L(s) = 1 | + (−0.951 + 0.309i)2-s + (0.809 − 0.587i)4-s + (0.453 − 0.891i)5-s + (−0.587 + 0.809i)8-s + (0.707 − 0.707i)9-s + (−0.156 + 0.987i)10-s + (−1.26 − 1.47i)13-s + (0.309 − 0.951i)16-s + (0.678 + 1.10i)17-s + (−0.453 + 0.891i)18-s + (−0.156 − 0.987i)20-s + (−0.587 − 0.809i)25-s + (1.65 + 1.01i)26-s + (−1.79 + 0.431i)29-s + i·32-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + (0.809 − 0.587i)4-s + (0.453 − 0.891i)5-s + (−0.587 + 0.809i)8-s + (0.707 − 0.707i)9-s + (−0.156 + 0.987i)10-s + (−1.26 − 1.47i)13-s + (0.309 − 0.951i)16-s + (0.678 + 1.10i)17-s + (−0.453 + 0.891i)18-s + (−0.156 − 0.987i)20-s + (−0.587 − 0.809i)25-s + (1.65 + 1.01i)26-s + (−1.79 + 0.431i)29-s + i·32-s + ⋯ |
Λ(s)=(=(820s/2ΓC(s)L(s)(0.656+0.754i)Λ(1−s)
Λ(s)=(=(820s/2ΓC(s)L(s)(0.656+0.754i)Λ(1−s)
Degree: |
2 |
Conductor: |
820
= 22⋅5⋅41
|
Sign: |
0.656+0.754i
|
Analytic conductor: |
0.409233 |
Root analytic conductor: |
0.639713 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ820(423,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 820, ( :0), 0.656+0.754i)
|
Particular Values
L(21) |
≈ |
0.6881232869 |
L(21) |
≈ |
0.6881232869 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.951−0.309i)T |
| 5 | 1+(−0.453+0.891i)T |
| 41 | 1+(−0.951+0.309i)T |
good | 3 | 1+(−0.707+0.707i)T2 |
| 7 | 1+(−0.987+0.156i)T2 |
| 11 | 1+(0.453−0.891i)T2 |
| 13 | 1+(1.26+1.47i)T+(−0.156+0.987i)T2 |
| 17 | 1+(−0.678−1.10i)T+(−0.453+0.891i)T2 |
| 19 | 1+(0.987−0.156i)T2 |
| 23 | 1+(−0.587−0.809i)T2 |
| 29 | 1+(1.79−0.431i)T+(0.891−0.453i)T2 |
| 31 | 1+(0.309+0.951i)T2 |
| 37 | 1+(−0.183+1.16i)T+(−0.951−0.309i)T2 |
| 43 | 1+(0.809−0.587i)T2 |
| 47 | 1+(0.987+0.156i)T2 |
| 53 | 1+(−1.70−1.04i)T+(0.453+0.891i)T2 |
| 59 | 1+(−0.809+0.587i)T2 |
| 61 | 1+(−0.896−1.76i)T+(−0.587+0.809i)T2 |
| 67 | 1+(−0.891+0.453i)T2 |
| 71 | 1+(−0.453+0.891i)T2 |
| 73 | 1−0.312T+T2 |
| 79 | 1+(0.707+0.707i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(0.497−0.581i)T+(−0.156−0.987i)T2 |
| 97 | 1+(−0.243−1.01i)T+(−0.891+0.453i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12298131762112309605626592796, −9.464537311467726271453096533869, −8.752172708876996250341137054578, −7.74854822364332257036662299603, −7.19962477926097944745602597369, −5.80241024018568866816505008234, −5.44639143479321480822509161035, −3.93856776655871429629794651315, −2.35211641019870796640135412539, −1.00929201697721347311449467585,
1.87359634500319362106795455995, 2.63438486039748067285325631525, 4.00207716841804440636961539106, 5.32198172807158643050512940730, 6.66438809018034084003023796861, 7.23521624406168455709189176994, 7.82463370168145983569588110117, 9.263280268752989656464578734842, 9.700069663212240697619981452404, 10.32517196871777397097905464674