Properties

Label 820.1.by.a
Level $820$
Weight $1$
Character orbit 820.by
Analytic conductor $0.409$
Analytic rank $0$
Dimension $16$
Projective image $D_{40}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [820,1,Mod(47,820)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(820, base_ring=CyclotomicField(40))
 
chi = DirichletCharacter(H, H._module([20, 10, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("820.47");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 820.by (of order \(40\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.409233310359\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{40}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{40} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{40}^{6} q^{2} + \zeta_{40}^{12} q^{4} + \zeta_{40} q^{5} - \zeta_{40}^{18} q^{8} - \zeta_{40}^{15} q^{9} - \zeta_{40}^{7} q^{10} + (\zeta_{40}^{19} + \zeta_{40}^{8}) q^{13} - \zeta_{40}^{4} q^{16} + \cdots + \zeta_{40}^{9} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 4 q^{13} - 4 q^{16} + 4 q^{17} - 4 q^{29} + 4 q^{45} + 4 q^{50} - 16 q^{52} + 4 q^{53} - 4 q^{61} + 4 q^{64} - 16 q^{65} - 4 q^{68} - 4 q^{82}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(\zeta_{40}^{7}\) \(-\zeta_{40}^{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1
−0.891007 0.453990i
0.156434 0.987688i
−0.987688 + 0.156434i
−0.453990 0.891007i
0.453990 + 0.891007i
0.891007 0.453990i
0.453990 0.891007i
0.987688 0.156434i
−0.987688 0.156434i
−0.156434 0.987688i
−0.156434 + 0.987688i
0.891007 + 0.453990i
0.156434 + 0.987688i
0.987688 + 0.156434i
−0.453990 + 0.891007i
−0.891007 + 0.453990i
0.951057 0.309017i 0 0.809017 0.587785i −0.891007 0.453990i 0 0 0.587785 0.809017i 0.707107 + 0.707107i −0.987688 0.156434i
67.1 0.587785 + 0.809017i 0 −0.309017 + 0.951057i 0.156434 0.987688i 0 0 −0.951057 + 0.309017i 0.707107 + 0.707107i 0.891007 0.453990i
147.1 −0.587785 + 0.809017i 0 −0.309017 0.951057i −0.987688 + 0.156434i 0 0 0.951057 + 0.309017i −0.707107 0.707107i 0.453990 0.891007i
227.1 −0.951057 0.309017i 0 0.809017 + 0.587785i −0.453990 0.891007i 0 0 −0.587785 0.809017i −0.707107 0.707107i 0.156434 + 0.987688i
347.1 −0.951057 0.309017i 0 0.809017 + 0.587785i 0.453990 + 0.891007i 0 0 −0.587785 0.809017i 0.707107 + 0.707107i −0.156434 0.987688i
403.1 0.951057 + 0.309017i 0 0.809017 + 0.587785i 0.891007 0.453990i 0 0 0.587785 + 0.809017i −0.707107 + 0.707107i 0.987688 0.156434i
423.1 −0.951057 + 0.309017i 0 0.809017 0.587785i 0.453990 0.891007i 0 0 −0.587785 + 0.809017i 0.707107 0.707107i −0.156434 + 0.987688i
427.1 −0.587785 + 0.809017i 0 −0.309017 0.951057i 0.987688 0.156434i 0 0 0.951057 + 0.309017i 0.707107 + 0.707107i −0.453990 + 0.891007i
463.1 −0.587785 0.809017i 0 −0.309017 + 0.951057i −0.987688 0.156434i 0 0 0.951057 0.309017i −0.707107 + 0.707107i 0.453990 + 0.891007i
503.1 0.587785 0.809017i 0 −0.309017 0.951057i −0.156434 0.987688i 0 0 −0.951057 0.309017i −0.707107 + 0.707107i −0.891007 0.453990i
507.1 0.587785 + 0.809017i 0 −0.309017 + 0.951057i −0.156434 + 0.987688i 0 0 −0.951057 + 0.309017i −0.707107 0.707107i −0.891007 + 0.453990i
527.1 0.951057 0.309017i 0 0.809017 0.587785i 0.891007 + 0.453990i 0 0 0.587785 0.809017i −0.707107 0.707107i 0.987688 + 0.156434i
563.1 0.587785 0.809017i 0 −0.309017 0.951057i 0.156434 + 0.987688i 0 0 −0.951057 0.309017i 0.707107 0.707107i 0.891007 + 0.453990i
603.1 −0.587785 0.809017i 0 −0.309017 + 0.951057i 0.987688 + 0.156434i 0 0 0.951057 0.309017i 0.707107 0.707107i −0.453990 0.891007i
643.1 −0.951057 + 0.309017i 0 0.809017 0.587785i −0.453990 + 0.891007i 0 0 −0.587785 + 0.809017i −0.707107 + 0.707107i 0.156434 0.987688i
663.1 0.951057 + 0.309017i 0 0.809017 + 0.587785i −0.891007 + 0.453990i 0 0 0.587785 + 0.809017i 0.707107 0.707107i −0.987688 + 0.156434i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 47.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
205.bb even 40 1 inner
820.by odd 40 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 820.1.by.a 16
4.b odd 2 1 CM 820.1.by.a 16
5.c odd 4 1 820.1.bz.a yes 16
20.e even 4 1 820.1.bz.a yes 16
41.h odd 40 1 820.1.bz.a yes 16
164.o even 40 1 820.1.bz.a yes 16
205.bb even 40 1 inner 820.1.by.a 16
820.by odd 40 1 inner 820.1.by.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
820.1.by.a 16 1.a even 1 1 trivial
820.1.by.a 16 4.b odd 2 1 CM
820.1.by.a 16 205.bb even 40 1 inner
820.1.by.a 16 820.by odd 40 1 inner
820.1.bz.a yes 16 5.c odd 4 1
820.1.bz.a yes 16 20.e even 4 1
820.1.bz.a yes 16 41.h odd 40 1
820.1.bz.a yes 16 164.o even 40 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(820, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} - T^{12} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} + 4 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{16} - 4 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{16} \) Copy content Toggle raw display
$23$ \( T^{16} \) Copy content Toggle raw display
$29$ \( T^{16} + 4 T^{15} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{16} \) Copy content Toggle raw display
$37$ \( T^{16} + 5 T^{12} + \cdots + 625 \) Copy content Toggle raw display
$41$ \( (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{16} \) Copy content Toggle raw display
$47$ \( T^{16} \) Copy content Toggle raw display
$53$ \( T^{16} - 4 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{16} \) Copy content Toggle raw display
$61$ \( (T^{8} + 2 T^{7} + 2 T^{6} + \cdots + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} \) Copy content Toggle raw display
$71$ \( T^{16} \) Copy content Toggle raw display
$73$ \( (T^{8} - 8 T^{6} + 19 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} \) Copy content Toggle raw display
$83$ \( T^{16} \) Copy content Toggle raw display
$89$ \( T^{16} - 2 T^{14} + \cdots + 16 \) Copy content Toggle raw display
$97$ \( T^{16} - 2 T^{14} + \cdots + 1 \) Copy content Toggle raw display
show more
show less