Properties

Label 820.1.by.a
Level 820820
Weight 11
Character orbit 820.by
Analytic conductor 0.4090.409
Analytic rank 00
Dimension 1616
Projective image D40D_{40}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [820,1,Mod(47,820)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(820, base_ring=CyclotomicField(40))
 
chi = DirichletCharacter(H, H._module([20, 10, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("820.47");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 820=22541 820 = 2^{2} \cdot 5 \cdot 41
Weight: k k == 1 1
Character orbit: [χ][\chi] == 820.by (of order 4040, degree 1616, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4092333103590.409233310359
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ40)\Q(\zeta_{40})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D40D_{40}
Projective field: Galois closure of Q[x]/(x40)\mathbb{Q}[x]/(x^{40} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ406q2+ζ4012q4+ζ40q5ζ4018q8ζ4015q9ζ407q10+(ζ4019+ζ408)q13ζ404q16++ζ409q98+O(q100) q - \zeta_{40}^{6} q^{2} + \zeta_{40}^{12} q^{4} + \zeta_{40} q^{5} - \zeta_{40}^{18} q^{8} - \zeta_{40}^{15} q^{9} - \zeta_{40}^{7} q^{10} + (\zeta_{40}^{19} + \zeta_{40}^{8}) q^{13} - \zeta_{40}^{4} q^{16} + \cdots + \zeta_{40}^{9} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q44q134q16+4q174q29+4q45+4q5016q52+4q534q61+4q6416q654q684q82+O(q100) 16 q + 4 q^{4} - 4 q^{13} - 4 q^{16} + 4 q^{17} - 4 q^{29} + 4 q^{45} + 4 q^{50} - 16 q^{52} + 4 q^{53} - 4 q^{61} + 4 q^{64} - 16 q^{65} - 4 q^{68} - 4 q^{82}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/820Z)×\left(\mathbb{Z}/820\mathbb{Z}\right)^\times.

nn 411411 621621 657657
χ(n)\chi(n) 1-1 ζ407\zeta_{40}^{7} ζ4010-\zeta_{40}^{10}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
47.1
−0.891007 0.453990i
0.156434 0.987688i
−0.987688 + 0.156434i
−0.453990 0.891007i
0.453990 + 0.891007i
0.891007 0.453990i
0.453990 0.891007i
0.987688 0.156434i
−0.987688 0.156434i
−0.156434 0.987688i
−0.156434 + 0.987688i
0.891007 + 0.453990i
0.156434 + 0.987688i
0.987688 + 0.156434i
−0.453990 + 0.891007i
−0.891007 + 0.453990i
0.951057 0.309017i 0 0.809017 0.587785i −0.891007 0.453990i 0 0 0.587785 0.809017i 0.707107 + 0.707107i −0.987688 0.156434i
67.1 0.587785 + 0.809017i 0 −0.309017 + 0.951057i 0.156434 0.987688i 0 0 −0.951057 + 0.309017i 0.707107 + 0.707107i 0.891007 0.453990i
147.1 −0.587785 + 0.809017i 0 −0.309017 0.951057i −0.987688 + 0.156434i 0 0 0.951057 + 0.309017i −0.707107 0.707107i 0.453990 0.891007i
227.1 −0.951057 0.309017i 0 0.809017 + 0.587785i −0.453990 0.891007i 0 0 −0.587785 0.809017i −0.707107 0.707107i 0.156434 + 0.987688i
347.1 −0.951057 0.309017i 0 0.809017 + 0.587785i 0.453990 + 0.891007i 0 0 −0.587785 0.809017i 0.707107 + 0.707107i −0.156434 0.987688i
403.1 0.951057 + 0.309017i 0 0.809017 + 0.587785i 0.891007 0.453990i 0 0 0.587785 + 0.809017i −0.707107 + 0.707107i 0.987688 0.156434i
423.1 −0.951057 + 0.309017i 0 0.809017 0.587785i 0.453990 0.891007i 0 0 −0.587785 + 0.809017i 0.707107 0.707107i −0.156434 + 0.987688i
427.1 −0.587785 + 0.809017i 0 −0.309017 0.951057i 0.987688 0.156434i 0 0 0.951057 + 0.309017i 0.707107 + 0.707107i −0.453990 + 0.891007i
463.1 −0.587785 0.809017i 0 −0.309017 + 0.951057i −0.987688 0.156434i 0 0 0.951057 0.309017i −0.707107 + 0.707107i 0.453990 + 0.891007i
503.1 0.587785 0.809017i 0 −0.309017 0.951057i −0.156434 0.987688i 0 0 −0.951057 0.309017i −0.707107 + 0.707107i −0.891007 0.453990i
507.1 0.587785 + 0.809017i 0 −0.309017 + 0.951057i −0.156434 + 0.987688i 0 0 −0.951057 + 0.309017i −0.707107 0.707107i −0.891007 + 0.453990i
527.1 0.951057 0.309017i 0 0.809017 0.587785i 0.891007 + 0.453990i 0 0 0.587785 0.809017i −0.707107 0.707107i 0.987688 + 0.156434i
563.1 0.587785 0.809017i 0 −0.309017 0.951057i 0.156434 + 0.987688i 0 0 −0.951057 0.309017i 0.707107 0.707107i 0.891007 + 0.453990i
603.1 −0.587785 0.809017i 0 −0.309017 + 0.951057i 0.987688 + 0.156434i 0 0 0.951057 0.309017i 0.707107 0.707107i −0.453990 0.891007i
643.1 −0.951057 + 0.309017i 0 0.809017 0.587785i −0.453990 + 0.891007i 0 0 −0.587785 + 0.809017i −0.707107 + 0.707107i 0.156434 0.987688i
663.1 0.951057 + 0.309017i 0 0.809017 + 0.587785i −0.891007 + 0.453990i 0 0 0.587785 + 0.809017i 0.707107 0.707107i −0.987688 + 0.156434i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 47.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
205.bb even 40 1 inner
820.by odd 40 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 820.1.by.a 16
4.b odd 2 1 CM 820.1.by.a 16
5.c odd 4 1 820.1.bz.a yes 16
20.e even 4 1 820.1.bz.a yes 16
41.h odd 40 1 820.1.bz.a yes 16
164.o even 40 1 820.1.bz.a yes 16
205.bb even 40 1 inner 820.1.by.a 16
820.by odd 40 1 inner 820.1.by.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
820.1.by.a 16 1.a even 1 1 trivial
820.1.by.a 16 4.b odd 2 1 CM
820.1.by.a 16 205.bb even 40 1 inner
820.1.by.a 16 820.by odd 40 1 inner
820.1.bz.a yes 16 5.c odd 4 1
820.1.bz.a yes 16 20.e even 4 1
820.1.bz.a yes 16 41.h odd 40 1
820.1.bz.a yes 16 164.o even 40 1

Hecke kernels

This newform subspace is the entire newspace S1new(820,[χ])S_{1}^{\mathrm{new}}(820, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16T12++1 T^{16} - T^{12} + \cdots + 1 Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16+4T15++1 T^{16} + 4 T^{15} + \cdots + 1 Copy content Toggle raw display
1717 T164T15++1 T^{16} - 4 T^{15} + \cdots + 1 Copy content Toggle raw display
1919 T16 T^{16} Copy content Toggle raw display
2323 T16 T^{16} Copy content Toggle raw display
2929 T16+4T15++16 T^{16} + 4 T^{15} + \cdots + 16 Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 T16+5T12++625 T^{16} + 5 T^{12} + \cdots + 625 Copy content Toggle raw display
4141 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 T164T15++1 T^{16} - 4 T^{15} + \cdots + 1 Copy content Toggle raw display
5959 T16 T^{16} Copy content Toggle raw display
6161 (T8+2T7+2T6++1)2 (T^{8} + 2 T^{7} + 2 T^{6} + \cdots + 1)^{2} Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 (T88T6+19T4++1)2 (T^{8} - 8 T^{6} + 19 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
7979 T16 T^{16} Copy content Toggle raw display
8383 T16 T^{16} Copy content Toggle raw display
8989 T162T14++16 T^{16} - 2 T^{14} + \cdots + 16 Copy content Toggle raw display
9797 T162T14++1 T^{16} - 2 T^{14} + \cdots + 1 Copy content Toggle raw display
show more
show less