L(s) = 1 | + (−0.951 + 0.309i)2-s + (0.809 − 0.587i)4-s + (0.453 − 0.891i)5-s + (−0.587 + 0.809i)8-s + (0.707 − 0.707i)9-s + (−0.156 + 0.987i)10-s + (−1.26 − 1.47i)13-s + (0.309 − 0.951i)16-s + (0.678 + 1.10i)17-s + (−0.453 + 0.891i)18-s + (−0.156 − 0.987i)20-s + (−0.587 − 0.809i)25-s + (1.65 + 1.01i)26-s + (−1.79 + 0.431i)29-s + i·32-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + (0.809 − 0.587i)4-s + (0.453 − 0.891i)5-s + (−0.587 + 0.809i)8-s + (0.707 − 0.707i)9-s + (−0.156 + 0.987i)10-s + (−1.26 − 1.47i)13-s + (0.309 − 0.951i)16-s + (0.678 + 1.10i)17-s + (−0.453 + 0.891i)18-s + (−0.156 − 0.987i)20-s + (−0.587 − 0.809i)25-s + (1.65 + 1.01i)26-s + (−1.79 + 0.431i)29-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6881232869\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6881232869\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.951 - 0.309i)T \) |
| 5 | \( 1 + (-0.453 + 0.891i)T \) |
| 41 | \( 1 + (-0.951 + 0.309i)T \) |
good | 3 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 + (-0.987 + 0.156i)T^{2} \) |
| 11 | \( 1 + (0.453 - 0.891i)T^{2} \) |
| 13 | \( 1 + (1.26 + 1.47i)T + (-0.156 + 0.987i)T^{2} \) |
| 17 | \( 1 + (-0.678 - 1.10i)T + (-0.453 + 0.891i)T^{2} \) |
| 19 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 23 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 29 | \( 1 + (1.79 - 0.431i)T + (0.891 - 0.453i)T^{2} \) |
| 31 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.183 + 1.16i)T + (-0.951 - 0.309i)T^{2} \) |
| 43 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 47 | \( 1 + (0.987 + 0.156i)T^{2} \) |
| 53 | \( 1 + (-1.70 - 1.04i)T + (0.453 + 0.891i)T^{2} \) |
| 59 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.896 - 1.76i)T + (-0.587 + 0.809i)T^{2} \) |
| 67 | \( 1 + (-0.891 + 0.453i)T^{2} \) |
| 71 | \( 1 + (-0.453 + 0.891i)T^{2} \) |
| 73 | \( 1 - 0.312T + T^{2} \) |
| 79 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.497 - 0.581i)T + (-0.156 - 0.987i)T^{2} \) |
| 97 | \( 1 + (-0.243 - 1.01i)T + (-0.891 + 0.453i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12298131762112309605626592796, −9.464537311467726271453096533869, −8.752172708876996250341137054578, −7.74854822364332257036662299603, −7.19962477926097944745602597369, −5.80241024018568866816505008234, −5.44639143479321480822509161035, −3.93856776655871429629794651315, −2.35211641019870796640135412539, −1.00929201697721347311449467585,
1.87359634500319362106795455995, 2.63438486039748067285325631525, 4.00207716841804440636961539106, 5.32198172807158643050512940730, 6.66438809018034084003023796861, 7.23521624406168455709189176994, 7.82463370168145983569588110117, 9.263280268752989656464578734842, 9.700069663212240697619981452404, 10.32517196871777397097905464674