gp: [N,k,chi] = [820,1,Mod(47,820)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(820, base_ring=CyclotomicField(40))
chi = DirichletCharacter(H, H._module([20, 10, 1]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("820.47");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 820 Z ) × \left(\mathbb{Z}/820\mathbb{Z}\right)^\times ( Z / 8 2 0 Z ) × .
n n n
411 411 4 1 1
621 621 6 2 1
657 657 6 5 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
ζ 40 7 \zeta_{40}^{7} ζ 4 0 7
− ζ 40 10 -\zeta_{40}^{10} − ζ 4 0 1 0
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 820 , [ χ ] ) S_{1}^{\mathrm{new}}(820, [\chi]) S 1 n e w ( 8 2 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 8 − T 6 + T 4 + ⋯ + 1 ) 2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} ( T 8 − T 6 + T 4 + ⋯ + 1 ) 2
(T^8 - T^6 + T^4 - T^2 + 1)^2
3 3 3
T 16 T^{16} T 1 6
T^16
5 5 5
T 16 − T 12 + ⋯ + 1 T^{16} - T^{12} + \cdots + 1 T 1 6 − T 1 2 + ⋯ + 1
T^16 - T^12 + T^8 - T^4 + 1
7 7 7
T 16 T^{16} T 1 6
T^16
11 11 1 1
T 16 T^{16} T 1 6
T^16
13 13 1 3
T 16 + 4 T 15 + ⋯ + 1 T^{16} + 4 T^{15} + \cdots + 1 T 1 6 + 4 T 1 5 + ⋯ + 1
T^16 + 4*T^15 + 10*T^14 + 20*T^13 + 34*T^12 + 44*T^11 + 32*T^10 + 60*T^9 + 156*T^8 + 284*T^7 + 382*T^6 + 328*T^5 + 269*T^4 + 68*T^3 - 4*T^2 - 8*T + 1
17 17 1 7
T 16 − 4 T 15 + ⋯ + 1 T^{16} - 4 T^{15} + \cdots + 1 T 1 6 − 4 T 1 5 + ⋯ + 1
T^16 - 4*T^15 + 10*T^14 - 20*T^13 + 34*T^12 - 44*T^11 + 32*T^10 - 60*T^9 + 156*T^8 - 284*T^7 + 382*T^6 - 328*T^5 + 269*T^4 - 68*T^3 - 4*T^2 + 8*T + 1
19 19 1 9
T 16 T^{16} T 1 6
T^16
23 23 2 3
T 16 T^{16} T 1 6
T^16
29 29 2 9
T 16 + 4 T 15 + ⋯ + 16 T^{16} + 4 T^{15} + \cdots + 16 T 1 6 + 4 T 1 5 + ⋯ + 1 6
T^16 + 4*T^15 + 10*T^14 + 20*T^13 + 34*T^12 + 64*T^11 + 112*T^10 + 160*T^9 + 156*T^8 - 16*T^7 - 128*T^6 - 112*T^5 - 56*T^4 - 32*T^3 + 16*T^2 + 32*T + 16
31 31 3 1
T 16 T^{16} T 1 6
T^16
37 37 3 7
T 16 + 5 T 12 + ⋯ + 625 T^{16} + 5 T^{12} + \cdots + 625 T 1 6 + 5 T 1 2 + ⋯ + 6 2 5
T^16 + 5*T^12 + 150*T^8 - 500*T^4 + 625
41 41 4 1
( T 8 − T 6 + T 4 + ⋯ + 1 ) 2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} ( T 8 − T 6 + T 4 + ⋯ + 1 ) 2
(T^8 - T^6 + T^4 - T^2 + 1)^2
43 43 4 3
T 16 T^{16} T 1 6
T^16
47 47 4 7
T 16 T^{16} T 1 6
T^16
53 53 5 3
T 16 − 4 T 15 + ⋯ + 1 T^{16} - 4 T^{15} + \cdots + 1 T 1 6 − 4 T 1 5 + ⋯ + 1
T^16 - 4*T^15 + 10*T^14 - 20*T^13 + 34*T^12 - 44*T^11 + 82*T^10 - 160*T^9 + 256*T^8 - 304*T^7 + 162*T^6 + 72*T^5 - 131*T^4 + 32*T^3 + 46*T^2 + 8*T + 1
59 59 5 9
T 16 T^{16} T 1 6
T^16
61 61 6 1
( T 8 + 2 T 7 + 2 T 6 + ⋯ + 1 ) 2 (T^{8} + 2 T^{7} + 2 T^{6} + \cdots + 1)^{2} ( T 8 + 2 T 7 + 2 T 6 + ⋯ + 1 ) 2
(T^8 + 2*T^7 + 2*T^6 + 10*T^5 + 16*T^4 + 10*T^3 + 13*T^2 + 6*T + 1)^2
67 67 6 7
T 16 T^{16} T 1 6
T^16
71 71 7 1
T 16 T^{16} T 1 6
T^16
73 73 7 3
( T 8 − 8 T 6 + 19 T 4 + ⋯ + 1 ) 2 (T^{8} - 8 T^{6} + 19 T^{4} + \cdots + 1)^{2} ( T 8 − 8 T 6 + 1 9 T 4 + ⋯ + 1 ) 2
(T^8 - 8*T^6 + 19*T^4 - 12*T^2 + 1)^2
79 79 7 9
T 16 T^{16} T 1 6
T^16
83 83 8 3
T 16 T^{16} T 1 6
T^16
89 89 8 9
T 16 − 2 T 14 + ⋯ + 16 T^{16} - 2 T^{14} + \cdots + 16 T 1 6 − 2 T 1 4 + ⋯ + 1 6
T^16 - 2*T^14 - 4*T^13 + 2*T^12 - 24*T^11 + 16*T^10 + 48*T^9 + 60*T^8 - 112*T^7 + 128*T^6 - 112*T^5 + 72*T^4 - 64*T^3 + 48*T^2 - 32*T + 16
97 97 9 7
T 16 − 2 T 14 + ⋯ + 1 T^{16} - 2 T^{14} + \cdots + 1 T 1 6 − 2 T 1 4 + ⋯ + 1
T^16 - 2*T^14 + 4*T^13 + 7*T^12 - 16*T^11 + 6*T^10 - 8*T^9 - 80*T^8 + 72*T^7 + 118*T^6 + 92*T^5 + 222*T^4 + 144*T^3 + 68*T^2 + 12*T + 1
show more
show less