) of defining polynomial
Character \(\chi\) \(=\) 273.172
Dual form 273.2.j.c.100.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14017 + 1.97483i) q^{2} +1.00000 q^{3} +(-1.59997 - 2.77124i) q^{4} +(-1.46862 - 2.54373i) q^{5} +(-1.14017 + 1.97483i) q^{6} +(-2.34076 + 1.23322i) q^{7} +2.73629 q^{8} +1.00000 q^{9} +6.69792 q^{10} -5.16954 q^{11} +(-1.59997 - 2.77124i) q^{12} +(-0.364757 - 3.58705i) q^{13} +(0.233457 - 6.02869i) q^{14} +(-1.46862 - 2.54373i) q^{15} +(0.0801172 - 0.138767i) q^{16} +(-2.52646 - 4.37595i) q^{17} +(-1.14017 + 1.97483i) q^{18} +2.25859 q^{19} +(-4.69952 + 8.13980i) q^{20} +(-2.34076 + 1.23322i) q^{21} +(5.89416 - 10.2090i) q^{22} +(-2.61602 + 4.53108i) q^{23} +2.73629 q^{24} +(-1.81371 + 3.14143i) q^{25} +(7.49971 + 3.36952i) q^{26} +1.00000 q^{27} +(7.16271 + 4.51367i) q^{28} +(0.216901 + 0.375683i) q^{29} +6.69792 q^{30} +(-1.34122 + 2.32306i) q^{31} +(2.91898 + 5.05582i) q^{32} -5.16954 q^{33} +11.5224 q^{34} +(6.57468 + 4.14312i) q^{35} +(-1.59997 - 2.77124i) q^{36} +(2.12386 - 3.67863i) q^{37} +(-2.57517 + 4.46033i) q^{38} +(-0.364757 - 3.58705i) q^{39} +(-4.01857 - 6.96037i) q^{40} +(0.269622 + 0.466999i) q^{41} +(0.233457 - 6.02869i) q^{42} +(-4.66348 + 8.07739i) q^{43} +(8.27113 + 14.3260i) q^{44} +(-1.46862 - 2.54373i) q^{45} +(-5.96541 - 10.3324i) q^{46} +(-4.87054 - 8.43603i) q^{47} +(0.0801172 - 0.138767i) q^{48} +(3.95832 - 5.77336i) q^{49} +(-4.13587 - 7.16354i) q^{50} +(-2.52646 - 4.37595i) q^{51} +(-9.35697 + 6.75002i) q^{52} +(0.377571 - 0.653972i) q^{53} +(-1.14017 + 1.97483i) q^{54} +(7.59211 + 13.1499i) q^{55} +(-6.40499 + 3.37445i) q^{56} +2.25859 q^{57} -0.989214 q^{58} +(1.82385 + 3.15901i) q^{59} +(-4.69952 + 8.13980i) q^{60} +6.95468 q^{61} +(-3.05843 - 5.29736i) q^{62} +(-2.34076 + 1.23322i) q^{63} -12.9921 q^{64} +(-8.58881 + 6.19587i) q^{65} +(5.89416 - 10.2090i) q^{66} -13.3602 q^{67} +(-8.08453 + 14.0028i) q^{68} +(-2.61602 + 4.53108i) q^{69} +(-15.6782 + 8.26003i) q^{70} +(3.90487 - 6.76343i) q^{71} +2.73629 q^{72} +(-7.94401 + 13.7594i) q^{73} +(4.84312 + 8.38853i) q^{74} +(-1.81371 + 3.14143i) q^{75} +(-3.61368 - 6.25908i) q^{76} +(12.1007 - 6.37520i) q^{77} +(7.49971 + 3.36952i) q^{78} +(-7.79235 - 13.4967i) q^{79} -0.470648 q^{80} +1.00000 q^{81} -1.22966 q^{82} +13.2349 q^{83} +(7.16271 + 4.51367i) q^{84} +(-7.42083 + 12.8532i) q^{85} +(-10.6343 - 18.4192i) q^{86} +(0.216901 + 0.375683i) q^{87} -14.1453 q^{88} +(2.00143 - 3.46658i) q^{89} +6.69792 q^{90} +(5.27744 + 7.94661i) q^{91} +16.7423 q^{92} +(-1.34122 + 2.32306i) q^{93} +22.2130 q^{94} +(-3.31701 - 5.74523i) q^{95} +(2.91898 + 5.05582i) q^{96} +(2.69653 - 4.67053i) q^{97} +(6.88826 + 14.3996i) q^{98} -5.16954 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} - 16 q^{4} - 9 q^{7} - 12 q^{8} + 20 q^{9} + 8 q^{10} + 16 q^{11} - 16 q^{12} - 5 q^{13} - 9 q^{14} - 20 q^{16} - 14 q^{19} + 12 q^{20} - 9 q^{21} - 9 q^{22} - 14 q^{23} - 12 q^{24} - 32 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14017 + 1.97483i −0.806222 + 1.39642i 0.109242 + 0.994015i \(0.465158\pi\)
−0.915463 + 0.402402i \(0.868176\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.59997 2.77124i −0.799987 1.38562i
\(5\) −1.46862 2.54373i −0.656788 1.13759i −0.981442 0.191758i \(-0.938581\pi\)
0.324654 0.945833i \(-0.394752\pi\)
\(6\) −1.14017 + 1.97483i −0.465472 + 0.806222i
\(7\) −2.34076 + 1.23322i −0.884724 + 0.466114i
\(8\) 2.73629 0.967423
\(9\) 1.00000 0.333333
\(10\) 6.69792 2.11807
\(11\) −5.16954 −1.55868 −0.779338 0.626604i \(-0.784444\pi\)
−0.779338 + 0.626604i \(0.784444\pi\)
\(12\) −1.59997 2.77124i −0.461873 0.799987i
\(13\) −0.364757 3.58705i −0.101165 0.994870i
\(14\) 0.233457 6.02869i 0.0623939 1.61124i
\(15\) −1.46862 2.54373i −0.379197 0.656788i
\(16\) 0.0801172 0.138767i 0.0200293 0.0346918i
\(17\) −2.52646 4.37595i −0.612756 1.06132i −0.990774 0.135526i \(-0.956728\pi\)
0.378018 0.925798i \(-0.376606\pi\)
\(18\) −1.14017 + 1.97483i −0.268741 + 0.465472i
\(19\) 2.25859 0.518155 0.259078 0.965856i \(-0.416581\pi\)
0.259078 + 0.965856i \(0.416581\pi\)
\(20\) −4.69952 + 8.13980i −1.05084 + 1.82011i
\(21\) −2.34076 + 1.23322i −0.510796 + 0.269111i
\(22\) 5.89416 10.2090i 1.25664 2.17656i
\(23\) −2.61602 + 4.53108i −0.545478 + 0.944796i 0.453099 + 0.891460i \(0.350319\pi\)
−0.998577 + 0.0533353i \(0.983015\pi\)
\(24\) 2.73629 0.558542
\(25\) −1.81371 + 3.14143i −0.362742 + 0.628287i
\(26\) 7.49971 + 3.36952i 1.47081 + 0.660817i
\(27\) 1.00000 0.192450
\(28\) 7.16271 + 4.51367i 1.35362 + 0.853004i
\(29\) 0.216901 + 0.375683i 0.0402775 + 0.0697626i 0.885461 0.464713i \(-0.153842\pi\)
−0.845184 + 0.534476i \(0.820509\pi\)
\(30\) 6.69792 1.22287
\(31\) −1.34122 + 2.32306i −0.240890 + 0.417234i −0.960968 0.276659i \(-0.910773\pi\)
0.720078 + 0.693893i \(0.244106\pi\)
\(32\) 2.91898 + 5.05582i 0.516008 + 0.893751i
\(33\) −5.16954 −0.899902
\(34\) 11.5224 1.97607
\(35\) 6.57468 + 4.14312i 1.11132 + 0.700316i
\(36\) −1.59997 2.77124i −0.266662 0.461873i
\(37\) 2.12386 3.67863i 0.349160 0.604764i −0.636940 0.770913i \(-0.719800\pi\)
0.986101 + 0.166150i \(0.0531335\pi\)
\(38\) −2.57517 + 4.46033i −0.417748 + 0.723561i
\(39\) −0.364757 3.58705i −0.0584078 0.574388i
\(40\) −4.01857 6.96037i −0.635392 1.10053i
\(41\) 0.269622 + 0.466999i 0.0421079 + 0.0729330i 0.886311 0.463090i \(-0.153259\pi\)
−0.844203 + 0.536023i \(0.819926\pi\)
\(42\) 0.233457 6.02869i 0.0360231 0.930247i
\(43\) −4.66348 + 8.07739i −0.711175 + 1.23179i 0.253242 + 0.967403i \(0.418503\pi\)
−0.964416 + 0.264388i \(0.914830\pi\)
\(44\) 8.27113 + 14.3260i 1.24692 + 2.15973i
\(45\) −1.46862 2.54373i −0.218929 0.379197i
\(46\) −5.96541 10.3324i −0.879552 1.52343i
\(47\) −4.87054 8.43603i −0.710442 1.23052i −0.964691 0.263383i \(-0.915162\pi\)
0.254250 0.967139i \(-0.418172\pi\)
\(48\) 0.0801172 0.138767i 0.0115639 0.0200293i
\(49\) 3.95832 5.77336i 0.565475 0.824766i
\(50\) −4.13587 7.16354i −0.584900 1.01308i
\(51\) −2.52646 4.37595i −0.353775 0.612756i
\(52\) −9.35697 + 6.75002i −1.29758 + 0.936059i
\(53\) 0.377571 0.653972i 0.0518634 0.0898300i −0.838928 0.544242i \(-0.816817\pi\)
0.890792 + 0.454412i \(0.150151\pi\)
\(54\) −1.14017 + 1.97483i −0.155157 + 0.268741i
\(55\) 7.59211 + 13.1499i 1.02372 + 1.77313i
\(56\) −6.40499 + 3.37445i −0.855903 + 0.450930i
\(57\) 2.25859 0.299157
\(58\) −0.989214 −0.129890
\(59\) 1.82385 + 3.15901i 0.237445 + 0.411267i 0.959981 0.280067i \(-0.0903566\pi\)
−0.722535 + 0.691334i \(0.757023\pi\)
\(60\) −4.69952 + 8.13980i −0.606705 + 1.05084i
\(61\) 6.95468 0.890455 0.445228 0.895417i \(-0.353123\pi\)
0.445228 + 0.895417i \(0.353123\pi\)
\(62\) −3.05843 5.29736i −0.388422 0.672766i
\(63\) −2.34076 + 1.23322i −0.294908 + 0.155371i
\(64\) −12.9921 −1.62401
\(65\) −8.58881 + 6.19587i −1.06531 + 0.768503i
\(66\) 5.89416 10.2090i 0.725520 1.25664i
\(67\) −13.3602 −1.63221 −0.816107 0.577901i \(-0.803872\pi\)
−0.816107 + 0.577901i \(0.803872\pi\)
\(68\) −8.08453 + 14.0028i −0.980393 + 1.69809i
\(69\) −2.61602 + 4.53108i −0.314932 + 0.545478i
\(70\) −15.6782 + 8.26003i −1.87391 + 0.987262i
\(71\) 3.90487 6.76343i 0.463423 0.802672i −0.535706 0.844404i \(-0.679955\pi\)
0.999129 + 0.0417329i \(0.0132879\pi\)
\(72\) 2.73629 0.322474
\(73\) −7.94401 + 13.7594i −0.929776 + 1.61042i −0.146083 + 0.989272i \(0.546667\pi\)
−0.783694 + 0.621147i \(0.786667\pi\)
\(74\) 4.84312 + 8.38853i 0.563001 + 0.975147i
\(75\) −1.81371 + 3.14143i −0.209429 + 0.362742i
\(76\) −3.61368 6.25908i −0.414517 0.717965i
\(77\) 12.1007 6.37520i 1.37900 0.726521i
\(78\) 7.49971 + 3.36952i 0.849175 + 0.381523i
\(79\) −7.79235 13.4967i −0.876708 1.51850i −0.854932 0.518740i \(-0.826401\pi\)
−0.0217756 0.999763i \(-0.506932\pi\)
\(80\) −0.470648 −0.0526200
\(81\) 1.00000 0.111111
\(82\) −1.22966 −0.135793
\(83\) 13.2349 1.45272 0.726360 0.687315i \(-0.241211\pi\)
0.726360 + 0.687315i \(0.241211\pi\)
\(84\) 7.16271 + 4.51367i 0.781515 + 0.492482i
\(85\) −7.42083 + 12.8532i −0.804902 + 1.39413i
\(86\) −10.6343 18.4192i −1.14673 1.98619i
\(87\) 0.216901 + 0.375683i 0.0232542 + 0.0402775i
\(88\) −14.1453 −1.50790
\(89\) 2.00143 3.46658i 0.212151 0.367457i −0.740236 0.672347i \(-0.765286\pi\)
0.952388 + 0.304890i \(0.0986197\pi\)
\(90\) 6.69792 0.706023
\(91\) 5.27744 + 7.94661i 0.553227 + 0.833031i
\(92\) 16.7423 1.74550
\(93\) −1.34122 + 2.32306i −0.139078 + 0.240890i
\(94\) 22.2130 2.29109
\(95\) −3.31701 5.74523i −0.340318 0.589449i
\(96\) 2.91898 + 5.05582i 0.297917 + 0.516008i
\(97\) 2.69653 4.67053i 0.273791 0.474220i −0.696038 0.718005i \(-0.745056\pi\)
0.969829 + 0.243784i \(0.0783889\pi\)
\(98\) 6.88826 + 14.3996i 0.695819 + 1.45458i
\(99\) −5.16954 −0.519559
\(100\) 11.6075 1.16075
\(101\) −3.15240 −0.313676 −0.156838 0.987624i \(-0.550130\pi\)
−0.156838 + 0.987624i \(0.550130\pi\)
\(102\) 11.5224 1.14088
\(103\) −6.59727 11.4268i −0.650048 1.12592i −0.983111 0.183012i \(-0.941415\pi\)
0.333062 0.942905i \(-0.391918\pi\)
\(104\) −0.998078 9.81520i −0.0978696 0.962460i
\(105\) 6.57468 + 4.14312i 0.641623 + 0.404327i
\(106\) 0.860990 + 1.49128i 0.0836267 + 0.144846i
\(107\) −2.93351 + 5.08098i −0.283593 + 0.491197i −0.972267 0.233874i \(-0.924860\pi\)
0.688674 + 0.725071i \(0.258193\pi\)
\(108\) −1.59997 2.77124i −0.153958 0.266662i
\(109\) 2.74399 4.75273i 0.262826 0.455229i −0.704166 0.710036i \(-0.748679\pi\)
0.966992 + 0.254807i \(0.0820120\pi\)
\(110\) −34.6252 −3.30138
\(111\) 2.12386 3.67863i 0.201588 0.349160i
\(112\) −0.0164045 + 0.423623i −0.00155008 + 0.0400286i
\(113\) 0.794808 1.37665i 0.0747692 0.129504i −0.826217 0.563352i \(-0.809511\pi\)
0.900986 + 0.433848i \(0.142845\pi\)
\(114\) −2.57517 + 4.46033i −0.241187 + 0.417748i
\(115\) 15.3678 1.43305
\(116\) 0.694071 1.20217i 0.0644428 0.111618i
\(117\) −0.364757 3.58705i −0.0337218 0.331623i
\(118\) −8.31800 −0.765734
\(119\) 11.3104 + 7.12737i 1.03682 + 0.653365i
\(120\) −4.01857 6.96037i −0.366844 0.635392i
\(121\) 15.7242 1.42947
\(122\) −7.92951 + 13.7343i −0.717904 + 1.24345i
\(123\) 0.269622 + 0.466999i 0.0243110 + 0.0421079i
\(124\) 8.58366 0.770835
\(125\) −4.03162 −0.360599
\(126\) 0.233457 6.02869i 0.0207980 0.537079i
\(127\) 0.348278 + 0.603236i 0.0309047 + 0.0535285i 0.881064 0.472997i \(-0.156828\pi\)
−0.850159 + 0.526525i \(0.823494\pi\)
\(128\) 8.97519 15.5455i 0.793302 1.37404i
\(129\) −4.66348 + 8.07739i −0.410597 + 0.711175i
\(130\) −2.44311 24.0258i −0.214275 2.10720i
\(131\) 3.35469 + 5.81049i 0.293101 + 0.507665i 0.974541 0.224208i \(-0.0719796\pi\)
−0.681441 + 0.731873i \(0.738646\pi\)
\(132\) 8.27113 + 14.3260i 0.719910 + 1.24692i
\(133\) −5.28681 + 2.78534i −0.458425 + 0.241520i
\(134\) 15.2329 26.3842i 1.31593 2.27925i
\(135\) −1.46862 2.54373i −0.126399 0.218929i
\(136\) −6.91311 11.9739i −0.592794 1.02675i
\(137\) −6.24965 10.8247i −0.533944 0.924818i −0.999214 0.0396491i \(-0.987376\pi\)
0.465270 0.885169i \(-0.345957\pi\)
\(138\) −5.96541 10.3324i −0.507810 0.879552i
\(139\) −0.657614 + 1.13902i −0.0557781 + 0.0966105i −0.892566 0.450916i \(-0.851097\pi\)
0.836788 + 0.547527i \(0.184431\pi\)
\(140\) 0.962254 24.8489i 0.0813253 2.10011i
\(141\) −4.87054 8.43603i −0.410174 0.710442i
\(142\) 8.90442 + 15.4229i 0.747243 + 1.29426i
\(143\) 1.88563 + 18.5434i 0.157684 + 1.55068i
\(144\) 0.0801172 0.138767i 0.00667643 0.0115639i
\(145\) 0.637091 1.10347i 0.0529075 0.0916385i
\(146\) −18.1150 31.3762i −1.49921 2.59671i
\(147\) 3.95832 5.77336i 0.326477 0.476179i
\(148\) −13.5925 −1.11729
\(149\) 21.1927 1.73618 0.868088 0.496411i \(-0.165349\pi\)
0.868088 + 0.496411i \(0.165349\pi\)
\(150\) −4.13587 7.16354i −0.337692 0.584900i
\(151\) 7.90358 13.6894i 0.643185 1.11403i −0.341533 0.939870i \(-0.610946\pi\)
0.984718 0.174159i \(-0.0557205\pi\)
\(152\) 6.18014 0.501275
\(153\) −2.52646 4.37595i −0.204252 0.353775i
\(154\) −1.20686 + 31.1656i −0.0972518 + 2.51139i
\(155\) 7.87898 0.632855
\(156\) −9.35697 + 6.75002i −0.749157 + 0.540434i
\(157\) −2.76205 + 4.78402i −0.220436 + 0.381806i −0.954940 0.296798i \(-0.904081\pi\)
0.734505 + 0.678604i \(0.237415\pi\)
\(158\) 35.5384 2.82728
\(159\) 0.377571 0.653972i 0.0299433 0.0518634i
\(160\) 8.57376 14.8502i 0.677815 1.17401i
\(161\) 0.535646 13.8323i 0.0422148 1.09014i
\(162\) −1.14017 + 1.97483i −0.0895802 + 0.155157i
\(163\) −3.14870 −0.246625 −0.123313 0.992368i \(-0.539352\pi\)
−0.123313 + 0.992368i \(0.539352\pi\)
\(164\) 0.862777 1.49437i 0.0673715 0.116691i
\(165\) 7.59211 + 13.1499i 0.591045 + 1.02372i
\(166\) −15.0900 + 26.1367i −1.17121 + 2.02860i
\(167\) 6.71152 + 11.6247i 0.519353 + 0.899546i 0.999747 + 0.0224932i \(0.00716043\pi\)
−0.480394 + 0.877053i \(0.659506\pi\)
\(168\) −6.40499 + 3.37445i −0.494156 + 0.260344i
\(169\) −12.7339 + 2.61680i −0.979531 + 0.201293i
\(170\) −16.9220 29.3098i −1.29786 2.24796i
\(171\) 2.25859 0.172718
\(172\) 29.8458 2.27572
\(173\) −12.8488 −0.976879 −0.488439 0.872598i \(-0.662434\pi\)
−0.488439 + 0.872598i \(0.662434\pi\)
\(174\) −0.989214 −0.0749921
\(175\) 0.371368 9.59005i 0.0280728 0.724940i
\(176\) −0.414169 + 0.717362i −0.0312192 + 0.0540732i
\(177\) 1.82385 + 3.15901i 0.137089 + 0.237445i
\(178\) 4.56394 + 7.90498i 0.342082 + 0.592503i
\(179\) 18.6663 1.39518 0.697591 0.716496i \(-0.254255\pi\)
0.697591 + 0.716496i \(0.254255\pi\)
\(180\) −4.69952 + 8.13980i −0.350281 + 0.606705i
\(181\) 0.878433 0.0652934 0.0326467 0.999467i \(-0.489606\pi\)
0.0326467 + 0.999467i \(0.489606\pi\)
\(182\) −21.7104 + 1.36158i −1.60928 + 0.100927i
\(183\) 6.95468 0.514104
\(184\) −7.15818 + 12.3983i −0.527708 + 0.914017i
\(185\) −12.4766 −0.917298
\(186\) −3.05843 5.29736i −0.224255 0.388422i
\(187\) 13.0606 + 22.6217i 0.955088 + 1.65426i
\(188\) −15.5855 + 26.9948i −1.13669 + 1.96880i
\(189\) −2.34076 + 1.23322i −0.170265 + 0.0897038i
\(190\) 15.1278 1.09749
\(191\) −15.9513 −1.15419 −0.577097 0.816675i \(-0.695815\pi\)
−0.577097 + 0.816675i \(0.695815\pi\)
\(192\) −12.9921 −0.937621
\(193\) 3.95066 0.284375 0.142187 0.989840i \(-0.454586\pi\)
0.142187 + 0.989840i \(0.454586\pi\)
\(194\) 6.14900 + 10.6504i 0.441473 + 0.764653i
\(195\) −8.58881 + 6.19587i −0.615057 + 0.443696i
\(196\) −22.3325 1.73222i −1.59518 0.123730i
\(197\) −6.72353 11.6455i −0.479032 0.829708i 0.520679 0.853753i \(-0.325679\pi\)
−0.999711 + 0.0240448i \(0.992346\pi\)
\(198\) 5.89416 10.2090i 0.418879 0.725520i
\(199\) −10.4145 18.0385i −0.738268 1.27872i −0.953275 0.302105i \(-0.902311\pi\)
0.215007 0.976612i \(-0.431023\pi\)
\(200\) −4.96282 + 8.59586i −0.350925 + 0.607819i
\(201\) −13.3602 −0.942359
\(202\) 3.59427 6.22546i 0.252892 0.438022i
\(203\) −0.971014 0.611897i −0.0681518 0.0429468i
\(204\) −8.08453 + 14.0028i −0.566030 + 0.980393i
\(205\) 0.791947 1.37169i 0.0553120 0.0958031i
\(206\) 30.0880 2.09633
\(207\) −2.61602 + 4.53108i −0.181826 + 0.314932i
\(208\) −0.526988 0.236769i −0.0365401 0.0164169i
\(209\) −11.6759 −0.807636
\(210\) −15.6782 + 8.26003i −1.08190 + 0.569996i
\(211\) 7.17814 + 12.4329i 0.494164 + 0.855917i 0.999977 0.00672604i \(-0.00214098\pi\)
−0.505814 + 0.862643i \(0.668808\pi\)
\(212\) −2.41641 −0.165960
\(213\) 3.90487 6.76343i 0.267557 0.463423i
\(214\) −6.68939 11.5864i −0.457277 0.792027i
\(215\) 27.3956 1.86836
\(216\) 2.73629 0.186181
\(217\) 0.274623 7.09175i 0.0186426 0.481419i
\(218\) 6.25722 + 10.8378i 0.423793 + 0.734030i
\(219\) −7.94401 + 13.7594i −0.536807 + 0.929776i
\(220\) 24.2943 42.0790i 1.63792 2.83697i
\(221\) −14.7752 + 10.6587i −0.993890 + 0.716981i
\(222\) 4.84312 + 8.38853i 0.325049 + 0.563001i
\(223\) 0.596931 + 1.03392i 0.0399735 + 0.0692361i 0.885320 0.464982i \(-0.153939\pi\)
−0.845346 + 0.534218i \(0.820606\pi\)
\(224\) −13.0676 8.23472i −0.873115 0.550205i
\(225\) −1.81371 + 3.14143i −0.120914 + 0.209429i
\(226\) 1.81243 + 3.13922i 0.120561 + 0.208818i
\(227\) 7.94437 + 13.7600i 0.527286 + 0.913286i 0.999494 + 0.0317993i \(0.0101237\pi\)
−0.472208 + 0.881487i \(0.656543\pi\)
\(228\) −3.61368 6.25908i −0.239322 0.414517i
\(229\) −4.39323 7.60931i −0.290313 0.502837i 0.683571 0.729884i \(-0.260426\pi\)
−0.973884 + 0.227047i \(0.927093\pi\)
\(230\) −17.5219 + 30.3488i −1.15536 + 2.00114i
\(231\) 12.1007 6.37520i 0.796165 0.419457i
\(232\) 0.593502 + 1.02798i 0.0389653 + 0.0674899i
\(233\) 2.86714 + 4.96604i 0.187833 + 0.325336i 0.944527 0.328432i \(-0.106520\pi\)
−0.756695 + 0.653769i \(0.773187\pi\)
\(234\) 7.49971 + 3.36952i 0.490271 + 0.220272i
\(235\) −14.3060 + 24.7787i −0.933220 + 1.61638i
\(236\) 5.83623 10.1086i 0.379906 0.658017i
\(237\) −7.79235 13.4967i −0.506168 0.876708i
\(238\) −26.9711 + 14.2096i −1.74828 + 0.921074i
\(239\) −11.5411 −0.746532 −0.373266 0.927724i \(-0.621762\pi\)
−0.373266 + 0.927724i \(0.621762\pi\)
\(240\) −0.470648 −0.0303802
\(241\) 2.83030 + 4.90223i 0.182316 + 0.315780i 0.942669 0.333730i \(-0.108307\pi\)
−0.760353 + 0.649510i \(0.774974\pi\)
\(242\) −17.9282 + 31.0526i −1.15247 + 1.99614i
\(243\) 1.00000 0.0641500
\(244\) −11.1273 19.2730i −0.712352 1.23383i
\(245\) −20.4992 1.59001i −1.30964 0.101582i
\(246\) −1.22966 −0.0784003
\(247\) −0.823835 8.10167i −0.0524193 0.515497i
\(248\) −3.66996 + 6.35655i −0.233043 + 0.403642i
\(249\) 13.2349 0.838728
\(250\) 4.59673 7.96177i 0.290723 0.503546i
\(251\) 12.1872 21.1088i 0.769249 1.33238i −0.168721 0.985664i \(-0.553964\pi\)
0.937971 0.346715i \(-0.112703\pi\)
\(252\) 7.16271 + 4.51367i 0.451208 + 0.284335i
\(253\) 13.5236 23.4236i 0.850223 1.47263i
\(254\) −1.58839 −0.0996641
\(255\) −7.42083 + 12.8532i −0.464710 + 0.804902i
\(256\) 7.47442 + 12.9461i 0.467151 + 0.809130i
\(257\) −2.30268 + 3.98836i −0.143637 + 0.248787i −0.928864 0.370422i \(-0.879213\pi\)
0.785226 + 0.619209i \(0.212547\pi\)
\(258\) −10.6343 18.4192i −0.662064 1.14673i
\(259\) −0.434873 + 11.2300i −0.0270217 + 0.697798i
\(260\) 30.9121 + 13.8884i 1.91709 + 0.861320i
\(261\) 0.216901 + 0.375683i 0.0134258 + 0.0232542i
\(262\) −15.2997 −0.945216
\(263\) 22.9824 1.41715 0.708576 0.705634i \(-0.249338\pi\)
0.708576 + 0.705634i \(0.249338\pi\)
\(264\) −14.1453 −0.870586
\(265\) −2.21804 −0.136253
\(266\) 0.527282 13.6163i 0.0323297 0.834870i
\(267\) 2.00143 3.46658i 0.122486 0.212151i
\(268\) 21.3760 + 37.0244i 1.30575 + 2.26162i
\(269\) −7.00246 12.1286i −0.426948 0.739495i 0.569652 0.821886i \(-0.307078\pi\)
−0.996600 + 0.0823905i \(0.973745\pi\)
\(270\) 6.69792 0.407622
\(271\) 9.55299 16.5463i 0.580303 1.00511i −0.415141 0.909757i \(-0.636268\pi\)
0.995443 0.0953563i \(-0.0303990\pi\)
\(272\) −0.809651 −0.0490923
\(273\) 5.27744 + 7.94661i 0.319405 + 0.480951i
\(274\) 28.5027 1.72191
\(275\) 9.37604 16.2398i 0.565397 0.979296i
\(276\) 16.7423 1.00777
\(277\) −6.45998 11.1890i −0.388142 0.672282i 0.604057 0.796941i \(-0.293550\pi\)
−0.992200 + 0.124658i \(0.960216\pi\)
\(278\) −1.49958 2.59735i −0.0899390 0.155779i
\(279\) −1.34122 + 2.32306i −0.0802967 + 0.139078i
\(280\) 17.9902 + 11.3368i 1.07512 + 0.677502i
\(281\) −19.6264 −1.17082 −0.585408 0.810739i \(-0.699066\pi\)
−0.585408 + 0.810739i \(0.699066\pi\)
\(282\) 22.2130 1.32276
\(283\) 3.26727 0.194219 0.0971095 0.995274i \(-0.469040\pi\)
0.0971095 + 0.995274i \(0.469040\pi\)
\(284\) −24.9907 −1.48293
\(285\) −3.31701 5.74523i −0.196483 0.340318i
\(286\) −38.7701 17.4189i −2.29252 1.03000i
\(287\) −1.20704 0.760629i −0.0712490 0.0448985i
\(288\) 2.91898 + 5.05582i 0.172003 + 0.297917i
\(289\) −4.26597 + 7.38888i −0.250939 + 0.434640i
\(290\) 1.45278 + 2.51629i 0.0853104 + 0.147762i
\(291\) 2.69653 4.67053i 0.158073 0.273791i
\(292\) 50.8408 2.97523
\(293\) 9.50947 16.4709i 0.555549 0.962239i −0.442311 0.896862i \(-0.645841\pi\)
0.997861 0.0653778i \(-0.0208252\pi\)
\(294\) 6.88826 + 14.3996i 0.401731 + 0.839803i
\(295\) 5.35710 9.27878i 0.311903 0.540231i
\(296\) 5.81149 10.0658i 0.337786 0.585062i
\(297\) −5.16954 −0.299967
\(298\) −24.1633 + 41.8521i −1.39974 + 2.42442i
\(299\) 17.2074 + 7.73106i 0.995132 + 0.447099i
\(300\) 11.6075 0.670162
\(301\) 0.954876 24.6584i 0.0550382 1.42128i
\(302\) 18.0229 + 31.2165i 1.03710 + 1.79631i
\(303\) −3.15240 −0.181101
\(304\) 0.180952 0.313418i 0.0103783 0.0179757i
\(305\) −10.2138 17.6908i −0.584840 1.01297i
\(306\) 11.5224 0.658689
\(307\) −8.30660 −0.474083 −0.237041 0.971500i \(-0.576178\pi\)
−0.237041 + 0.971500i \(0.576178\pi\)
\(308\) −37.0279 23.3336i −2.10986 1.32956i
\(309\) −6.59727 11.4268i −0.375306 0.650048i
\(310\) −8.98338 + 15.5597i −0.510221 + 0.883729i
\(311\) 5.42853 9.40250i 0.307824 0.533167i −0.670062 0.742305i \(-0.733733\pi\)
0.977886 + 0.209138i \(0.0670659\pi\)
\(312\) −0.998078 9.81520i −0.0565051 0.555676i
\(313\) 0.566928 + 0.981949i 0.0320447 + 0.0555030i 0.881603 0.471992i \(-0.156465\pi\)
−0.849558 + 0.527495i \(0.823131\pi\)
\(314\) −6.29842 10.9092i −0.355440 0.615641i
\(315\) 6.57468 + 4.14312i 0.370441 + 0.233439i
\(316\) −24.9351 + 43.1889i −1.40271 + 2.42956i
\(317\) −4.98712 8.63795i −0.280105 0.485155i 0.691306 0.722562i \(-0.257036\pi\)
−0.971410 + 0.237407i \(0.923702\pi\)
\(318\) 0.860990 + 1.49128i 0.0482819 + 0.0836267i
\(319\) −1.12128 1.94211i −0.0627795 0.108737i
\(320\) 19.0804 + 33.0483i 1.06663 + 1.84746i
\(321\) −2.93351 + 5.08098i −0.163732 + 0.283593i
\(322\) 26.7058 + 16.8290i 1.48825 + 0.937843i
\(323\) −5.70622 9.88347i −0.317503 0.549931i
\(324\) −1.59997 2.77124i −0.0888874 0.153958i
\(325\) 11.9301 + 5.36001i 0.661760 + 0.297320i
\(326\) 3.59005 6.21815i 0.198835 0.344392i
\(327\) 2.74399 4.75273i 0.151743 0.262826i
\(328\) 0.737763 + 1.27784i 0.0407362 + 0.0705571i
\(329\) 21.8043 + 13.7403i 1.20211 + 0.757525i
\(330\) −34.6252 −1.90605
\(331\) −1.65514 −0.0909746 −0.0454873 0.998965i \(-0.514484\pi\)
−0.0454873 + 0.998965i \(0.514484\pi\)
\(332\) −21.1755 36.6770i −1.16216 2.01291i
\(333\) 2.12386 3.67863i 0.116387 0.201588i
\(334\) −30.6091 −1.67486
\(335\) 19.6212 + 33.9849i 1.07202 + 1.85679i
\(336\) −0.0164045 + 0.423623i −0.000894938 + 0.0231105i
\(337\) −12.4081 −0.675913 −0.337956 0.941162i \(-0.609736\pi\)
−0.337956 + 0.941162i \(0.609736\pi\)
\(338\) 9.35107 28.1309i 0.508631 1.53012i
\(339\) 0.794808 1.37665i 0.0431680 0.0747692i
\(340\) 47.4925 2.57564
\(341\) 6.93349 12.0092i 0.375469 0.650332i
\(342\) −2.57517 + 4.46033i −0.139249 + 0.241187i
\(343\) −2.14565 + 18.3955i −0.115854 + 0.993266i
\(344\) −12.7606 + 22.1021i −0.688007 + 1.19166i
\(345\) 15.3678 0.827374
\(346\) 14.6498 25.3743i 0.787581 1.36413i
\(347\) −6.62262 11.4707i −0.355521 0.615780i 0.631686 0.775224i \(-0.282363\pi\)
−0.987207 + 0.159444i \(0.949030\pi\)
\(348\) 0.694071 1.20217i 0.0372061 0.0644428i
\(349\) 17.5068 + 30.3227i 0.937119 + 1.62314i 0.770812 + 0.637063i \(0.219851\pi\)
0.166307 + 0.986074i \(0.446816\pi\)
\(350\) 18.5153 + 11.6677i 0.989685 + 0.623663i
\(351\) −0.364757 3.58705i −0.0194693 0.191463i
\(352\) −15.0898 26.1363i −0.804289 1.39307i
\(353\) 23.1083 1.22993 0.614964 0.788555i \(-0.289171\pi\)
0.614964 + 0.788555i \(0.289171\pi\)
\(354\) −8.31800 −0.442097
\(355\) −22.9391 −1.21748
\(356\) −12.8089 −0.678873
\(357\) 11.3104 + 7.12737i 0.598608 + 0.377221i
\(358\) −21.2827 + 36.8628i −1.12483 + 1.94826i
\(359\) −6.44458 11.1623i −0.340132 0.589126i 0.644325 0.764752i \(-0.277138\pi\)
−0.984457 + 0.175626i \(0.943805\pi\)
\(360\) −4.01857 6.96037i −0.211797 0.366844i
\(361\) −13.8988 −0.731515
\(362\) −1.00156 + 1.73476i −0.0526409 + 0.0911768i
\(363\) 15.7242 0.825305
\(364\) 13.5781 27.3394i 0.711688 1.43297i
\(365\) 46.6670 2.44266
\(366\) −7.92951 + 13.7343i −0.414482 + 0.717904i
\(367\) −26.4929 −1.38292 −0.691460 0.722415i \(-0.743032\pi\)
−0.691460 + 0.722415i \(0.743032\pi\)
\(368\) 0.419177 + 0.726035i 0.0218511 + 0.0378472i
\(369\) 0.269622 + 0.466999i 0.0140360 + 0.0243110i
\(370\) 14.2254 24.6392i 0.739545 1.28093i
\(371\) −0.0773099 + 1.99642i −0.00401373 + 0.103649i
\(372\) 8.58366 0.445042
\(373\) −12.3710 −0.640545 −0.320273 0.947325i \(-0.603775\pi\)
−0.320273 + 0.947325i \(0.603775\pi\)
\(374\) −59.5653 −3.08005
\(375\) −4.03162 −0.208192
\(376\) −13.3272 23.0834i −0.687298 1.19043i
\(377\) 1.26848 0.915067i 0.0653300 0.0471284i
\(378\) 0.233457 6.02869i 0.0120077 0.310082i
\(379\) −14.0179 24.2797i −0.720050 1.24716i −0.960979 0.276621i \(-0.910785\pi\)
0.240929 0.970543i \(-0.422548\pi\)
\(380\) −10.6143 + 18.3844i −0.544500 + 0.943102i
\(381\) 0.348278 + 0.603236i 0.0178428 + 0.0309047i
\(382\) 18.1872 31.5011i 0.930537 1.61174i
\(383\) −26.2903 −1.34337 −0.671687 0.740835i \(-0.734430\pi\)
−0.671687 + 0.740835i \(0.734430\pi\)
\(384\) 8.97519 15.5455i 0.458013 0.793302i
\(385\) −33.9881 21.4181i −1.73219 1.09157i
\(386\) −4.50442 + 7.80188i −0.229269 + 0.397105i
\(387\) −4.66348 + 8.07739i −0.237058 + 0.410597i
\(388\) −17.2575 −0.876117
\(389\) −13.4205 + 23.2449i −0.680445 + 1.17856i 0.294400 + 0.955682i \(0.404880\pi\)
−0.974845 + 0.222883i \(0.928453\pi\)
\(390\) −2.44311 24.0258i −0.123712 1.21659i
\(391\) 26.4371 1.33698
\(392\) 10.8311 15.7976i 0.547053 0.797897i
\(393\) 3.35469 + 5.81049i 0.169222 + 0.293101i
\(394\) 30.6639 1.54482
\(395\) −22.8881 + 39.6433i −1.15162 + 1.99467i
\(396\) 8.27113 + 14.3260i 0.415640 + 0.719910i
\(397\) 24.5243 1.23084 0.615419 0.788200i \(-0.288987\pi\)
0.615419 + 0.788200i \(0.288987\pi\)
\(398\) 47.4974 2.38083
\(399\) −5.28681 + 2.78534i −0.264672 + 0.139441i
\(400\) 0.290618 + 0.503366i 0.0145309 + 0.0251683i
\(401\) −1.58285 + 2.74158i −0.0790438 + 0.136908i −0.902838 0.429982i \(-0.858520\pi\)
0.823794 + 0.566889i \(0.191853\pi\)
\(402\) 15.2329 26.3842i 0.759750 1.31593i
\(403\) 8.82216 + 3.96367i 0.439463 + 0.197445i
\(404\) 5.04376 + 8.73605i 0.250936 + 0.434635i
\(405\) −1.46862 2.54373i −0.0729765 0.126399i
\(406\) 2.31551 1.21992i 0.114917 0.0605437i
\(407\) −10.9794 + 19.0169i −0.544228 + 0.942630i
\(408\) −6.91311 11.9739i −0.342250 0.592794i
\(409\) −9.53424 16.5138i −0.471438 0.816555i 0.528028 0.849227i \(-0.322932\pi\)
−0.999466 + 0.0326723i \(0.989598\pi\)
\(410\) 1.80591 + 3.12792i 0.0891874 + 0.154477i
\(411\) −6.24965 10.8247i −0.308273 0.533944i
\(412\) −21.1109 + 36.5652i −1.04006 + 1.80144i
\(413\) −8.16496 5.14526i −0.401771 0.253182i
\(414\) −5.96541 10.3324i −0.293184 0.507810i
\(415\) −19.4371 33.6660i −0.954129 1.65260i
\(416\) 17.0708 12.3147i 0.836964 0.603777i
\(417\) −0.657614 + 1.13902i −0.0322035 + 0.0557781i
\(418\) 13.3125 23.0579i 0.651134 1.12780i
\(419\) 7.80534 + 13.5192i 0.381316 + 0.660458i 0.991251 0.131993i \(-0.0421377\pi\)
−0.609935 + 0.792452i \(0.708804\pi\)
\(420\) 0.962254 24.8489i 0.0469532 1.21250i
\(421\) −18.0525 −0.879827 −0.439913 0.898040i \(-0.644991\pi\)
−0.439913 + 0.898040i \(0.644991\pi\)
\(422\) −32.7372 −1.59362
\(423\) −4.87054 8.43603i −0.236814 0.410174i
\(424\) 1.03314 1.78945i 0.0501738 0.0869036i
\(425\) 18.3290 0.889088
\(426\) 8.90442 + 15.4229i 0.431421 + 0.747243i
\(427\) −16.2792 + 8.57667i −0.787807 + 0.415054i
\(428\) 18.7741 0.907481
\(429\) 1.88563 + 18.5434i 0.0910388 + 0.895285i
\(430\) −31.2356 + 54.1017i −1.50632 + 2.60902i
\(431\) −17.5165 −0.843741 −0.421871 0.906656i \(-0.638626\pi\)
−0.421871 + 0.906656i \(0.638626\pi\)
\(432\) 0.0801172 0.138767i 0.00385464 0.00667643i
\(433\) −3.02961 + 5.24744i −0.145594 + 0.252176i −0.929594 0.368584i \(-0.879843\pi\)
0.784001 + 0.620760i \(0.213176\pi\)
\(434\) 13.6919 + 8.62813i 0.657232 + 0.414163i
\(435\) 0.637091 1.10347i 0.0305462 0.0529075i
\(436\) −17.5612 −0.841030
\(437\) −5.90851 + 10.2338i −0.282642 + 0.489551i
\(438\) −18.1150 31.3762i −0.865570 1.49921i
\(439\) −11.6912 + 20.2497i −0.557990 + 0.966467i 0.439674 + 0.898157i \(0.355094\pi\)
−0.997664 + 0.0683098i \(0.978239\pi\)
\(440\) 20.7742 + 35.9819i 0.990370 + 1.71537i
\(441\) 3.95832 5.77336i 0.188492 0.274922i
\(442\) −4.20286 41.3313i −0.199910 1.96593i
\(443\) 4.44712 + 7.70264i 0.211289 + 0.365963i 0.952118 0.305730i \(-0.0989005\pi\)
−0.740829 + 0.671693i \(0.765567\pi\)
\(444\) −13.5925 −0.645070
\(445\) −11.7574 −0.557354
\(446\) −2.72241 −0.128910
\(447\) 21.1927 1.00238
\(448\) 30.4113 16.0221i 1.43680 0.756973i
\(449\) −19.3671 + 33.5448i −0.913989 + 1.58308i −0.105614 + 0.994407i \(0.533681\pi\)
−0.808375 + 0.588668i \(0.799652\pi\)
\(450\) −4.13587 7.16354i −0.194967 0.337692i
\(451\) −1.39382 2.41417i −0.0656326 0.113679i
\(452\) −5.08668 −0.239258
\(453\) 7.90358 13.6894i 0.371343 0.643185i
\(454\) −36.2317 −1.70044
\(455\) 12.4634 25.0950i 0.584295 1.17647i
\(456\) 6.18014 0.289411
\(457\) −11.2001 + 19.3992i −0.523920 + 0.907457i 0.475692 + 0.879612i \(0.342198\pi\)
−0.999612 + 0.0278448i \(0.991136\pi\)
\(458\) 20.0361 0.936227
\(459\) −2.52646 4.37595i −0.117925 0.204252i
\(460\) −24.5881 42.5878i −1.14642 1.98567i
\(461\) −1.40367 + 2.43123i −0.0653755 + 0.113234i −0.896860 0.442314i \(-0.854158\pi\)
0.831485 + 0.555547i \(0.187491\pi\)
\(462\) −1.20686 + 31.1656i −0.0561484 + 1.44995i
\(463\) 37.7530 1.75453 0.877266 0.480004i \(-0.159365\pi\)
0.877266 + 0.480004i \(0.159365\pi\)
\(464\) 0.0695099 0.00322692
\(465\) 7.87898 0.365379
\(466\) −13.0761 −0.605740
\(467\) −8.04389 13.9324i −0.372227 0.644716i 0.617681 0.786429i \(-0.288072\pi\)
−0.989908 + 0.141713i \(0.954739\pi\)
\(468\) −9.35697 + 6.75002i −0.432526 + 0.312020i
\(469\) 31.2731 16.4762i 1.44406 0.760798i
\(470\) −32.6225 56.5038i −1.50476 2.60633i
\(471\) −2.76205 + 4.78402i −0.127269 + 0.220436i
\(472\) 4.99058 + 8.64394i 0.229710 + 0.397870i
\(473\) 24.1081 41.7564i 1.10849 1.91996i
\(474\) 35.5384 1.63233
\(475\) −4.09642 + 7.09520i −0.187956 + 0.325550i
\(476\) 1.65536 42.7473i 0.0758731 1.95932i
\(477\) 0.377571 0.653972i 0.0172878 0.0299433i
\(478\) 13.1588 22.7917i 0.601870 1.04247i
\(479\) 8.54850 0.390591 0.195295 0.980744i \(-0.437433\pi\)
0.195295 + 0.980744i \(0.437433\pi\)
\(480\) 8.57376 14.8502i 0.391337 0.677815i
\(481\) −13.9701 6.27659i −0.636984 0.286188i
\(482\) −12.9081 −0.587948
\(483\) 0.535646 13.8323i 0.0243727 0.629392i
\(484\) −25.1583 43.5754i −1.14356 1.98070i
\(485\) −15.8407 −0.719291
\(486\) −1.14017 + 1.97483i −0.0517191 + 0.0895802i
\(487\) 17.7881 + 30.8098i 0.806054 + 1.39613i 0.915577 + 0.402142i \(0.131734\pi\)
−0.109524 + 0.993984i \(0.534932\pi\)
\(488\) 19.0300 0.861447
\(489\) −3.14870 −0.142389
\(490\) 26.5125 38.6695i 1.19771 1.74691i
\(491\) 15.6990 + 27.1914i 0.708485 + 1.22713i 0.965419 + 0.260703i \(0.0839544\pi\)
−0.256934 + 0.966429i \(0.582712\pi\)
\(492\) 0.862777 1.49437i 0.0388970 0.0673715i
\(493\) 1.09598 1.89829i 0.0493605 0.0854949i
\(494\) 16.9387 + 7.61034i 0.762110 + 0.342406i
\(495\) 7.59211 + 13.1499i 0.341240 + 0.591045i
\(496\) 0.214909 + 0.372234i 0.00964972 + 0.0167138i
\(497\) −0.799545 + 20.6471i −0.0358645 + 0.926151i
\(498\) −15.0900 + 26.1367i −0.676200 + 1.17121i
\(499\) 2.14606 + 3.71708i 0.0960708 + 0.166399i 0.910055 0.414488i \(-0.136039\pi\)
−0.813984 + 0.580887i \(0.802706\pi\)
\(500\) 6.45048 + 11.1726i 0.288474 + 0.499652i
\(501\) 6.71152 + 11.6247i 0.299849 + 0.519353i
\(502\) 27.7909 + 48.1353i 1.24037 + 2.14839i
\(503\) 7.83439 13.5696i 0.349318 0.605037i −0.636810 0.771021i \(-0.719747\pi\)
0.986129 + 0.165984i \(0.0530799\pi\)
\(504\) −6.40499 + 3.37445i −0.285301 + 0.150310i
\(505\) 4.62969 + 8.01886i 0.206019 + 0.356835i
\(506\) 30.8385 + 53.4138i 1.37094 + 2.37453i
\(507\) −12.7339 + 2.61680i −0.565533 + 0.116216i
\(508\) 1.11447 1.93032i 0.0494467 0.0856442i
\(509\) −0.851865 + 1.47547i −0.0377583 + 0.0653992i −0.884287 0.466944i \(-0.845355\pi\)
0.846529 + 0.532343i \(0.178688\pi\)
\(510\) −16.9220 29.3098i −0.749319 1.29786i
\(511\) 1.62658 42.0043i 0.0719558 1.85816i
\(512\) 1.81234 0.0800947
\(513\) 2.25859 0.0997190
\(514\) −5.25089 9.09481i −0.231607 0.401155i
\(515\) −19.3778 + 33.5633i −0.853888 + 1.47898i
\(516\) 29.8458 1.31389
\(517\) 25.1785 + 43.6104i 1.10735 + 1.91798i
\(518\) −21.6815 13.6629i −0.952631 0.600313i
\(519\) −12.8488 −0.564001
\(520\) −23.5014 + 16.9537i −1.03061 + 0.743468i
\(521\) 8.39696 14.5440i 0.367878 0.637183i −0.621356 0.783528i \(-0.713418\pi\)
0.989234 + 0.146346i \(0.0467512\pi\)
\(522\) −0.989214 −0.0432967
\(523\) 3.74526 6.48697i 0.163769 0.283656i −0.772449 0.635077i \(-0.780968\pi\)
0.936217 + 0.351422i \(0.114302\pi\)
\(524\) 10.7348 18.5933i 0.468953 0.812251i
\(525\) 0.371368 9.59005i 0.0162078 0.418544i
\(526\) −26.2038 + 45.3863i −1.14254 + 1.97894i
\(527\) 13.5541 0.590427
\(528\) −0.414169 + 0.717362i −0.0180244 + 0.0312192i
\(529\) −2.18713 3.78822i −0.0950926 0.164705i
\(530\) 2.52894 4.38025i 0.109850 0.190266i
\(531\) 1.82385 + 3.15901i 0.0791485 + 0.137089i
\(532\) 16.1776 + 10.1945i 0.701388 + 0.441989i
\(533\) 1.57681 1.13749i 0.0682990 0.0492702i
\(534\) 4.56394 + 7.90498i 0.197501 + 0.342082i
\(535\) 17.2329 0.745041
\(536\) −36.5574 −1.57904
\(537\) 18.6663 0.805509
\(538\) 31.9360 1.37686
\(539\) −20.4627 + 29.8456i −0.881392 + 1.28554i
\(540\) −4.69952 + 8.13980i −0.202235 + 0.350281i
\(541\) 4.78963 + 8.29588i 0.205922 + 0.356668i 0.950426 0.310950i \(-0.100647\pi\)
−0.744504 + 0.667618i \(0.767314\pi\)
\(542\) 21.7840 + 37.7311i 0.935705 + 1.62069i
\(543\) 0.878433 0.0376972
\(544\) 14.7494 25.5466i 0.632373 1.09530i
\(545\) −16.1195 −0.690485
\(546\) −21.7104 + 1.36158i −0.929119 + 0.0582704i
\(547\) −30.1843 −1.29059 −0.645293 0.763935i \(-0.723265\pi\)
−0.645293 + 0.763935i \(0.723265\pi\)
\(548\) −19.9986 + 34.6385i −0.854296 + 1.47968i
\(549\) 6.95468 0.296818
\(550\) 21.3806 + 37.0322i 0.911670 + 1.57906i
\(551\) 0.489889 + 0.848513i 0.0208700 + 0.0361479i
\(552\) −7.15818 + 12.3983i −0.304672 + 0.527708i
\(553\) 34.8845 + 21.9829i 1.48344 + 0.934810i
\(554\) 29.4619 1.25172
\(555\) −12.4766 −0.529602
\(556\) 4.20866 0.178487
\(557\) −4.67142 −0.197935 −0.0989673 0.995091i \(-0.531554\pi\)
−0.0989673 + 0.995091i \(0.531554\pi\)
\(558\) −3.05843 5.29736i −0.129474 0.224255i
\(559\) 30.6751 + 13.7819i 1.29742 + 0.582912i
\(560\) 1.10167 0.580414i 0.0465542 0.0245270i
\(561\) 13.0606 + 22.6217i 0.551420 + 0.955088i
\(562\) 22.3775 38.7589i 0.943937 1.63495i
\(563\) 7.19090 + 12.4550i 0.303060 + 0.524915i 0.976828 0.214028i \(-0.0686584\pi\)
−0.673767 + 0.738943i \(0.735325\pi\)
\(564\) −15.5855 + 26.9948i −0.656267 + 1.13669i
\(565\) −4.66909 −0.196430
\(566\) −3.72524 + 6.45231i −0.156584 + 0.271211i
\(567\) −2.34076 + 1.23322i −0.0983027 + 0.0517905i
\(568\) 10.6848 18.5067i 0.448326 0.776523i
\(569\) 7.28779 12.6228i 0.305520 0.529176i −0.671857 0.740681i \(-0.734503\pi\)
0.977377 + 0.211505i \(0.0678364\pi\)
\(570\) 15.1278 0.633635
\(571\) −12.9575 + 22.4430i −0.542254 + 0.939211i 0.456520 + 0.889713i \(0.349096\pi\)
−0.998774 + 0.0494981i \(0.984238\pi\)
\(572\) 48.3712 34.8945i 2.02250 1.45901i
\(573\) −15.9513 −0.666375
\(574\) 2.87834 1.51645i 0.120140 0.0632952i
\(575\) −9.48940 16.4361i −0.395735 0.685433i
\(576\) −12.9921 −0.541336
\(577\) 11.7875 20.4165i 0.490719 0.849950i −0.509224 0.860634i \(-0.670068\pi\)
0.999943 + 0.0106839i \(0.00340085\pi\)
\(578\) −9.72786 16.8491i −0.404626 0.700832i
\(579\) 3.95066 0.164184
\(580\) −4.07731 −0.169301
\(581\) −30.9797 + 16.3216i −1.28526 + 0.677133i
\(582\) 6.14900 + 10.6504i 0.254884 + 0.441473i
\(583\) −1.95187 + 3.38074i −0.0808382 + 0.140016i
\(584\) −21.7371 + 37.6497i −0.899487 + 1.55796i
\(585\) −8.58881 + 6.19587i −0.355103 + 0.256168i
\(586\) 21.6848 + 37.5592i 0.895791 + 1.55156i
\(587\) −23.7561 41.1468i −0.980521 1.69831i −0.660361 0.750948i \(-0.729597\pi\)
−0.320160 0.947364i \(-0.603737\pi\)
\(588\) −22.3325 1.73222i −0.920979 0.0714355i
\(589\) −3.02926 + 5.24683i −0.124818 + 0.216192i
\(590\) 12.2160 + 21.1588i 0.502925 + 0.871092i
\(591\) −6.72353 11.6455i −0.276569 0.479032i
\(592\) −0.340316 0.589444i −0.0139869 0.0242260i
\(593\) −2.36887 4.10300i −0.0972779 0.168490i 0.813279 0.581874i \(-0.197680\pi\)
−0.910557 + 0.413384i \(0.864347\pi\)
\(594\) 5.89416 10.2090i 0.241840 0.418879i
\(595\) 1.51946 39.2379i 0.0622917 1.60860i
\(596\) −33.9078 58.7300i −1.38892 2.40568i
\(597\) −10.4145 18.0385i −0.426239 0.738268i
\(598\) −34.8870 + 25.1671i −1.42663 + 1.02916i
\(599\) 1.07453 1.86114i 0.0439041 0.0760441i −0.843238 0.537540i \(-0.819354\pi\)
0.887142 + 0.461496i \(0.152687\pi\)
\(600\) −4.96282 + 8.59586i −0.202606 + 0.350925i
\(601\) 0.736182 + 1.27511i 0.0300295 + 0.0520126i 0.880650 0.473768i \(-0.157107\pi\)
−0.850620 + 0.525781i \(0.823773\pi\)
\(602\) 47.6074 + 30.0004i 1.94033 + 1.22273i
\(603\) −13.3602 −0.544071
\(604\) −50.5821 −2.05816
\(605\) −23.0929 39.9980i −0.938859 1.62615i
\(606\) 3.59427 6.22546i 0.146007 0.252892i
\(607\) −12.9859 −0.527082 −0.263541 0.964648i \(-0.584890\pi\)
−0.263541 + 0.964648i \(0.584890\pi\)
\(608\) 6.59277 + 11.4190i 0.267372 + 0.463102i
\(609\) −0.971014 0.611897i −0.0393475 0.0247953i
\(610\) 46.5818 1.88604
\(611\) −28.4839 + 20.5480i −1.15234 + 0.831283i
\(612\) −8.08453 + 14.0028i −0.326798 + 0.566030i
\(613\) −40.1092 −1.61999 −0.809997 0.586433i \(-0.800532\pi\)
−0.809997 + 0.586433i \(0.800532\pi\)
\(614\) 9.47093 16.4041i 0.382216 0.662017i
\(615\) 0.791947 1.37169i 0.0319344 0.0553120i
\(616\) 33.1109 17.4444i 1.33407 0.702853i
\(617\) 8.82052 15.2776i 0.355101 0.615052i −0.632035 0.774940i \(-0.717780\pi\)
0.987135 + 0.159888i \(0.0511133\pi\)
\(618\) 30.0880 1.21032
\(619\) 13.3825 23.1792i 0.537890 0.931652i −0.461128 0.887334i \(-0.652555\pi\)
0.999017 0.0443184i \(-0.0141116\pi\)
\(620\) −12.6062 21.8345i −0.506276 0.876895i
\(621\) −2.61602 + 4.53108i −0.104977 + 0.181826i
\(622\) 12.3789 + 21.4409i 0.496349 + 0.859701i
\(623\) −0.409805 + 10.5826i −0.0164185 + 0.423985i
\(624\) −0.526988 0.236769i −0.0210964 0.00947833i
\(625\) 14.9895 + 25.9625i 0.599579 + 1.03850i
\(626\) −2.58558 −0.103340
\(627\) −11.6759 −0.466289
\(628\) 17.6768 0.705383
\(629\) −21.4634 −0.855800
\(630\) −15.6782 + 8.26003i −0.624635 + 0.329087i
\(631\) 10.1224 17.5324i 0.402964 0.697955i −0.591118 0.806585i \(-0.701313\pi\)
0.994082 + 0.108630i \(0.0346465\pi\)
\(632\) −21.3221 36.9309i −0.848147 1.46903i
\(633\) 7.17814 + 12.4329i 0.285306 + 0.494164i
\(634\) 22.7447 0.903306
\(635\) 1.02298 1.77185i 0.0405957 0.0703138i
\(636\) −2.41641 −0.0958170
\(637\) −22.1532 12.0928i −0.877741 0.479136i
\(638\) 5.11379 0.202457
\(639\) 3.90487 6.76343i 0.154474 0.267557i
\(640\) −52.7247 −2.08413
\(641\) 7.38825 + 12.7968i 0.291819 + 0.505445i 0.974240 0.225515i \(-0.0724063\pi\)
−0.682421 + 0.730959i \(0.739073\pi\)
\(642\) −6.68939 11.5864i −0.264009 0.457277i
\(643\) 4.74073 8.21118i 0.186956 0.323817i −0.757278 0.653093i \(-0.773471\pi\)
0.944234 + 0.329276i \(0.106804\pi\)
\(644\) −39.1896 + 20.6469i −1.54429 + 0.813603i
\(645\) 27.3956 1.07870
\(646\) 26.0242 1.02391
\(647\) −49.9026 −1.96187 −0.980937 0.194327i \(-0.937748\pi\)
−0.980937 + 0.194327i \(0.937748\pi\)
\(648\) 2.73629 0.107491
\(649\) −9.42848 16.3306i −0.370100 0.641033i
\(650\) −24.1874 + 17.4485i −0.948708 + 0.684388i
\(651\) 0.274623 7.09175i 0.0107633 0.277948i
\(652\) 5.03784 + 8.72579i 0.197297 + 0.341728i
\(653\) −20.7019 + 35.8568i −0.810128 + 1.40318i 0.102645 + 0.994718i \(0.467269\pi\)
−0.912774 + 0.408466i \(0.866064\pi\)
\(654\) 6.25722 + 10.8378i 0.244677 + 0.423793i
\(655\) 9.85355 17.0668i 0.385010 0.666857i
\(656\) 0.0864055 0.00337357
\(657\) −7.94401 + 13.7594i −0.309925 + 0.536807i
\(658\) −51.9953 + 27.3936i −2.02699 + 1.06791i
\(659\) 1.08993 1.88781i 0.0424576 0.0735387i −0.844016 0.536318i \(-0.819815\pi\)
0.886473 + 0.462780i \(0.153148\pi\)
\(660\) 24.2943 42.0790i 0.945656 1.63792i
\(661\) 32.8566 1.27797 0.638986 0.769218i \(-0.279354\pi\)
0.638986 + 0.769218i \(0.279354\pi\)
\(662\) 1.88714 3.26862i 0.0733457 0.127038i
\(663\) −14.7752 + 10.6587i −0.573822 + 0.413949i
\(664\) 36.2145 1.40539
\(665\) 14.8495 + 9.35760i 0.575838 + 0.362872i
\(666\) 4.84312 + 8.38853i 0.187667 + 0.325049i
\(667\) −2.26967 −0.0878819
\(668\) 21.4765 37.1984i 0.830951 1.43925i
\(669\) 0.596931 + 1.03392i 0.0230787 + 0.0399735i
\(670\) −89.4858 −3.45714
\(671\) −35.9525 −1.38793
\(672\) −13.0676 8.23472i −0.504093 0.317661i
\(673\) −5.61199 9.72024i −0.216326 0.374688i 0.737356 0.675505i \(-0.236074\pi\)
−0.953682 + 0.300817i \(0.902741\pi\)
\(674\) 14.1473 24.5039i 0.544936 0.943856i
\(675\) −1.81371 + 3.14143i −0.0698097 + 0.120914i
\(676\) 27.6257 + 31.1018i 1.06253 + 1.19622i
\(677\) 10.0207 + 17.3564i 0.385127 + 0.667059i 0.991787 0.127902i \(-0.0408244\pi\)
−0.606660 + 0.794961i \(0.707491\pi\)
\(678\) 1.81243 + 3.13922i 0.0696060 + 0.120561i
\(679\) −0.552131 + 14.2580i −0.0211888 + 0.547172i
\(680\) −20.3055 + 35.1702i −0.778680 + 1.34871i
\(681\) 7.94437 + 13.7600i 0.304429 + 0.527286i
\(682\) 15.8107 + 27.3849i 0.605423 + 1.04862i
\(683\) −7.33004 12.6960i −0.280476 0.485799i 0.691026 0.722830i \(-0.257159\pi\)
−0.971502 + 0.237031i \(0.923826\pi\)
\(684\) −3.61368 6.25908i −0.138172 0.239322i
\(685\) −18.3568 + 31.7949i −0.701376 + 1.21482i
\(686\) −33.8817 25.2113i −1.29361 0.962573i
\(687\) −4.39323 7.60931i −0.167612 0.290313i
\(688\) 0.747251 + 1.29428i 0.0284887 + 0.0493438i
\(689\) −2.48355 1.11583i −0.0946159 0.0425096i
\(690\) −17.5219 + 30.3488i −0.667047 + 1.15536i
\(691\) −14.4726 + 25.0673i −0.550565 + 0.953606i 0.447669 + 0.894199i \(0.352254\pi\)
−0.998234 + 0.0594069i \(0.981079\pi\)
\(692\) 20.5578 + 35.6071i 0.781490 + 1.35358i
\(693\) 12.1007 6.37520i 0.459666 0.242174i
\(694\) 30.2036 1.14651
\(695\) 3.86315 0.146538
\(696\) 0.593502 + 1.02798i 0.0224966 + 0.0389653i
\(697\) 1.36238 2.35971i 0.0516037 0.0893803i
\(698\) −79.8430 −3.02210
\(699\) 2.86714 + 4.96604i 0.108445 + 0.187833i
\(700\) −27.1705 + 14.3147i −1.02695 + 0.541044i
\(701\) −37.6521 −1.42210 −0.711051 0.703141i \(-0.751780\pi\)
−0.711051 + 0.703141i \(0.751780\pi\)
\(702\) 7.49971 + 3.36952i 0.283058 + 0.127174i
\(703\) 4.79692 8.30851i 0.180919 0.313362i
\(704\) 67.1630 2.53130
\(705\) −14.3060 + 24.7787i −0.538795 + 0.933220i
\(706\) −26.3473 + 45.6349i −0.991595 + 1.71749i
\(707\) 7.37902 3.88761i 0.277517 0.146209i
\(708\) 5.83623 10.1086i 0.219339 0.379906i
\(709\) 22.4214 0.842053 0.421026 0.907048i \(-0.361670\pi\)
0.421026 + 0.907048i \(0.361670\pi\)
\(710\) 26.1545 45.3009i 0.981560 1.70011i
\(711\) −7.79235 13.4967i −0.292236 0.506168i
\(712\) 5.47649 9.48555i 0.205240 0.355486i
\(713\) −7.01731 12.1543i −0.262800 0.455184i
\(714\) −26.9711 + 14.2096i −1.00937 + 0.531782i
\(715\) 44.4002 32.0298i 1.66047 1.19785i
\(716\) −29.8655 51.7286i −1.11613 1.93319i
\(717\) −11.5411 −0.431010
\(718\) 29.3917 1.09689
\(719\) 8.37217 0.312229 0.156115 0.987739i \(-0.450103\pi\)
0.156115 + 0.987739i \(0.450103\pi\)
\(720\) −0.470648 −0.0175400
\(721\) 29.5344 + 18.6115i 1.09992 + 0.693129i
\(722\) 15.8470 27.4478i 0.589763 1.02150i
\(723\) 2.83030 + 4.90223i 0.105260 + 0.182316i
\(724\) −1.40547 2.43434i −0.0522338 0.0904717i
\(725\) −1.57358 −0.0584412
\(726\) −17.9282 + 31.0526i −0.665379 + 1.15247i
\(727\) 20.0990 0.745432 0.372716 0.927945i \(-0.378427\pi\)
0.372716 + 0.927945i \(0.378427\pi\)
\(728\) 14.4406 + 21.7442i 0.535204 + 0.805893i
\(729\) 1.00000 0.0370370
\(730\) −53.2083 + 92.1596i −1.96933 + 3.41098i
\(731\) 47.1284 1.74311
\(732\) −11.1273 19.2730i −0.411277 0.712352i
\(733\) 5.77804 + 10.0079i 0.213417 + 0.369649i 0.952782 0.303656i \(-0.0982074\pi\)
−0.739365 + 0.673305i \(0.764874\pi\)
\(734\) 30.2064 52.3191i 1.11494 1.93113i
\(735\) −20.4992 1.59001i −0.756123 0.0586485i
\(736\) −30.5444 −1.12588
\(737\) 69.0664 2.54409
\(738\) −1.22966 −0.0452644
\(739\) 24.2650 0.892601 0.446300 0.894883i \(-0.352741\pi\)
0.446300 + 0.894883i \(0.352741\pi\)
\(740\) 19.9622 + 34.5756i 0.733826 + 1.27102i
\(741\) −0.823835 8.10167i −0.0302643 0.297622i
\(742\) −3.85445 2.42893i −0.141501 0.0891689i
\(743\) 0.777681 + 1.34698i 0.0285303 + 0.0494160i 0.879938 0.475088i \(-0.157584\pi\)
−0.851408 + 0.524504i \(0.824251\pi\)
\(744\) −3.66996 + 6.35655i −0.134547 + 0.233043i
\(745\) −31.1241 53.9086i −1.14030 1.97506i
\(746\) 14.1050 24.4306i 0.516422 0.894468i
\(747\) 13.2349 0.484240
\(748\) 41.7933 72.3881i 1.52811 2.64677i
\(749\) 0.600653 15.5110i 0.0219474 0.566761i
\(750\) 4.59673 7.96177i 0.167849 0.290723i
\(751\) 17.6793 30.6214i 0.645125 1.11739i −0.339148 0.940733i \(-0.610139\pi\)
0.984273 0.176656i \(-0.0565281\pi\)
\(752\) −1.56086 −0.0569186
\(753\) 12.1872 21.1088i 0.444126 0.769249i
\(754\) 0.360823 + 3.54836i 0.0131404 + 0.129224i
\(755\) −46.4295 −1.68974
\(756\) 7.16271 + 4.51367i 0.260505 + 0.164161i
\(757\) 9.73684 + 16.8647i 0.353891 + 0.612958i 0.986928 0.161164i \(-0.0515249\pi\)
−0.633036 + 0.774122i \(0.718192\pi\)
\(758\) 63.9310 2.32208
\(759\) 13.5236 23.4236i 0.490877 0.850223i
\(760\) −9.07629 15.7206i −0.329232 0.570246i
\(761\) 17.6396 0.639434 0.319717 0.947513i \(-0.396412\pi\)
0.319717 + 0.947513i \(0.396412\pi\)
\(762\) −1.58839 −0.0575411
\(763\) −0.561848 + 14.5089i −0.0203403 + 0.525259i
\(764\) 25.5216 + 44.2048i 0.923341 + 1.59927i
\(765\) −7.42083 + 12.8532i −0.268301 + 0.464710i
\(766\) 29.9754 51.9190i 1.08306 1.87591i
\(767\) 10.6663 7.69452i 0.385136 0.277833i
\(768\) 7.47442 + 12.9461i 0.269710 + 0.467151i
\(769\) −2.32077 4.01969i −0.0836890 0.144954i 0.821143 0.570723i \(-0.193337\pi\)
−0.904832 + 0.425769i \(0.860004\pi\)
\(770\) 81.0492 42.7006i 2.92081 1.53882i
\(771\) −2.30268 + 3.98836i −0.0829290 + 0.143637i
\(772\) −6.32095 10.9482i −0.227496 0.394034i
\(773\) −10.0222 17.3590i −0.360475 0.624360i 0.627564 0.778565i \(-0.284052\pi\)
−0.988039 + 0.154204i \(0.950719\pi\)
\(774\) −10.6343 18.4192i −0.382243 0.662064i
\(775\) −4.86516 8.42670i −0.174762 0.302696i
\(776\) 7.37848 12.7799i 0.264872 0.458772i
\(777\) −0.434873 + 11.2300i −0.0156010 + 0.402874i
\(778\) −30.6032 53.0063i −1.09718 1.90037i
\(779\) 0.608965 + 1.05476i 0.0218184 + 0.0377906i
\(780\) 30.9121 + 13.8884i 1.10683 + 0.497283i
\(781\) −20.1864 + 34.9638i −0.722326 + 1.25110i
\(782\) −30.1427 + 52.2087i −1.07790 + 1.86698i
\(783\) 0.216901 + 0.375683i 0.00775140 + 0.0134258i
\(784\) −0.484023 1.01183i −0.0172865 0.0361368i
\(785\) 16.2257 0.579119
\(786\) −15.2997 −0.545721
\(787\) 5.05832 + 8.76128i 0.180310 + 0.312306i 0.941986 0.335652i \(-0.108957\pi\)
−0.761676 + 0.647958i \(0.775623\pi\)
\(788\) −21.5150 + 37.2650i −0.766438 + 1.32751i
\(789\) 22.9824 0.818193
\(790\) −52.1925 90.4001i −1.85693 3.21629i
\(791\) −0.162742 + 4.20258i −0.00578643 + 0.149426i
\(792\) −14.1453 −0.502633
\(793\) −2.53676 24.9468i −0.0900831 0.885887i
\(794\) −27.9618 + 48.4313i −0.992328 + 1.71876i
\(795\) −2.21804 −0.0786657
\(796\) −33.3260 + 57.7223i −1.18121 + 2.04591i
\(797\) −4.44188 + 7.69357i −0.157340 + 0.272520i −0.933908 0.357512i \(-0.883625\pi\)
0.776569 + 0.630032i \(0.216958\pi\)
\(798\) 0.527282 13.6163i 0.0186656 0.482013i
\(799\) −24.6104 + 42.6265i −0.870655 + 1.50802i
\(800\) −21.1767 −0.748710
\(801\) 2.00143 3.46658i 0.0707171 0.122486i
\(802\) −3.60944 6.25172i −0.127454 0.220756i
\(803\) 41.0669 71.1300i 1.44922 2.51012i
\(804\) 21.3760 + 37.0244i 0.753875 + 1.30575i
\(805\) −35.9723 + 18.9519i −1.26786 + 0.667967i
\(806\) −17.8863 + 12.9030i −0.630020 + 0.454489i
\(807\) −7.00246 12.1286i −0.246498 0.426948i
\(808\) −8.62587 −0.303457
\(809\) −41.7569 −1.46809 −0.734047 0.679099i \(-0.762371\pi\)
−0.734047 + 0.679099i \(0.762371\pi\)
\(810\) 6.69792 0.235341
\(811\) −31.3690 −1.10151 −0.550757 0.834666i \(-0.685661\pi\)
−0.550757 + 0.834666i \(0.685661\pi\)
\(812\) −0.142115 + 3.66993i −0.00498726 + 0.128789i
\(813\) 9.55299 16.5463i 0.335038 0.580303i
\(814\) −25.0367 43.3649i −0.877537 1.51994i
\(815\) 4.62425 + 8.00944i 0.161981 + 0.280559i
\(816\) −0.809651 −0.0283434
\(817\) −10.5329 + 18.2435i −0.368499 + 0.638259i
\(818\) 43.4826 1.52033
\(819\) 5.27744 + 7.94661i 0.184409 + 0.277677i
\(820\) −5.06838 −0.176995
\(821\) −15.2754 + 26.4577i −0.533114 + 0.923381i 0.466138 + 0.884712i \(0.345645\pi\)
−0.999252 + 0.0386690i \(0.987688\pi\)
\(822\) 28.5027 0.994144
\(823\) −1.67437 2.90010i −0.0583650 0.101091i 0.835367 0.549693i \(-0.185255\pi\)
−0.893732 + 0.448602i \(0.851922\pi\)
\(824\) −18.0520 31.2670i −0.628872 1.08924i
\(825\) 9.37604 16.2398i 0.326432 0.565397i
\(826\) 19.4705 10.2580i 0.677464 0.356920i
\(827\) −48.2646 −1.67833 −0.839163 0.543880i \(-0.816955\pi\)
−0.839163 + 0.543880i \(0.816955\pi\)
\(828\) 16.7423 0.581834
\(829\) 49.8292 1.73064 0.865320 0.501219i \(-0.167115\pi\)
0.865320 + 0.501219i \(0.167115\pi\)
\(830\) 88.6463 3.07696
\(831\) −6.45998 11.1890i −0.224094 0.388142i
\(832\) 4.73894 + 46.6032i 0.164293 + 1.61568i
\(833\) −35.2645 2.73528i −1.22184 0.0947719i
\(834\) −1.49958 2.59735i −0.0519263 0.0899390i
\(835\) 19.7134 34.1446i 0.682210 1.18162i
\(836\) 18.6811 + 32.3566i 0.646098 + 1.11907i
\(837\) −1.34122 + 2.32306i −0.0463593 + 0.0802967i
\(838\) −35.5976 −1.22970
\(839\) 16.4441 28.4819i 0.567712 0.983305i −0.429080 0.903266i \(-0.641162\pi\)
0.996792 0.0800390i \(-0.0255045\pi\)
\(840\) 17.9902 + 11.3368i 0.620721 + 0.391156i
\(841\) 14.4059 24.9518i 0.496755 0.860406i
\(842\) 20.5830 35.6507i 0.709335 1.22860i
\(843\) −19.6264 −0.675971
\(844\) 22.9697 39.7846i 0.790649 1.36944i
\(845\) 25.3577 + 28.5485i 0.872333 + 0.982099i
\(846\) 22.2130 0.763698
\(847\) −36.8065 + 19.3914i −1.26469 + 0.666297i
\(848\) −0.0604999 0.104789i −0.00207757 0.00359846i
\(849\) 3.26727 0.112132
\(850\) −20.8982 + 36.1967i −0.716802 + 1.24154i
\(851\) 11.1121 + 19.2468i 0.380919 + 0.659771i
\(852\) −24.9907 −0.856169
\(853\) −17.9823 −0.615701 −0.307850 0.951435i \(-0.599610\pi\)
−0.307850 + 0.951435i \(0.599610\pi\)
\(854\) 1.62361 41.9276i 0.0555590 1.43473i
\(855\) −3.31701 5.74523i −0.113439 0.196483i
\(856\) −8.02691 + 13.9030i −0.274354 + 0.475195i
\(857\) 23.5502 40.7901i 0.804459 1.39336i −0.112196 0.993686i \(-0.535789\pi\)
0.916656 0.399678i \(-0.130878\pi\)
\(858\) −38.7701 17.4189i −1.32359 0.594670i
\(859\) −13.8486 23.9866i −0.472510 0.818411i 0.526995 0.849868i \(-0.323319\pi\)
−0.999505 + 0.0314573i \(0.989985\pi\)
\(860\) −43.8322 75.9197i −1.49467 2.58884i
\(861\) −1.20704 0.760629i −0.0411357 0.0259222i
\(862\) 19.9718 34.5922i 0.680242 1.17821i
\(863\) 18.5569 + 32.1414i 0.631683 + 1.09411i 0.987208 + 0.159440i \(0.0509689\pi\)
−0.355525 + 0.934667i \(0.615698\pi\)
\(864\) 2.91898 + 5.05582i 0.0993057 + 0.172003i
\(865\) 18.8701 + 32.6840i 0.641602 + 1.11129i
\(866\) −6.90854 11.9659i −0.234762 0.406619i
\(867\) −4.26597 + 7.38888i −0.144880 + 0.250939i
\(868\) −20.0923 + 10.5856i −0.681977 + 0.359298i
\(869\) 40.2829 + 69.7720i 1.36650 + 2.36685i
\(870\) 1.45278 + 2.51629i 0.0492540 + 0.0853104i
\(871\) 4.87324 + 47.9239i 0.165123 + 1.62384i
\(872\) 7.50833 13.0048i 0.254264 0.440399i
\(873\) 2.69653 4.67053i 0.0912637 0.158073i
\(874\) −13.4734 23.3366i −0.455745 0.789373i
\(875\) 9.43705 4.97188i 0.319031 0.168080i
\(876\) 50.8408 1.71775
\(877\) 28.2981 0.955559 0.477780 0.878480i \(-0.341442\pi\)
0.477780 + 0.878480i \(0.341442\pi\)
\(878\) −26.6599 46.1763i −0.899727 1.55837i
\(879\) 9.50947 16.4709i 0.320746 0.555549i
\(880\) 2.43303 0.0820176
\(881\) −9.74919 16.8861i −0.328458 0.568907i 0.653748 0.756713i \(-0.273196\pi\)
−0.982206 + 0.187806i \(0.939862\pi\)
\(882\) 6.88826 + 14.3996i 0.231940 + 0.484861i
\(883\) 36.8164 1.23897 0.619485 0.785009i \(-0.287342\pi\)
0.619485 + 0.785009i \(0.287342\pi\)
\(884\) 53.1777 + 23.8920i 1.78856 + 0.803575i
\(885\) 5.35710 9.27878i 0.180077 0.311903i
\(886\) −20.2819 −0.681383
\(887\) 11.0920 19.2118i 0.372432 0.645070i −0.617507 0.786565i \(-0.711857\pi\)
0.989939 + 0.141495i \(0.0451908\pi\)
\(888\) 5.81149 10.0658i 0.195021 0.337786i
\(889\) −1.55916 0.982526i −0.0522926 0.0329529i
\(890\) 13.4054 23.2189i 0.449351 0.778298i
\(891\) −5.16954 −0.173186
\(892\) 1.91015 3.30847i 0.0639565 0.110776i
\(893\) −11.0005 19.0535i −0.368119 0.637601i
\(894\) −24.1633 + 41.8521i −0.808142 + 1.39974i
\(895\) −27.4137 47.4820i −0.916340 1.58715i
\(896\) −1.83772 + 47.4567i −0.0613941 + 1.58542i
\(897\) 17.2074 + 7.73106i 0.574540 + 0.258133i
\(898\) −44.1635 76.4935i −1.47376 2.55262i
\(899\) −1.16365 −0.0388098
\(900\) 11.6075 0.386918
\(901\) −3.81567 −0.127118
\(902\) 6.35678 0.211658
\(903\) 0.954876 24.6584i 0.0317763 0.820579i
\(904\) 2.17482 3.76690i 0.0723335 0.125285i
\(905\) −1.29009 2.23450i −0.0428839 0.0742771i
\(906\) 18.0229 + 31.2165i 0.598769 + 1.03710i
\(907\) −46.6084 −1.54761 −0.773803 0.633427i \(-0.781648\pi\)
−0.773803 + 0.633427i \(0.781648\pi\)
\(908\) 25.4215 44.0314i 0.843644 1.46123i
\(909\) −3.15240 −0.104559
\(910\) 35.3479 + 53.2257i 1.17177 + 1.76442i
\(911\) 0.542513 0.0179743 0.00898714 0.999960i \(-0.497139\pi\)
0.00898714 + 0.999960i \(0.497139\pi\)
\(912\) 0.180952 0.313418i 0.00599191 0.0103783i
\(913\) −68.4184 −2.26432
\(914\) −25.5401 44.2368i −0.844792 1.46322i
\(915\) −10.2138 17.6908i −0.337658 0.584840i
\(916\) −14.0581 + 24.3494i −0.464493 + 0.804526i
\(917\) −15.0182 9.46389i −0.495943 0.312525i
\(918\) 11.5224 0.380294
\(919\) 33.6621 1.11041 0.555205 0.831713i \(-0.312640\pi\)
0.555205 + 0.831713i \(0.312640\pi\)
\(920\) 42.0507 1.38637
\(921\) −8.30660 −0.273712
\(922\) −3.20085 5.54403i −0.105414 0.182583i
\(923\) −25.6851 11.5400i −0.845436 0.379843i
\(924\) −37.0279 23.3336i −1.21813 0.767620i
\(925\) 7.70412 + 13.3439i 0.253310 + 0.438746i
\(926\) −43.0449 + 74.5559i −1.41454 + 2.45006i
\(927\) −6.59727 11.4268i −0.216683 0.375306i
\(928\) −1.26626 + 2.19322i −0.0415669 + 0.0719961i
\(929\) −42.6784 −1.40023 −0.700116 0.714029i \(-0.746869\pi\)
−0.700116 + 0.714029i \(0.746869\pi\)
\(930\) −8.98338 + 15.5597i −0.294576 + 0.510221i
\(931\) 8.94021 13.0396i 0.293004 0.427357i
\(932\) 9.17471 15.8911i 0.300528 0.520529i
\(933\) 5.42853 9.40250i 0.177722 0.307824i
\(934\) 36.6856 1.20039
\(935\) 38.3623 66.4454i 1.25458 2.17300i
\(936\) −0.998078 9.81520i −0.0326232 0.320820i
\(937\) −10.2859 −0.336026 −0.168013 0.985785i \(-0.553735\pi\)
−0.168013 + 0.985785i \(0.553735\pi\)
\(938\) −3.11904 + 80.5448i −0.101840 + 2.62988i
\(939\) 0.566928 + 0.981949i 0.0185010 + 0.0320447i
\(940\) 91.5568 2.98625
\(941\) 5.84119 10.1172i 0.190417 0.329813i −0.754971 0.655758i \(-0.772349\pi\)
0.945389 + 0.325945i \(0.105683\pi\)
\(942\) −6.29842 10.9092i −0.205214 0.355440i
\(943\) −2.82135 −0.0918758
\(944\) 0.584488 0.0190235
\(945\) 6.57468 + 4.14312i 0.213874 + 0.134776i
\(946\) 54.9746 + 95.2188i 1.78738 + 3.09583i
\(947\) −15.9404 + 27.6096i −0.517993 + 0.897190i 0.481789 + 0.876287i \(0.339987\pi\)
−0.999782 + 0.0209026i \(0.993346\pi\)
\(948\) −24.9351 + 43.1889i −0.809855 + 1.40271i
\(949\) 52.2535 + 23.4768i 1.69622 + 0.762088i
\(950\) −9.34122 16.1795i −0.303069 0.524931i
\(951\) −4.98712 8.63795i −0.161718 0.280105i
\(952\) 30.9484 + 19.5025i 1.00304 + 0.632080i
\(953\) 3.72492 6.45175i 0.120662 0.208993i −0.799367 0.600843i \(-0.794832\pi\)
0.920029 + 0.391850i \(0.128165\pi\)
\(954\) 0.860990 + 1.49128i 0.0278756 + 0.0482819i
\(955\) 23.4264 + 40.5758i 0.758062 + 1.31300i
\(956\) 18.4655 + 31.9831i 0.597215 + 1.03441i
\(957\) −1.12128 1.94211i −0.0362458 0.0627795i
\(958\) −9.74674 + 16.8818i −0.314903 + 0.545428i
\(959\) 27.9782 + 17.6309i 0.903464 + 0.569330i
\(960\) 19.0804 + 33.0483i 0.615819 + 1.06663i
\(961\) 11.9023 + 20.6153i 0.383944 + 0.665010i
\(962\) 28.3236 20.4323i 0.913188 0.658764i
\(963\) −2.93351 + 5.08098i −0.0945309 + 0.163732i
\(964\) 9.05681 15.6869i 0.291700 0.505240i
\(965\) −5.80203 10.0494i −0.186774 0.323502i
\(966\) 26.7058 + 16.8290i 0.859244 + 0.541464i
\(967\) −51.0981 −1.64320 −0.821602 0.570061i \(-0.806920\pi\)
−0.821602 + 0.570061i \(0.806920\pi\)
\(968\) 43.0258 1.38290
\(969\) −5.70622 9.88347i −0.183310 0.317503i
\(970\) 18.0611 31.2828i 0.579908 1.00443i
\(971\) 5.01835 0.161046 0.0805232 0.996753i \(-0.474341\pi\)
0.0805232 + 0.996753i \(0.474341\pi\)
\(972\) −1.59997 2.77124i −0.0513192 0.0888874i
\(973\) 0.134650 3.47716i 0.00431669 0.111473i
\(974\) −81.1256 −2.59943
\(975\) 11.9301 + 5.36001i 0.382068 + 0.171658i
\(976\) 0.557189 0.965080i 0.0178352 0.0308915i
\(977\) −27.6611 −0.884958 −0.442479 0.896779i \(-0.645901\pi\)
−0.442479 + 0.896779i \(0.645901\pi\)
\(978\) 3.59005 6.21815i 0.114797 0.198835i
\(979\) −10.3465 + 17.9206i −0.330675 + 0.572746i
\(980\) 28.3918 + 59.3519i 0.906943 + 1.89593i
\(981\) 2.74399 4.75273i 0.0876088 0.151743i
\(982\) −71.5980 −2.28478
\(983\) 2.23464 3.87050i 0.0712738 0.123450i −0.828186 0.560453i \(-0.810627\pi\)
0.899460 + 0.437003i \(0.143960\pi\)
\(984\) 0.737763 + 1.27784i 0.0235190 + 0.0407362i
\(985\) −19.7487 + 34.2057i −0.629245 + 1.08988i
\(986\) 2.49921 + 4.32875i 0.0795910 + 0.137856i
\(987\) 21.8043 + 13.7403i 0.694038 + 0.437357i
\(988\) −21.1335 + 15.2455i −0.672347 + 0.485024i
\(989\) −24.3995 42.2613i −0.775860 1.34383i
\(990\) −34.6252 −1.10046
\(991\) 10.4243 0.331139 0.165570 0.986198i \(-0.447054\pi\)
0.165570 + 0.986198i \(0.447054\pi\)
\(992\) −15.6600 −0.497204
\(993\) −1.65514 −0.0525242
\(994\) −39.8630 25.1202i −1.26438 0.796765i
\(995\) −30.5901 + 52.9836i −0.969771 + 1.67969i
\(996\) −21.1755 36.6770i −0.670971 1.16216i
\(997\) 7.25600 + 12.5678i 0.229800 + 0.398025i 0.957749 0.287607i \(-0.0928596\pi\)
−0.727949 + 0.685631i \(0.759526\pi\)
\(998\) −9.78748 −0.309817
\(999\) 2.12386 3.67863i 0.0671960 0.116387i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.j.c.172.2 yes 20
3.2 odd 2 819.2.n.f.172.9 20
7.2 even 3 273.2.l.c.16.9 yes 20
13.9 even 3 273.2.l.c.256.9 yes 20
21.2 odd 6 819.2.s.f.289.2 20
39.35 odd 6 819.2.s.f.802.2 20
91.9 even 3 inner 273.2.j.c.100.2 20
273.191 odd 6 819.2.n.f.100.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.2 20 91.9 even 3 inner
273.2.j.c.172.2 yes 20 1.1 even 1 trivial
273.2.l.c.16.9 yes 20 7.2 even 3
273.2.l.c.256.9 yes 20 13.9 even 3
819.2.n.f.100.9 20 273.191 odd 6
819.2.n.f.172.9 20 3.2 odd 2
819.2.s.f.289.2 20 21.2 odd 6
819.2.s.f.802.2 20 39.35 odd 6